首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
目的 探讨骨形态发生蛋白2(BMP2)在甲状旁腺素(PTH)促进成骨细胞分化过程中的重要介导作用.方法培养MC3T3-E1细胞,分为4组:1)盐水对照组;2)PTH组;3)6-[4-[2-(1-哌啶基)乙氧基]苯基]-3-(4-吡啶基)吡唑并[1,5-a]嘧啶 (Dorsomorphin) 组;4) PTH+Dorsomorphin组.Real-time PCR法和Westernblot方法检测细胞BMP2、BMP2下游基因和成骨因子的表达,碱性磷酸酶(ALP)染色方法检测细胞ALP的活性;双荧光素酶报告基因检测方法检测12xSBE-OC荧光素酶的活性.结果:PTH组BMP-2、成骨因子的表达及其12xSBE-OC荧光素酶的活性,明显高于盐水对照组.Dorsomorphin组和PTH+Dorsomorphin组BMP-2、BMP-2下游基因和成骨因子的表达,均明显低于盐水对照组;但其表达于两组间无明显差别.结论 BMP2介导PTH促进成骨细胞的分化,PTH可通过上调BMP2的表达,提高其功能,促进成骨细胞的成熟分化.  相似文献   

3.
4.
Our laboratory previously showed that osteoactivin (OA) is a novel, osteoblast-related glycoprotein that plays a role in osteoblast differentiation and function. The purpose of this study was to examine the regulation of OA expression by BMP-2 and the role OA plays as a downstream mediator of BMP-2 effects in osteoblast function. Using primary osteoblast cultures, we tested different doses of BMP-2 on the regulation of OA expression during osteoblast development. To test whether Smad-1 signaling is responsible for BMP-2 regulation of OA expression, osteoblast cultures were transfected with Smad1 siRNA, treated with 50 ng/ml of BMP-2 and analyzed by Western blot. BMP-2 treatment increased OA mRNA and protein expression in a dose-dependent manner and this upregulation was blocked in Smad1 siRNA transfected cultures. We next examined whether the role of OA as a downstream mediator of BMP-2 effects on osteoblast differentiation and matrix mineralization. Osteoblast cultures were transfected with OA antisense oligonucleotides and treated with 50 ng/ml of BMP-2. Cultures transfected with OA antisense oligonucleotides and treated with BMP-2 showed a reduction of OA expression associated with a significant reduction in early and late differentiation markers induced by BMP-2. Therefore, OA acts, at least in part, as a downstream mediator of BMP-2 effects on osteoblast differentiation and matrix mineralization. Our findings suggest that BMP-2 regulates OA expression through the Smad1 signaling pathway. Our data also emphasize that OA protein acts as a downstream mediator of BMP-2 effects on osteoblast differentiation and function.  相似文献   

5.
As a flavonoid, rutin has been found to have a wide range of biological functions, such as resisting inflammation and oxidation, and preventing cerebral hemorrhage and hypertension. It has been found to play an important role in osteoporosis and other orthopedic diseases in recent years. MC3T3-E1 cells were randomly divided into a control group, a rutin-1 group (0.01 mmol/L), a rutin-2 group (0.05 mmol/L) and a rutin-3 group (0.1 mmol/L). Osteogenic differentiation of cells was induced by osteogenic induction fluid. The control group was treated with the maximum dose of drug solvent. 2~3 days later, the solvent was replaced with fresh osteogenic induction fluid containing rutin. After a certain period of routine culture, the cells were collected for subsequent experiments. The expression of Runx2 gene in cells in all groups was detected by Real-time PCR; the expression of Runx2 protein was detected by Western blot and immunocytochemistry (IHC); the activity of ALP was detected by reagent kit method; osteogenic differentiation was analyzed by alizarin red staining. The results of Real-time PCR showed that, compared with the control group, the treatment of cells with rutin can significantly increase the expression of Runx2 gene (p<0.05); the higher the concentration, the higher the expression of Runx2 gene, and significant differences were found among groups in which different concentrations were used (p<0.05); the results of Western blot and IHC showed that the expression trend of Runx2 protein in each group was consistent with PCR results. In drug treatment groups, the activity of ALP was significantly higher than that in the control group (p<0.05); there were significant differences among groups in which different concentrations were used (p<0.05). The results of alizarin red staining showed that calcified nodules were formed in all groups and that the area of calcified nodules formed in groups treated with rutin was greater than that in the control group; the greater the concentration, the larger the area. Rutin can promote osteoblastic differentiation; and the greater the concentration, the more effective it is.Key words: xRutin, Runx2, ALP, osteogenic differentiation  相似文献   

6.
7.
8.
Using flow cytometry analysis, the flagellin of Burkholderia pseudomallei acts as a signalling inducer, and evokes an increase in the intracellular calcium ion concentration ([Ca(2+)]i) in human peripheral blood mononuclear cells (PBMC). The cells with increased [Ca(2+)]i segregate into the live monocyte gate and not into the live lymphocyte gates. The stimulated [Ca(2+)]i increase can be neutralized with anti-flagellin antibodies. In the absence of [Ca(2+)], [Ca(2+)]i was increased rapidly in flagellin-treated cells compared to non-flagellin-treated cells only after the addition of 1 mM CaCl(2). Selective calcium antagonists were used to effectively block the [Ca(2+)]i signal, revealing that this signal was decreased by the addition of L-type calcium channel blockers (diltiazem, nifedipine and verapamil) and La(2+) but was not changed by the addition of a T-type calcium channel blocker (flunarizine). It seemed that flagellin facilitates [Ca(2+)]i influx via a La(2+) sensitive L-type cellular membrane channel. Furthermore, flagellin also acts as a TNF-alpha inducer in a time- and concentration-dependent manner when adhered mononuclear cells are treated with flagellin. This ability to induce TNF-alpha production was affected by the presence of [Ca(2+)] in the culture medium. It suggested that B. pseudomallei flagellin is an immuno-stimulatory molecule, causing an increase in [Ca(2+)]i and an up-regulation of TNF-alpha, which may play an important role in the inflammation process.  相似文献   

9.
Dietary soy isoflavones including genistein and daidzein have been shown to have favorable effects during estrogen deficiency in experimental animals and humans. We have evaluated osteogenic effect of cladrin and formononetin, two structurally related methoxydaidzeins found in soy food and other natural sources. Cladrin, at as low as 10 nM, maximally stimulated both osteoblast proliferation and differentiation by activating MEK-Erk pathway. On the other hand, formononetin maximally stimulated osteoblast differentiation at 100 nM that involved p38 MAPK pathway but had no effect on osteoblast proliferation. Unlike daidzein, these two compounds neither activated estrogen receptor in osteoblast nor had any effect on osteoclast differentiation. Daily oral administration of each of these compounds at 10.0 mg kg−1 day−1 dose to recently weaned female Sprague-Dawley rats for 30 consecutive days, increased bone mineral density at various anatomic positions studied. By dynamic histomorphometry of bone, we observed that rats treated with cladrin exhibited increased mineral apposition and bone formation rates compared with control, while formononetin had no effect. Cladrin had much better plasma bioavailability compared with formononetin. None of these compounds exhibited estrogen agonistic effect in uteri. Our data suggest that cladrin is more potent among the two in promoting parameters of peak bone mass achievement, which could be attributed to its stimulatory effect on osteoblast proliferation and better bioavailability. To the best of our knowledge, this is the first attempt to elucidate structure-activity relationship between the methoxylated forms of daidzein and their osteogenic effects.  相似文献   

10.
11.
12.
13.
14.
Grossman, Elena J., Richard E. Grindeland, Roland R. Roy,Robert J. Talmadge, Juliann Evans, and V. Reggie Edgerton. Growth hormone, IGF-I, and exercise effects on non-weight-bearing fast musclesof hypophysectomized rats. J. Appl.Physiol. 83(5): 1522-1530, 1997.The effects ofgrowth hormone (GH) or insulin-like growth factor I (IGF-I) with orwithout exercise (ladder climbing) in countering the effects ofunweighting on fast muscles of hypophysectomized rats during 10 days ofhindlimb suspension were determined. Compared with untreated suspendedrats, muscle weights were 16-29% larger in GH-treated and5-15% larger in IGF-I-treated suspended rats. Exercise alone hadno effect on muscle weights. Compared with ambulatory control, themedial gastrocnemius weight in suspended, exercised rats was largerafter GH treatment and maintained with IGF-I treatment. The combinationof GH or IGF-I plus exercise in suspended rats resulted in an increasein the size of each predominant fiber type, i.e., types I, I+IIa andIIa+IIx, in the medial gastrocnemius compared with untreated suspendedrats. Normal ambulation or exercise during suspension increased theproportion of fibers expressing embryonic myosin heavy chain inhypophysectomized rats. The phenotype of the medial gastrocnemius wasminimally affected by GH, IGF-I, and/or exercise. These resultsshow that there is an IGF-I, as well as a GH, and exercise interactiveeffect in maintaining medial gastrocnemius fiber size in suspendedhypophysectomized rats.

  相似文献   

15.
2-methoxyoestradiol (2-MeOE2) is a potent anti-angiogenic agent. Its 3- and 17-sulphamoylated derivatives have been demonstrated to induce G2-M cell cycle arrest and apoptosis in breast cancer cells in vitro as well as tumour regression in rats in vivo with greater potency than the parent oestrogen. To determine whether the anti-cancer properties of these derivatives can be synergistically enhanced with low-dose TNF-alpha co-treatment, we investigated the effects of these treatments in adult human fibroblasts and human umbilical vein endothelial cells (HUVECs). Treatment of fibroblasts with 0.1 microM 2-methoxyoestradiol-3,17-bis sulphamate (2-MeOE2bisMATE) but not 2-MeOE2 caused a reversible morphology change and induced G2-M arrest (from 12 to 33%) but not subsequent apoptosis. In contrast, treatment of HUVECs did not induce morphology change or G2-M arrest. Using a nucleosomal ELISA assay, we showed that TNF-alpha (20 ng/ml) combination treatment synergistically increases 0.1 microM 2-MeOE2bisMATE-induced but not 0.1 microM 2-MeOE2-induced apoptosis in HUVECs. These results suggest that TNF-alpha co-treatment may be a beneficial method of increasing the potency of 2-substituted oestrogens as anti-angiogenic agents through synergistic induction of apoptosis in endothelial cells while maintaining low cytotoxicity to fibroblasts.  相似文献   

16.
Cancer cells exhibit de-regulation of multiple cellular signalling pathways and treatments of various types of cancers with polyphenols are promising. We recently reported the synthesis of a series of 33 novel divanillic and trivanillic polyphenols that displayed anticancer activity, at least in vitro, through inhibiting various kinases. This study revealed that minor chemical modifications of a trivanillate scaffold could convert cytotoxic compounds into cytostatic ones. Compound 13c, a tri-chloro derivative of trivanillic ester, displayed marked inhibitory activities against FGF-, VEGF-, EGF- and Src-related kinases, all of which are implicated not only in angiogenesis but also in the biological aggressiveness of various cancer types. The pan-anti-kinase activity of 13c occurs at less than one-tenth of its mean IC(50) in vitro growth inhibitory concentrations towards a panel of 12 cancer cell lines. Of the 26 kinases for which 13c inhibited their activity by >75%, eight (Yes, Fyn, FGF-R1, EGFR, Btk, Mink, Ret and Itk) are implicated in control of the actin cytoskeleton organization to varying degrees. Compound 13c accordingly impaired the typical organization of the actin cytoskeleton in human U373 glioblastoma cells. The pan-anti-kinase activity and actin cytoskeleton organization impairment provoked by 13c concomitantly occurs with calcium homeostasis impairment but without provoking MDR phenotype activation. All of these anticancer properties enabled 13c to confer therapeutic benefits in vivo in a mouse melanoma pseudometastatic lung model. These data argue in favour of further chemically modifying trivanillates to produce novel and potent anticancer drugs.  相似文献   

17.
18.
19.
20.
Diabetes mellitus is a significant risk factor for cardiovascular diseases, and low-grade systemic inflammation, mediated by oxidative stress, may play a central role. Caloric restriction (CR) has been reported to be effective in reducing oxidative stress during diabetes and moderating the expression of some markers of inflammation that are up-regulated during aging. Forty male Wistar rats were randomly divided into four groups: nondiabetic feeding ad libitum and under CR, and diabetic feeding ad libitum and under CR. The animals were subjected to 30% CR and ad libitum feeding for 9 weeks before the induction of diabetes by intraperitoneal injection with 35 mg/kg body weight streptozotocin. The inflammatory cytokines [interleukin (IL)-1beta, IL-4 and IL-6] and tumor necrosis factor alpha up-regulated in diabetes were found to be significantly depressed by CR, whereas the antiinflammatory mediators, haptoglobin and IL-10 levels, were increased. These results indicated that CR could prevent diabetic complications through suppression of inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号