首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Equine arteritis virus (EAV), the prototype arterivirus, is an enveloped plus-strand RNA virus with a genome of approximately 13 kb. Based on similarities in genome organization and protein expression, the arteriviruses have recently been grouped together with the coronaviruses and toroviruses in the newly established order Nidovirales. Previously, we reported the construction of pEDI, a full-length cDNA copy of EAV DI-b, a natural defective interfering (DI) RNA of 5.6 kb (R. Molenkamp et al., J. Virol. 74:3156-3165, 2000). EDI RNA consists of three noncontiguous parts of the EAV genome fused in frame with respect to the replicase gene. As a result, EDI RNA contains a truncated replicase open reading frame (EDI-ORF) and encodes a truncated replicase polyprotein. Since some coronavirus DI RNAs require the presence of an ORF for their efficient propagation, we have analyzed the importance of the EDI-ORF in EDI RNA replication. The EDI-ORF was disrupted at different positions by the introduction of frameshift mutations. These were found either to block DI RNA replication completely or to be removed within one virus passage, probably due to homologous recombination with the helper virus genome. Using recombination assays based on EDI RNA and full-length EAV genomes containing specific mutations, the rates of homologous RNA recombination in the 3'- and 5'-proximal regions of the EAV genome were studied. Remarkably, the recombination frequency in the 5'-proximal region was found to be approximately 100-fold lower than that in the 3'-proximal part of the genome.  相似文献   

2.
We have analyzed Semliki Forest virus defective interfering RNA molecules, generated by serial undiluted passaging of the virus in baby hamster kidney cells. The 42 S RNA genome (about 13 kb 2) has been greatly deleted to generate the DI RNAs, which are heterogeneous both in size (about 2 kb) and sequence content. The DI RNAs offer a system for exploring binding sites for RNA polymerase and encapsidation signals, which must have been conserved in them since they are replicated and packaged. In order to study the structural organization of DI RNAs, and to analyze which regions from the genome have been conserved, we have determined the nucleotide sequences of (1) a 2.3 kb long DI RNA molecule, DI309, (2) 3′-terminal sequences (each about 0.3 kb) of two other DI RNAs, and (3) the nucleotide sequence of 0.4 kb at the extreme 5′ end of the 42 S RNA genome.The DI309 molecule consists of a duplicated region with flanking unique terminal sequences. A 273-nucleotide sequence is present in four copies per molecule. The extreme 5′-terminal nucleotide sequence of the 42 S RNA genome is shown to contain domains that are conserved in the two DI RNAs of known structure: DI309, and the previously sequenced DI301 (Lehtovaara et al., 1981). Here we report which terminal genome sequences are conserved in the DI RNAs, and how they have been modified, rearranged or amplified.  相似文献   

3.
4.
《Seminars in Virology》1997,8(2):101-111
Naturally occurring defective interfering RNAs have been found in 4 of 14 coronavirus species. They range in size from 2.2 kb to approximately 25 kb, or 80% of the 30-kb parent virus genome. The large DI RNAs do not in all cases appear to require helper virus for intracellular replication and it has been postulated that they may on their own function as agents of disease. Coronavirus DI RNAs appear to arise by internal deletions (through nonhomologous recombination events) on the virus genome or on DI RNAs of larger size by a polymerase strand-switching (copy-choice) mechanism. In addition to their use in the study of virus RNA replication and virus assembly, coronavirus DI RNAs are being used in a major way to study the mechanism of a high-frequency, site-specific RNA recombination event that leads to leader acquisition during virus replication (i.e., the leader fusion event that occurs during synthesis of subgenomic mRNAs, and the leader-switching event that can occur during DI RNA replication), a distinguishing feature of coronaviruses (and arteriviruses). Coronavirus DI RNAs are also being engineered as vehicles for the generation of targeted recombinants of the parent virus genome.  相似文献   

5.
The genome of the defective interfering (DI) mouse hepatitis virus DI-a carries a large open reading frame (ORF) consisting of ORF1a, ORF1b, and nucleocapsid sequences. To test whether this fusion ORF is important for DI virus replication, we constructed derivatives of the DI-a genome in which the reading frame was truncated by a nonsense codon or a frameshift mutation. In vitro-transcribed DI RNAs were transfected into mouse hepatitis virus-infected cells followed by undiluted passage of the resulting virus-DI virus stocks. The following observations were made. (i) Truncation of the fusion ORF was not lethal but led to reduced accumulation of DI RNA. (ii) When pairs of nearly identical in-frame and out-of-frame DI RNAs were directly compared by cotransfection, DI viruses containing in-frame genomic RNAs prevailed within three successive passage even when the out-of-frame RNAs were transfected in 10-fold molar excess. (iii) When DI viruses containing out-of-frame genomic RNAs were passaged, mutants emerged and were selected for that had restored the reading frame. We conclude that translation of the fusion ORF is indeed required for efficient propagation of DI-a and its derivatives.  相似文献   

6.
S Makino  K Yokomori    M M Lai 《Journal of virology》1990,64(12):6045-6053
We have previously shown that most of the defective interfering (DI) RNA of mouse hepatitis virus (MHV) are not packaged into virions. We have now identified, after 21 serial undiluted passages of MHV, a small DI RNA, DIssF, which is efficiently packaged into virions. The DIssF RNA replicated at a high efficiency on its transfection into the helper virus-infected cells. The virus released from the transfected cells interfered strongly with mRNA synthesis and growth of helper virus. cDNA cloning and sequence analysis of DIssF RNA revealed that it is 3.6 kb and consists of sequences derived from five discontinuous regions of the genome of the nondefective virus. The first four regions (domains I to IV) from the 5' end are derived from gene 1, which presumably encodes the RNA polymerase of the nondefective virus. The entire domain I (859 nucleotides) and the first 750 nucleotides of domain II are also present in a previously characterized DI RNA, DIssE, which is not efficiently packaged into virions. Furthermore, the junction between these two domains is identical between the two DI RNAs. The remaining 77 nucleotides at the 3' end of domain II and all of domains III (655 nucleotides) and IV (770 nucleotides) are not present in DIssE RNA. These four domains are derived from gene 1. In contrast, the 3'-most domain (domain V, 447 nucleotides) is derived from the 3' end of the genomic RNA and is also present in DIssE. The comparison of primary sequences and packaging properties between DIsse and DIssF RNAs suggested that domains III and IV and part of the 3' end of domain II contain the packaging signal for MHV RNA. This conclusion was confirmed by inserting these DIssF-unique sequences into a DIssE cDNA construct; the in vitro-transcribed RNA from this hybrid construct was efficiently packaged into virion particles. DIssF RNA also contains an open reading frame, which begins from domain I and ends at the 5'-end 20 bases of domain III. In vitro translation of DIssF RNA and metabolic labeling of the virus-infected cells showed that this open reading frame is indeed translated into a 75-kDa protein. The structures of both DIssE and DIssF RNAs suggest that a protein-encoding capability is a common characteristic of MHV DI RNA.  相似文献   

7.
8.
Y J Lin  M M Lai 《Journal of virology》1993,67(10):6110-6118
All of the defective interfering (DI) RNAs of mouse hepatitis virus (MHV) contain both the 5' and 3' ends of the viral genomic RNA, which presumably include the cis sequences required for RNA replication. To define the replication signal of MHV RNA, we have used a vaccinia virus-T7 polymerase-transcribed MHV DI RNA to study the effects of sequence deletion on DI RNA replication. Following infection of susceptible cells with a recombinant vaccinia virus expressing T7 RNA polymerase, various cDNA clones derived from a DI RNA (DIssF) of the JHM strain of MHV, which is a 3.5-kb naturally occurring DI RNA, behind a T7 promoter were transfected. On superinfection with a helper MHV, the ability of various DI RNAs to replicate was determined. Serial deletions from the middle of the RNA toward both the 5' and 3' ends demonstrated that 859 nucleotides from the 5' end and 436 nucleotides from the 3' end of the MHV RNA genome were necessary for RNA replication. Surprisingly, an additional stretch of 135 nucleotides located at 3.1 to 3.3 kb from the 5' end of the genome was also required. This stretch is discontiguous from the 5'-end cis replication signal and is present in all of the naturally occurring DI RNAs studied so far. The requirement for a long stretch of 5'- and 3'-end sequences predicts that the subgenomic MHV mRNAs cannot replicate. The efficiency of RNA replication varied with different cDNA constructs, suggesting possible interaction between different regions of DI RNA. The identification of MHV RNA replication signals allowed the construction of an MHV DI-based expression vector, which can express foreign genes, such as the chloramphenicol acetyltransferase gene.  相似文献   

9.
10.
Total RNA was extracted from primary cultures of mouse macrophages isolated from 10-day-old mice 6 to 12 h postinfection with lactate dehydrogenase-elevating virus (LDV). Poly(A)+ RNA was extracted from spleens of 18-h LDV-infected mice. The RNAs were analyzed by Northern (RNA) blot hybridization with a number of LDV-specific cDNAs as probes. A cDNA representing the nucleocapsid protein (VP-1) gene located at the 3' terminus of the viral genome (E. K. Godeny, D. W. Speicher, and M. A. Brinton, Virology 177:768-771, 1990) hybridized to viral genomic RNA of about 13 kb plus seven subgenomic RNAs ranging in size from about 1 to about 3.6 kb. Two other cDNA clones hybridized only to the four or five largest subgenomic RNAs, respectively. In contrast, two cDNAs encoding continuous open reading frames with replicase and zinc finger motifs hybridized only to the genomic RNA. The replicase motif exhibited 75% amino acid identity to that of the 1b protein of equine arteritis virus (EAV) and 44% amino acid identity to those of the 1b proteins of coronaviruses and Berne virus. Combined, the results indicate that LDV replication involves formation of a 3'-coterminal-nested set of mRNAs as observed for coronaviruses and toroviruses as well as for EAV, with which LDV shares many other properties. Overall, LDV, like EAV, possesses a genome organization resembling that of the coronaviruses and toroviruses. However, EAV and LDV differ from the latter in the size of their genomes, virion size and structure, nature of the structural proteins, and symmetry of the nucleocapsids.  相似文献   

11.
12.
The 5' portion of the Sindbis virus (SIN) genome RNA is multifunctional. Besides initiating translation of the nonstructural polyprotein, RNA elements in the 5' 200 bases of the SIN genome RNA, or its complement at the 3' end of the negative-strand intermediate, play key roles in the synthesis of both negative- and positive-strand RNAs. We used here a combination of genetic and biochemical approaches to further dissect the functions of this sequence. Replacement of the SIN 5' end in defective-interfering (DI) and genome RNAs with sequences from a distantly related alphavirus, Semliki Forest virus (SFV), resulted in nonviable chimeras. The addition of five nucleotides from the 5' terminus of SIN restored negative-strand RNA synthesis in DI genomes but not their replication in vivo. Pseudorevertants of various SFV-SIN chimeras were isolated, and suppressor mutations were mapped to AU-rich sequences added to the 5' end of the original SFV 5' sequence or its "deleted" versions. Early pseudorevertants had heterogeneous 5' termini that were inefficient for replication relative to the parental SIN 5' sequence. In contrast, passaging of these pseudorevertant viral populations in BHK cells under competitive conditions yielded evolved, more homogeneous 5'-terminal sequences that were highly efficient for negative-strand synthesis and replication. These 5'-terminal sequences always began with 5'-AU, followed by one or more AU repeats or short stretches of oligo(A). Further analysis demonstrated a positive correlation between the number of repeat units and replication efficiency. Interestingly, some 5' modifications restored high-level viral replication in BHK-21 cells, but these viruses were impaired for replication in the cells of mosquito origin. These studies provide new information on sequence determinants required for SIN RNA replication and suggest new strategies for restricting cell tropism and optimizing the packaging of alphavirus vectors.  相似文献   

13.
Sindbis virus generates defective interfering (DI) particles during serial high-multiplicity passage in cultured cells. These DI particles inhibit the replication of infectious virus and can be an important factor in the establishment and maintenance of persistent infection in BHK cells. In an effort to understand how these DI particles are generated and how they interfere with the replication of standard virus, we performed a partial sequence analysis of the RNA obtained from two independently isolated populations of DI particles and from two Sindbis virus variants and compared these with the RNA of the parental wild-type virus. The 3'-terminal regions of the RNAs were sequenced by the dideoxy chain terminating method. Internal regions of the RNA were examined by restriction endonuclease digestion of cDNA's made to the various RNAs and by direct chemical sequencing of 5' end-labeled restriction fragments from cDNA made to the DI RNAs. One of the variant viruses examined was originally derived from cells persistently infected with Sindbis virus for 16 months and is resistant to interference by the DI strains used. In the 3'-terminal region of the RNA from this variant, only two base changes were found; one of these occurs in the 20-nucleotide 3'-terminal sequence which is highly conserved among alphaviruses. The DI RNA sequences were found to have been produced not by a single deletional event, but by multiple deletion steps combined with sequence rearrangements; all sequences examined are derived from the plus strand of Sindbis virion RNA. Both DI RNAs had at least 50 nucleotides of wild-type sequence conserved at the 3' terminus; in addition, they both contained conserved and perhaps amplified sequences derived from the non-26S region of the genome which may be of importance in their replication and interference ability.  相似文献   

14.
15.
16.
Y N Kim  S Makino 《Journal of virology》1995,69(8):4963-4971
The mouse hepatitis virus (MHV) sequences required for replication of the JHM strain of MHV defective interfering (DI) RNA consist of three discontinuous genomic regions: about 0.47 kb from both terminal sequences and a 0.13-kb internal region present at about 0.9 kb from the 5' end of the DI genome. In this study, we investigated the role of the internal 0.13-kb region in MHV RNA replication. Overall sequences of the 0.13-kb regions from various MHV strains were similar to each other, with nucleotide substitutions in some strains; MHV-A59 was exceptional, with three nucleotide deletions. Computer-based secondary-structure analysis of the 0.13-kb region in the positive strand revealed that most of the MHV strains formed the same or a similar main stem-loop structure, whereas only MHV-A59 formed a smaller main stem-loop structure. The RNA secondary structures in the negative strands were much less uniform among the MHV strains. A series of DI RNAs that contained MHV-JHM-derived 5'- and 3'-terminal sequences plus internal 0.13-kb regions derived from various MHV strains were constructed. Most of these DI RNAs replicated in MHV-infected cells, except that MRP-A59, with a 0.13-kb region derived from MHV-A59, failed to replicate. Interestingly, replication of MRP-A59 was temperature dependent; it occurred at 39.5 degrees C but not at 37 or 35 degrees C, whereas a DI RNA with an MHV-JHM-derived 0.13-kb region replicated at all three temperatures. At 37 degrees C, synthesis of MRP-A59 negative-strand RNA was detected in MHV-infected and MRP-A59 RNA-transfected cells. Another DI RNA with the internal 0.13-kb region deleted also synthesized negative-strand RNA in MHV-infected cells. MRP-A59-transfected cells were shifted from 39.5 to 37 degrees C at 5.5 h postinfection, a time when most MHV negative-strand RNAs have already accumulated; after the shift, MRP-A59 positive-strand RNA synthesis ceased. The minimum sequence required for maintenance of the positive-strand major stem-loop structure and biological function of the MHV-JHM 0.13-kb region was about 57 nucleotides. Function was lost in the 50-nucleotide sequence that formed a positive-strand stem-loop structure identical to that of MHV-A59. These studies suggested that the RNA structure made by the internal sequence was important for positive-strand MHV RNA synthesis.  相似文献   

17.
18.
19.
Three of six independently derived defective interfering (DI) particles of Sindbis virus generated by high-multiplicity passaging in cultured cells have tRNAAsp sequences at the 5' terminus of their RNAs (Monroe and Schlesinger, J. Virol. 49:865-872, 1984). In the present work, we found that the 5'-terminal sequences of the three tRNAAsp-negative DI RNAs were all derived from viral genomic RNA. One DI RNA sample had the same 5'-terminal sequence as the standard genome. The DI RNAs from another DI particle preparation were heterogeneous at the 5' terminus, with the sequence being either that of the standard 5' end or rearrangements of regions near the 5' end. The sequence of the 5' terminus of the third DI RNA sample consisted of the 5' terminus of the subgenomic 26S mRNA with a deletion from nucleotides 24 to 67 of the 26S RNA sequence. These data showed that the 5'-terminal nucleotides can undergo extensive variations and that the RNA is still replicated by virus-specific enzymes. DI RNAs of Sindbis virus evolve from larger to smaller species. In the two cases in which we followed the evolution of DI RNAs, the appearance of tRNAAsp-positive molecules occurred at the same time as did the emergence of the smaller species of DI RNAs. In pairwise competition experiments, one of the tRNAAsp-positive DI RNAs proved to be the most effective DI RNA, but under identical conditions, a second tRNAAsp-positive DI RNA was unable to compete with the tRNAAsp-negative DIs. Therefore, the tRNAAsp sequence at the 5' terminus of a Sindbis DI RNA is not the primary factor in determining which DI RNA becomes the predominant species in a population of DI RNA molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号