首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of electrostatic complexes between beta-casein and iota- and kappa-carrageenans is well-known. However, the molecular mechanism of the complexation has yet to be determined, particularly with respect to the conformational changes of the interacting macromolecules. High-sensitivity differential scanning calorimetry was used to study beta-casein/carrageenan mixtures at different pH values (3.0 to 7.5), ionic strengths (0.03 and 0.15 M), and various molar protein/polysaccharide ratios (3-400). The effects of these variables on the temperature, enthalpy, and width of the helix-coil transition of iota- and kappa-carrageenans were investigated. Neither pH nor the protein/polysaccharide ratio influenced the transition temperature of either carrageenan in the complexes. However, the transition enthalpy of both carrageenans in complexes with beta-casein decreased to zero with both decreasing pH and increasing protein/polysaccharide ratio. This may reflect an unwinding of the polysaccharide double helix induced by beta-casein, a conformational change which is fully reversible in conditions of sufficiently high ionic strength. The interaction of beta-casein with iota- and kappa-carrageenans was approximated in terms of the model of binding of large ligands to macromolecules, that provides the binding constants for these biopolymers.  相似文献   

2.
The emission maximum of DPN-linked isocitrate dehydrogenase from bovine heart shifted from 316 nm to 324 nm as the excitation wavelength was varied from 265 nm to 300 nm. This shift was accompanied by a nonproportional change in fluorescence intensity. Comparisons of the emission spectra of model compounds in aqueous buffer at pH 7.07 and n-butanol showed that lowered solvent polarity led to a blue shift of the peak of free tryptophan without significant change of fluorescence intensity, whereas the fluorescence intensity of tyrosine amide increased markedly without change in emission maximum. The emission peak of mixtures of tryptophan and tyrosine amide shifted to shorter wavelengths as the proportion of tyrosine amide increased. The results suggest a major contribution of tyrosine to the overall fluorescence of the dehydrogenase. DPNH caused quenching and a blue shift of the protein fluorescence maximum when excited between 270 nm and 290 nm, indicating that the two tryptophan residues per subunit of enzyme are located in different microenvironments of the protein and that DPNH may interact preferentially with the residue emitting at the longer wavelength.  相似文献   

3.
Several metmyoglobins (red kangaroo, horse and sperm whale), containing different numbers of tyrosines, but with invariant tryptophan residues (Trp-7, Trp-14), exhibit intrinsic fluorescence when studied by steady-state front-face fluorometry. The increasing tyrosine content of these myoglobins correlates with a shift in emission maximum to shorter wavelengths with excitation at 280 nm: red kangaroo (Tyr-146) emission maximum 335 nm; horse (Tyr-103, -146) emission maximum 333 nm; sperm whale (Tyr-103, -146, -151) emission maximum 331 nm. Since 280 nm excites both tyrosine and tryptophan, this strongly suggests that tyrosine emission is not completely quenched but also contributes to this fluorescence emission. Upon titration to pH 12.5, there is a reversible shift of the emission maximum to longer wavelengths with an increase greater than 2-fold in fluorescence intensity. With excitation at 305 nm, a tyrosinate-like emission is detected at a pH greater than 12. These studies show that: (1) metmyoglobins, Class B proteins containing both tyrosine and tryptophan residues, exhibit intrinsic fluorescence; (2) tyrosine residues also contribute to the observed steady-state fluorescence emission when excited by light at 280 nm; (3) the ionization of Tyr-146 is likely coupled to protein unfolding.  相似文献   

4.
An abnormal fluorescence emission of protein was observed in the 33-kDa protein which is one component of the three extrinsic proteins in spinach photosystem II particle (PS II). This protein contains one tryptophan and eight tyrosine residues, belonging to a "B type protein". It was found that the 33-kDa protein fluorescence is very different from most B type proteins containing both tryptophan and tyrosine residues. For most B type proteins studied so far, the fluorescence emission is dominated by the tryptophan emission, with the tyrosine emission hardly being detected when excited at 280 nm. However, for the present 33-kDa protein, both tyrosine and tryptophan fluorescence emissions were observed, the fluorescence emission being dominated by the tyrosine residue emission upon a 280 nm excitation. The maximum emission wavelength of the 33-kDa protein tryptophan fluorescence was at 317 nm, indicating that the single tryptophan residue is buried in a very strong hydrophobic region. Such a strong hydrophobic environment is rarely observed in proteins when using tryptophan fluorescence experiments. All parameters of the protein tryptophan fluorescence such as quantum yield, fluorescence decay, and absorption spectrum including the fourth derivative spectrum were explored both in the native and pressure-denatured forms.  相似文献   

5.
The thermal denaturation of bacteriorhodopsin in the purple membrane of Halobacterium halobium has been studied by differential scanning calorimetry (DSC) and temperature-dependent spectroscopy in the pH range from 5 to 11. Monitoring of protein fluorescence and absorbance in the near-UV and visible regions indicates that changes primarily occur in tertiary structure with denaturation. Far-UV circular dichroism shows only small changes in the secondary structure, unlike most globular water-soluble proteins of comparable molecular weight. The DSC transition can best be described as a two-state denaturation of the trimer. Thermodynamic analysis of the calorimetric transition reveals some similarity between the unfolding of bacteriorhodopsin and water-soluble proteins. Specifically, a pH dependence of the midpoint temperature of denaturation is seen as well as a temperature-dependent enthalpy of denaturation. Proteolysis experiments on denatured purple membrane suggest that bacteriorhodopsin may be partially extruded from the membrane as it denatures. Exposure of buried hydrophobic residues to the aqueous environment upon denaturation is consistent with the observed temperature-dependent enthalpy.  相似文献   

6.
Steady-state intrinsic tryptophan fluorescence spectroscopy is used as a rapid, robust and economic way for screening the thermal protein conformational stability in various formulations used during the early biotechnology development phase. The most important parameters affecting protein stability in a liquid formulation, e. g. during the initial purification steps or preformulation development, are the pH of the solution, ionic strength, presence of excipients and combinations thereof. A well-defined protocol is presented for the investigation of the thermal conformational stability of proteins. This allows the determination of the denaturation temperature as a function of solution conditions. Using intrinsic tryptophan fluorescence spectroscopy for monitoring the denaturation and folding of proteins, it is crucial to understand the influence of different formulation parameters on the intrinsic fluorescence probes of proteins. Therefore, we have re-evaluated and re-assessed the influence of temperature, pH, ionic strength, buffer composition on the emission spectra of tryptophan, phenylalanine and tyrosine to correctly analyse and evaluate the data obtained from thermal-induced protein denaturation as a function of the solution parameters mentioned above. The results of this study are a prerequisite for using this method as a screening assay for analysing the conformational stability of proteins in solution. The data obtained from intrinsic protein fluorescence spectroscopy are compared to data derived from calorimetry. The advantage, challenges and applicability using intrinsic tryptophan fluorescence spectroscopy as a routine development method in pharmaceutical biotechnology are discussed.  相似文献   

7.
The secondary and tertiary structure of the oligomeric arginase (EC 3.5.3.1) from beef liver was investigated by circular dichroism (CD) and fluorescence measurements. The far-ultraviolet CD spectrum of the enzyme at neutral pH is indicative of high helical content. The intrinsic fluorescence emission of the protein is due to tryptophan, the contribution of tyrosine being small. Upon excitation at 295 nm, the maximum of emission occurs at 330 nm, implying that the tryptophan residues are rather buried in a hydrophobic interior of the protein. Ethylenediaminetetraacetic acid (EDTA), which inactivates the enzyme by removing the functional Mn2+-ion from the enzyme, does not dissociate the enzyme into subunits, nor affect noticeably its secondary and tertiary structure. Inactivation occurs in the acid pH range, being complete at pH below 4. However, acidification up to pH 1.5 produced only limited changes in the far-ultra-violet CD spectrum and intrinsic fluorescence emission properties. The enzyme shows noteworthy thermal stability, as shown by measuring the residual activity after heating and by evaluating the temperature dependence of the CD signal at 220 nm and the intensity of emission fluorescence. A temperature of half inactivation (Tm) of 77 degrees was determined upon heating the enzyme at pH 7.5 in the presence of Mn2+-ions for 10 min; in the presence of EDTA, Tm is shifted to 55 degrees. Taken together, these observations indicate that the structural stability of beef liver arginase arises from a clustering of hydrophobic amino acids and from Mn2+-ion binding.  相似文献   

8.
T Fernando  C A Royer 《Biochemistry》1992,31(29):6683-6691
The unfolding properties of the trp repressor of Escherichia coli have been studied using a number of different time-resolved and steady-state fluorescence approaches. Denaturation by urea was monitored by the average fluorescence emission energy of the intrinsic tryptophan residues of the repressor. These data were consistent with a two-state transition from dimer to unfolded monomer with a free energy of unfolding of 19.2 kcal/mol. The frequency response profiles of the fluorescence emission brought to light subtle urea-induced modifications of the intrinsic tryptophan decay parameters both preceding and following the main unfolding transition. The increase of lifetime induced by urea required higher concentrations of urea than the increase in the total intensity described by Gittelman and Matthews [(1990) Biochemistry 29, 7011]. This indicates that the intensity increase has both dynamic and static origins. To assess the effect of tryptophan binding upon repressor stability, and to determine whether repressor oligomerization would be detectable in an unfolding experiment, we examined denaturation profiles of repressor labeled with the long-lived fluorescence probe 5-(dimethylamino)naphthalene-1-sulfonyl (DNS), by monitoring the average rotational correlation time of the probe. These experiments revealed a protein concentration dependent transition at low urea concentrations. This transition was promoted by tryptophan binding. We ascribe this transition to urea-induced dissociation of repressor tetramers. The main unfolding transition of the dimer to unfolded monomer was also observable using this technique, and the free energies associated with this transition were 18.3 kcal/mol in the absence of tryptophan and 24.1 kcal/mol in its presence, demonstrating that co-repressor binding stabilizes the repressor dimer against denaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Spectral studies of horse heart porphyrin cytochrome c   总被引:1,自引:0,他引:1  
Removal of the heme iron from cytochrome c to generate porphyrin cytochrome c relieves the quenching of porphyrin fluorescence and enhances the fluorescence of the single tryptophan residue and the 4 tyrosine residues. The intensity of the porphyrin fluorescence is not perturbed by denaturation of the protein at neutral pH using either urea or guanidine hydrochloride. However, the amplitude of tryptophan fluorescence is increased by these denaturants from 5 to about 85% of a model tryptophan residue using solutions of 2 microM tryptophan. In contrast to cytochrome c, the tryptophan fluorescence amplitude of denatured porphyrin cytochrome c is independent of pH over the range pH 3.0 to 7.4. Acidification of solutions of either native or denatured porphyrin cytochrome c markedly alters both the visible absorbance and fluorescence of the protein consistent with protonation of two pyrrole nitrogens on the porphyrin. Preliminary analysis of the spectral changes occurring in the acid transition suggests the presence of an intermediate form having only one of these two pyrrole nitrogens protonated.  相似文献   

10.
The circular polarization of the luminescence of a chromophore, in addition to its circular dichroism and optical rotatory dispersion, is a manifestation of its asymmetry. In the study of proteins, the circular polarization of luminescence yields more specific information than circular dichroism or optical rotatory dispersion since nonfluorescent chromophores do not contribute, and the spectra of the tyrosine and the tryptophan residues are much better resolved in emission than in absorption. The circular polarization of the fluorescence of the tyrosine and tryptophan residues in derivatives of subtilisin Carlsberg and subtilisin Novo were indeed resolved in this study. The tyrosine residues in the Carlsberg protein, and both tyrosine and tryptophan residues in the Novo protein, were found to be heterogeneous with respect to their optical activity and emission spectra. Changes in the environment of the emitting tyrosine residues in both proteins and in the tryptophan residues in the Novo protein were found on changing the pH from 5.0 to 8.3. The pH dependence of the enzymatic activity of these proteins may thus be due, at least in part, to conformational changes in the molecules. Fluorescence circular polarization also revealed that covalently bound inhibitors at the active site of subtilisin Novo affect the environment of the emitting aromatic side chains, presumably via changes in conformation.  相似文献   

11.
Steady state fluorescence measurements have been used to study tryptophan fluorescence of plasma fibronectin. The native protein has an emission maximum at 337 nm with a quantum yield of 0.03. A red shift of emission maximum was observed in 3–5M urea and a further red shift in 7–8M urea. The emission maximum shifted from 337 to 345 nm when the temperature was changed from 30 to 80°C, with a midpoint of thermal denaturation at 58°C. Similarly, the emission maximum shifted from 337 to 345 nm when the solution pH was increased from 9 to 12, with a midpoint of pH transition at 10.6. The results obtained from difference absorption spectroscopy studies suggest that the unfolding of fibronectin at alkaline pH is related at least in part to ionization of tyrosine residues. Since most of the tryptophan residues are in invariant positions in homology sequences, it is suggested here that tryptophan residues are useful intrinsic probes for elucidating fibronectin structure in solution.  相似文献   

12.
Physicochemical characterization of bovine retinal arrestin   总被引:1,自引:0,他引:1  
The native conformation of bovine retinal arrestin has been characterized by a variety of spectroscopic methods. The purified protein gives rise to a near uv absorption band centered at 279 nm which results from the absorbance of its 14 tyrosine and one tryptophan residue. The extinction coefficient for this absorption band was determined to be 38.64 mM-1, cm-1 using the tyrosinate-tyrosine difference spectrum method; this extinction coefficient is ca. 17% lower than the previously reported value, and provides estimates of protein concentration which are in good agreement with estimates from the Bradford colorimetric assay. When native arrestin is purified to homogeneity, it displays a fluorescence spectrum which is dominated by tyrosine emission with no discernible contribution from tryptophan. Observation of the tyrosine-like fluorescence is dependent on the purity and structural integrity of the protein. Denaturation of arrestin by guanidine hydrochloride results in a diminution of tyrosine fluorescence and the concomitant appearance of a second fluorescence maximum at ca. 340 nm, presumably due to the single tryptophan residue. Thermal denaturation of arrestin leads to a conformation characterized by a broad fluorescence band centered at ca. 325 nm. Study of the arrestin fluorescence spectrum as a function of temperature indicates that the thermal denaturation is well modeled as a two-state transition with a transition midpoint of 60 degrees C. Temperature-dependent far uv circular dichroism studies indicate that changes in secondary structure occur coincident with the change in fluorescence. Studies of the temperature dependence of arrestin binding to light-adapted phosphorylated rhodopsin shows a strong correlation between the fluorescence spectral features of arrestin and its ability to bind rhodopsin. These data suggest that the relative intensities of tyrosine and tryptophan fluorescence are sensitive to the structural integrity of the native (i.e., rhodopsin binding) state of arrestin, and can thus serve as useful markers of conformational transitions of this protein. The lack of tryptophan fluorescence for native arrestin suggests an unusual environment for this residue. Possible mechanisms for this tryptophan fluorescence quenching are discussed.  相似文献   

13.
Streptomyces subtilisin inhibitor, a dimeric protein proteinase inhibitor isolated in crystalline form by Murae et al. in 1972, contains three tyrosine and one tryptophan residues per monomer unit and has unusual fluorescence properties. When excited at 280 nm, it shows a characteristic fluorescence spectrum having a peak at 307 nm and a shoulder near 340 nm, a feature which has been recognized only for a very few cases in proteins containing both tryosine and tryptophan residues. When excited at 295 nm, at which tryrosine scarcely absorbs, the inhibitor shows an emission spectrum with a peak at 340 nm characteristic of a tryptophan residue. The emission with a peak at 307 nm is considered to arise from the tryrosine residues. The tryptophan quantum yield of Streptomyces subtilisin inhibitor excited at 295 nm is very small, indicating that the tryptophan florescence is strongly quenched in the native state of the inhibitor. Below pH 4 the peak of the fluorescence spectrum of the inhibitor excited at 280 nm shifts toward 340-350 nm with a concomitant increase in the quantum yield. The structural change induced by low pH seems to release the tryptophan fluorescence from the quenching.  相似文献   

14.
The kinetic activation parameters (activation free energy, activation free enthalpy, and activation free entropy change) of the conformational change of alpha-chymotrypsin from an inactive to the active conformation were determined after a pH jump from pH 11.0 to pH 6.8 by the fluorescence stopped-flow method. The conformational change was followed by measuring changes in the protein fluorescence. For the bovine wild-type protein, the same kinetic parameters are obtained as in the study of proflavin binding. Several mutants were made with the goal to accelerate or decelerate this conformational transition. The inspiration for the choice of the mutants came from a previous modelling study done on the bovine wild-type chymotrypsin. The results of the fluorescence stopped flow experiments show that several mutants behaved as was expected based on the information provided by the modeling study on the wild-type variant. For some mutants our assumptions were not correct, and therefore additional modeling studies of the activation pathways of these mutant proteins are necessary to be able to explain the observed kinetic behavior.  相似文献   

15.
The methodology of determination of the thermodynamic parameters of fast stages of recognition and cleavage of DNA substrates is described for the enzymatic processes catalyzed by DNA glycosylases Fpg and hOGG1 and AP endonuclease APE1 during base excision repair (BER) pathway. For this purpose, stopped-flow pre-steady-state kinetic analysis of tryptophan fluorescence intensity changes in proteins and fluorophores in DNA substrates was performed at various temperatures. This approach made it possible to determine the changes of standard Gibbs free energy, enthalpy, and entropy of sequential steps of DNA-substrate binding, as well as activation enthalpy and entropy for the transition complex formation of the catalytic stage. The unified features of mechanism for search and recognition of damaged DNA sites by various enzymes of the BER pathway were discovered.  相似文献   

16.
Monellin is a protein that tastes sweet. In the native state it is a dimer composed of two dissimilar noncovalently associated polypeptides. The conformation of the protein is a determinant of its sweetness, and the present investigation takes advantage of the fluorescence spectrum being a sensitive index of its conformation. The emission spectrum is used to evaluate the ability of temperature and pH to alter the conformation and the sweetness of the protein. When monellin dissolved in water is heated in discrete steps from 25 to 100 degrees C, its sweetness decreases. The halfwidth of the fluorescence emission band increases in parallel with the loss of sweetness. The increase in halfwidth is due primarily to an increase in the intensity of tyrosine emission that may be the result of the two dissimilar polypeptides of monellin beginning to separate. Tyrosine residues are present in both chains, while the single tryptophan occurs in only one. Monellin is less susceptible to denaturation by increasing temperature when dissolved in sodium acetate buffer at pH 4 than it is at pH 3 or 7. When the pH of a solution containing monellin in 0.1 M KC1 is varied from 2 to 13, there is a broad pH range (pH 4 to 9) where monellin's conformation is not markedly altered. Below pH 3.5 and above pH 10.5, however, the emission spectra indicate that substantial denaturation occurs. However, monellin can be partially renatured following pH 12 treatment with only minimal loss of sweetness. The sweetness of monellin under these two types of denaturing conditions, temperature and pH, can be predicted by the fluorescence emission spectrum of the protein. In addition, this study confirms that the biological activity of monellin, its sweetness, is a function of quaternary structure of the protein.  相似文献   

17.
The spatial organization of actinoporin RTX-SII from the sea anemone Radianthus macrodactylus on the level of tertiary and secondary structures was studied by UV and CD spectroscopy and intrinsic protein fluorescence. The specific and molar extinction coefficients of RTX-SII were determined. The percentages of canonical secondary structures of actinoporin were calculated. The tertiary structure of the polypeptide is well developed and its secondary structure is highly ordered and contains about 50% antiparallel folded beta-sheets. The irreversible thermal denaturation of RTX-SII was studied by CD spectroscopy; a conformational transition occurs at 53 degrees C. Above this temperature irreversible conformational changes are observed in the secondary and tertiary structures. This is accompanied by redistribution of the content of regular and distorted forms of beta-sheet and also by increase in the content of an unordered form. It is suggested that an intermediate is formed in the process of thermal denaturation. Acid-base titration of RTX-SII results in irreversible conformational changes at pH below 2.0 and above 12.0. As shown by intrinsic protein fluorescence, tyrosine residues of RTX-SII make a fundamental contribution to emission, and the total fluorescence depends more on temperature and ionic strength of the solution than tryptophan fluorescence. The data on conformational stability of actinoporin are correlated with data on its hemolytic activity. Activity of RTX-SII significantly decreases at increased temperature and slightly decreases at low pH. Hemolytic activity drastically increases at high pH. Increase in the actinoporin activity at pH above 10 seems to be caused by ionization of the molecule.  相似文献   

18.
S Mabrey  I M Klotz 《Biochemistry》1976,15(1):234-242
The conformation of the gonadotropin releasing hormone (Gn-RH), whose primary sequence is pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-GlyNH2, and of several of its structural analogues has been studied by circular dichroism, optical rotatory dispersion, and fluorescence spectroscopy. The effects of pH, guanidine, and temperature on fluorescence emission have also been examined. Titration data demonstrate that the histidine and tyrosine residues are free of any mutual interactions. The similarity of emission spectra in water and in guanidine hydrochloride solutions precludes significant interactions between the fluorescent groups and other residues. Neither the temperature nor the pH profiles of the emission intensities of either tyrosine or tryptophan reveal any fixed secondary structure in Gn-RH. Both the extent of alkaline quenching and the distance of 10-11 A calculated from F?rster energy transfer theory are in accord with a randomly coiled structure with only one residue between tyrosine and tryptophan. Furthermore, the circular dichroism spectrum and optical rotatory dispersion do not exhibit any contributions from peptide bonds in an ordered structure, although there is a perturbation of the peptide absorption region due to overlapping bands from side-chain chromophores. Gn-RH, therefore, appears to behave as a random coil polypeptide in water devoid of any intrachain residue interactions. This nonordered structure in Gn-RH and the lack of any significant differences in the physical-chemical properties of the hormone analogues indicate that a predetermined solution conformation is not required for biological activity. In contrast to its behavior in water, Gn-RH in trifluoroethanol exhibits a conformational transition, with the formation of a beta structure. Differences in conformational changes exhibited by several analogues in trifluoroethanol may be relevant to their relative biological activities at the receptor site.  相似文献   

19.
The temperature dependence of preferential solvent interactions with ribonuclease A in aqueous solutions of 30% sorbitol, 0.6 M MgCl2, and 0.6 M MgSO4 at low pH (1.5 and 2.0) and high pH (5.5) has been investigated. This protein was stabilized by all three co-solvents, more so at low pH than high pH (expect 0.6 M MgCl2 at pH 5.5). The preferential hydration of protein in all three co-solvents was high at temperatures below 30 degrees C and decreased with a further increase in temperature (for 0.6 M MgCl2 at pH 5.5, this was not significant), indicating a greater thermodynamic instability at low temperature than at high temperature. The preferential hydration of denatured protein (low pH, high temperature) was always greater than that of native protein (high pH, high temperature). In 30% sorbitol, the interaction passed to preferential binding at 45% for native ribonuclease A and at 55 degrees C for the denatured protein. Availability of the temperature dependence of the variation with sorbitol concentration of the chemical potential of the protein, (delta mu(2)/delta m3)T,p,m2, permitted calculation of the corresponding enthalpy and entropy parameters. Combination with available data on sorbitol concentration dependence of this interaction parameter gave (approximate) values of the transfer enthalpy, delta H2,tr, and transfer entropy delta S2,tr. Transfer of ribonuclease A from water into 30% sorbitol is characterized by positive values of the transfer free energy, transfer enthalpy, transfer entropy, and transfer heat capacity. On denaturation, the transfer enthalpy becomes more positive. This increment, however, is small relative to both the enthalpy of unfolding in water and to the transfer enthalpy of the native protein from water a 30% sorbitol solution.  相似文献   

20.
The effects of pH, urea, and alkylureas on the thermal stability ofα-chymotrypsinogen A (α-ctg A) have been investigated by differential scanning calorimetry (DSC) and UV spectroscopy. Heat capacity changes and enthalpies of transition ofα-ctg A in the presence of urea and alkylureas were measured at the transition temperature. Using these data, the corresponding Gibbs free energies, enthalpies, and entropies of denaturation at 25°C were calculated. Comparison of these values shows that at 25°C denaturation with urea is characterized by a significantly smaller enthalpy and entropy of denaturation. At all denaturant concentrations the enthalpy term slightly dominates the entropy term in the Gibbs free energy function. The most obvious effect of alkylureas was lowering of the temperature of transition, which was increasing with alkylurea concentration and the size of alkyl chain. Destabilization of the folded protein in the presence of alkylureas appears to be primarily the result of the weakening of hydrophobic interactions due to diminished solvent ordering around the protein molecules. At pH lower than 2.0,α-ctg A still exists in a very stable form, probably the acid-denatured form (A-form).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号