首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Site-directed dichroism is an emerging technique for the determination of membrane protein structure. However, due to a number of factors, among which is the high natural abundance of (13)C, the use of this technique has been restricted to the study of small peptides. We have overcome these problems through the use of a double C-deuterated glycine as a label. The modification of a single residue (Gly) in the transmembrane segment of M2, a protein from the Influenza A virus that forms H(+)-selective ion channels, has allowed us to determine its helix tilt and rotational orientation. Double C-deuteration shifts the antisymmetric and symmetric stretching vibrations of the CD(2) group in glycine to a transparent region of the infrared spectrum where the dichroic ratio of these bands can be measured. The two dichroisms, along with the helix amide I dichroic ratio, have been used to determine the helix tilt and rotational orientation of M2. The results are entirely consistent with previous site-directed dichroism and solid-state NMR experiments, validating C-deuterated glycine (GlyCD(2)) as a structural probe that can now be used in the study of polytopic membrane proteins.  相似文献   

2.
The transmembrane orientation of the human erythrocyte glucose transporter was assessed based on polarized Fourier transform infrared and ultraviolet circular dichroism spectroscopic data obtained from oriented multilamellar films of the reconstituted transporter vesicles. Infrared spectra revealed that there are distinct vibrations for alpha-helical structure while the vibrational frequencies specific to beta-structure are characteristically absent. Analysis of linear dichroism of the infrared spectra further indicated that these alpha-helices in the transporter are preferentially oriented perpendicular to the lipid bilayer plane forming an effective tilt of less than 38 degrees from the membrane normal. Such a preferential orientation was further supported by ultraviolet circular dichroism spectra which reveal that the 208 nm Moffit band found in the detergent-solubilized preparation is absent in the film preparation. Linear dichroism data further indicated that D-glucose, a typical substrate, further reduces this effective tilt angle slightly.  相似文献   

3.
Historically, the task of determining the structure of membrane proteins has been hindered by experimental difficulties associated with their lipid-embedded domains. Here, we provide an overview of recently developed experimental and predictive tools that are changing our view of this largely unexplored territory - the 'Wild West' of structural biology. Crystallography, single-particle methods and atomic force microscopy are being used to study huge membrane proteins with increasing detail. Solid-state nuclear magnetic resonance strategies provide orientational constraints for structure determination of transmembrane (TM) alpha-helices and accurate measurements of intramolecular distances, even in very complex systems. Longer distance constraints are determined by site-directed spin-labelling electron paramagnetic resonance, but current labelling strategies still constitute some limitation. Other methods, such as site-specific infrared dichroism, enable orientational analysis of TM alpha-helices in aligned bilayers and, combined with novel computational and predictive tools that use evolutionary conservation data, are being used to analyze TM alpha-helical bundles.  相似文献   

4.
Infrared spectroscopy has long been used to examine the average secondary structure and orientation of membrane proteins. With the recent utilization of site-specific isotope labeling (e.g., peptidic 1-(13)C = (18)O) it is now possible to examine localized properties, rather than global averages. The technique of site-specific infrared dichroism (SSID) capitalized on this fact, and derives site-specific orientational restraints for the labeled amino acids. These restraints can then be used to solve the backbone structure of simple alpha-helical bundles, emphasizing the capabilities of this approach. So far SSID has been carried out in attenuated total internal reflection optical mode, with all of the respective caveats of attenuated total internal reflection. In this report we extend SSID through the use of transmission infrared spectroscopy tilt series. We develop the corresponding theory and demonstrate that accurate site-specific orientational restraints can be derived from a simple transmission experiment.  相似文献   

5.
Páli T  Marsh D 《Biophysical journal》2001,80(6):2789-2797
The x-ray coordinates of beta-barrel transmembrane proteins from the porins superfamily and relatives are used to calculate the mean tilt of the beta-strands and their mean local twist and coiling angles. The 13 proteins examined correspond to beta-barrels with 8 to 22 strands, and shear numbers ranging from 8 to 24. The results are compared with predictions from the model of Murzin, Lesk, and Chothia for symmetrical regular barrels. Good agreement is found for the mean strand tilt, but the twist angles are smaller than those for open beta-sheets and beta-barrels with shorter strands. The model is reparameterised to account for the reduced twist characteristic of long-stranded transmembrane beta-barrels. This produces predictions of both twist and coiling angles that are in agreement with the mean values obtained from the x-ray structures. With the optimized parameters, the model can then be used to determine twist and coiling angles of transmembrane beta-barrels from measurements of the amide band infrared dichroism in oriented membranes. Satisfactory agreement is obtained for OmpF. The strand tilt obtained from the x-ray coordinates, or from the reparameterised model, can be combined with infrared dichroism measurements to obtain information on the orientation of the beta-barrel assembly in the membrane.  相似文献   

6.
7.
Polarized, low-temperature Fourier transform infrared (FTIR) difference spectroscopy has been used to investigate the structure of bacteriorhodopsin (bR) as it undergoes phototransitions from the light-adapted state, bR570, to the K630 and M412 intermediates. The orientations of specific retinal chromophore and protein groups relative to the membrane plane were calculated from the linear dichroism of the infrared bands, which correspond to the vibrational modes of those groups. The linear dichroism of the chromophore C=C and C-C stretching modes indicates that the long axis of the polyene chain is oriented at 20-25 degrees from the membrane plane at 250 K and that it orients more in-plane when the temperature is reduced to 81 K. The polyene plane is found to be approximately perpendicular to the membrane plane from the linear dichroism calculations of the HOOP (hydrogen out-of-plane) wags. The orientation of the transition dipole moments of chromophore vibrations in the K630 and M412 intermediates has been probed, and the dipole moment direction of the C=O bond of an aspartic acid that is protonated in the bR570----M412 transition has been measured.  相似文献   

8.
Escherichia coli YidC is a polytopic inner membrane protein that plays an essential and versatile role in the biogenesis of inner membrane proteins. YidC functions in Sec-dependent membrane insertion but acts also independently as a separate insertase for certain small membrane proteins. We have used a site-specific cross-linking approach to show that the conserved third transmembrane segment of YidC contacts the transmembrane domains of both nascent Sec-dependent and -independent substrates, indicating a generic recognition of insertion intermediates by YidC. Our data suggest that specific residues of the third YidC transmembrane segment alpha-helix is oriented toward the transmembrane domains of nascent inner membrane proteins that, in contrast, appear quite flexibly positioned at this stage in biogenesis.  相似文献   

9.
Polarized infrared spectroscopy has been used to investigate the orientation of gramicidin A incorporated in dimyristoylphosphatidylcholine liposomes. Dichroism measurements of the major lipid (C = O ester, PO2-, CH2) and peptide (amide A, I, II) bands were performed on liposomes (with or without gramicidin) oriented by air-drying. The mean orientation of the lipid groups and of the pi LD helix chain in the gramicidin has been determined. It can be inferred from infrared frequencies of gramicidin that the dominant conformation of the peptide in liposomes cannot be identified to the antiparallel double-helical dimer found in organic solution. No shift in lipid frequencies was observed upon incorporation of gramicidin in the liposomes. However, a slight reorganization of the lipid hydrocarbon chains which become oriented more closely to the normal to the bilayer is evidenced by a change in the dichroism of the CH2 vibrations. The infrared dichroism results of gramicidin imply a perpendicular orientation of the gramicidin transmembrane channel with the pi LD helix axis at less than 15 degrees with respect to the normal to the bilayer.  相似文献   

10.
One of the most versatile methods for monitoring the structure of proteins, either in solution or in the solid state, is Fourier transform infrared spectroscopy. Also known as mid-range infrared, which covers the frequency range from 4000 to 400 cm-1, this wavelength region includes bands that arise from three conformationally sensitive vibrations within the peptide backbone (amide I, II and III). Of these vibrations, amide I is the most widely used and can provide information on secondary structure composition and structural stability. One of the advantages of infrared spectroscopy is that it can be used with proteins that are either in solution or in the solid state. The use of infrared to monitor protein structure and stability is summarized herein. In addition, specialized infrared methods are presented, such as techniques for the study of membrane proteins and oriented samples. In addition, there is a growing body of literature on the use of infrared to follow reaction kinetics and ligand binding in proteins, as well as a number of infrared studies on protein dynamics. Finally, the potential for using near-infrared spectroscopy to study protein structure is introduced.  相似文献   

11.
The 97-residue M2 protein from Influenza A virus forms H+-selective ion channels which can be attributed solely to the homo-tetrameric alpha-helical transmembrane domain. Site-directed infrared dichroism spectra were obtained for the transmembrane domain of M2, reconstituted in lipid vesicles. Data analysis yielded the helix tilt angle beta=31.6(+/-6.2) degrees and the rotational pitch angle about the helix axis for residue Ala29 omegaAla29=-59.8(+/-9.9) degrees, whereby omega is defined as zero for a residue located in the direction of the helix tilt. A structure was obtained from an exhaustive molecular dynamics global search protocol in which the orientational data are utilised directly as an unbiased refinement energy term. Orientational refinement not only allowed selection of a unique structure but could also be shown to increase the convergence towards that structure during the molecular dynamics procedure. Encouragingly, the structure obtained is highly consistent with all available mutagenesis and conductivity data and offers a direct chemical insight that relates the altered functionality of the channel to its structure.  相似文献   

12.
P D Roepe  H R Kaback 《Biochemistry》1990,29(10):2572-2577
By use of techniques described recently for lac permease [Roepe, P.D., & Kaback, H.R. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6087], the melibiose permease from Escherichia coli, another polytopic integral plasma membrane protein, has been purified in a metastable soluble form after overexpression of the melB gene via the T7 RNA polymerase system. As demonstrated with lac permease, soluble melibiose permease is dissociated from the membrane with 5.0 M urea and appears to remain soluble in phosphate buffer at neutral pH after removal of urea by dialysis, although the protein aggregates in a time- and concentration-dependent fashion. Moreover, soluble melibiose permease behaves as a monomer during purification by size exclusion chromatography in the presence of urea. Circular dichroism of purified soluble melibiose permease reveals that the protein is highly helical in potassium phosphate buffer and that secondary structure is disrupted in 5.0 M urea. Finally, purified melibiose permease can be reconstituted into proteoliposomes, and the preparations catalyze membrane potential driven H+/melibiose or Na+/methyl 1-thio-beta,D-galactopyranoside symport. The results provide further support for the notion that hydrophobic transmembrane proteins may be able to assume a nondenatured conformation in aqueous solution and extend the implication that the approach described may represent a general method for rapid isolation and reconstitution of this class of membrane proteins.  相似文献   

13.
One of the most versatile methods for monitoring the structure of proteins, either in solution or in the solid state, is Fourier transform infrared spectroscopy. Also known as mid-range infrared, which covers the frequency range from 4000 to 400 cm(-1), this wavelength region includes bands that arise from three conformationally sensitive vibrations within the peptide backbone (amide I, II and III). Of these vibrations, amide I is the most widely used and can provide information on secondary structure composition and structural stability. One of the advantages of infrared spectroscopy is that it can be used with proteins that are either in solution or in the solid state. The use of infrared to monitor protein structure and stability is summarized herein. In addition, specialized infrared methods are presented, such as techniques for the study of membrane proteins and oriented samples. In addition, there is a growing body of literature on the use of infrared to follow reaction kinetics and ligand binding in proteins, as well as a number of infrared studies on protein dynamics. Finally, the potential for using near-infrared spectroscopy to study protein structure is introduced.  相似文献   

14.
Detailed site-specific information can be exceptionally useful in structural studies of macromolecules in general and proteins in particular. Such information is usually obtained from spectroscopic studies using a label/probe that can reflect on particular properties of the protein. A suitable probe must not modify the native properties of the protein, and should yield interpretable structural information, as is the case with isotopic labels used by Fourier transform infrared (FTIR) spectroscopy. In particular, 1-(13)C=(18)O labels have been shown to relay site-specific secondary structure and orientational information, although limited to small peptides. The reason for this limitation is the high natural abundance of (13)C and the lack of baseline resolution between the main amide I band and the isotope-edited peak. Herein, we dramatically extend the utility of isotope edited FTIR spectroscopy to proteins of virtually any size through the use of a new 1-(13)C=(18)O label. The double-isotope label virtually eliminates any contribution from natural abundance (13)C. More importantly, the isotope-edited peak is further red-shifted (in accordance with ab initio Hartree-Fock calculations) and is now completely baseline resolved from the main amide I band. Taken together, this new label enables determination of site specific secondary structure and orientation in proteins of virtually any size. Even in small peptides 1-(13)C=(18)O is far preferable as a label in comparison to 1-(13)C=(18)O since it enables analysis without the need for any deconvolution or peak fitting procedures. Finally, the results obtained herein represent the first stage in the application of site-directed dichroism to the structural elucidation of polytopic membrane proteins.  相似文献   

15.
Oligomerization of viral envelope proteins is essential to control virus assembly and fusion. The transmembrane domains (TMDs) of hepatitis C virus envelope glycoproteins E1 and E2 have been shown to play multiple functions during the biogenesis of E1E2 heterodimer. This makes them very unique among known transmembrane sequences. In this report, we used alanine scanning insertion mutagenesis in the TMDs of E1 and E2 to examine their role in the assembly of E1E2 heterodimer. Alanine insertion within the center of the TMDs of E1 or E2 or in the N-terminal part of the TMD of E1 dramatically reduced heterodimerization, demonstrating the essential role played by these domains in the assembly of hepatitis C virus envelope glycoproteins. To better understand the alanine scanning data obtained for the TMD of E1 which contains GXXXG motifs, we analyzed by circular dichroism and nuclear magnetic resonance the three-dimensional structure of the E1-(350-370) peptide encompassing the N-terminal sequence of the TMD of E1 involved in heterodimerization. Alanine scanning results and the three-dimensional molecular model we obtained provide the first framework for a molecular level understanding of the mechanism of hepatitis C virus envelope glycoprotein heterodimerization.  相似文献   

16.
Model peptides composed of alanine and leucine residues are often used to mimic single helical transmembrane domains. Many studies have been carried out to determine how they interact with membranes. However, few studies have investigated their lipid-destabilizing effect. We designed three peptides designated KALRs containing a hydrophobic stretch of 14, 18, or 22 alanines/leucines surrounded by charged amino acids. Molecular modeling simulations in an implicit membrane model as well as attenuated total reflection-Fourier transform infrared analyses show that KALR is a good model of a transmembrane helix. However, tryptophan fluorescence and attenuated total reflection-Fourier transform infrared spectroscopy indicate that the extent of binding and insertion into lipids increases with the length of the peptide hydrophobic core. Although binding can be directly correlated to peptide hydrophobicity, we show that insertion of peptides into a membrane is determined by the length of the peptide hydrophobic core. Functional studies were performed by measuring the ability of peptides to induce lipid mixing and leakage of liposomes. The data reveal that whereas KALR14 does not destabilize liposomal membranes, KALR18 and KALR22 induce 40 and 50% of lipid-mixing, and 65 and 80% of leakage, respectively. These results indicate that a transmembrane model peptide can induce liposome fusion in vitro if it is long enough. The reasons for the link between length and fusogenicity are discussed in relation to studies of transmembrane domains of viral fusion proteins. We propose that fusogenicity depends not only on peptide insertion but also on the ability of peptides to destabilize the two leaflets of the liposome membrane.  相似文献   

17.
The Transmembrane Helices of Beef Heart Cytochrome Oxidase   总被引:1,自引:0,他引:1       下载免费PDF全文
The locations of the transmembrane helices in the 12 subunits of beef heart cytochrome oxidase were predicted with a modified form of the von Heijne-Blomberg hydrophobicity scale. Based on ~20 residues per transmembrane helix, about 480 of the estimated 660 helical residues (36.8% of 1,793 total residues) are expected to be in transmembrane helices that have their axes tilted by a small angle α from the normal to the plane of the membrane. This angle is calculated to be ~30°, based on the observed overall tilt angle θ of 39° obtained from circular dichroism (CD) measurements on multilamellar films, or about 25°, based on the observed tilt angle θ of 36° obtained from the infrared linear dichroism of films. For 21 residues per transmembrane helix, the calculated values of α become 32° and 28°, respectively, depending upon the value of θ used. Thus, a transmembrane helical tilt angle of ~30° accounts for the predicted transmembrane stretches in cytochrome oxidase if 20-21 residues are sufficient to span the membrane. Additional helical residues in the lipid head region may deviate by a larger angle from the normal to the plane of the membrane in cytochrome oxidase.  相似文献   

18.
In this paper we show, based on symmetry considerations, that structural information cannot be obtained from the linear infrared dichroism of the dioxy vibrations of the phosphate group of nucleic acids. Consequently, the discrepancies between the results of x-ray structure measurements and linear dichroism measurements are not meaningful. The linear dichroism measurements are instead important for a calculation of transition dipole moments that involve both the vibrations of all the atoms of the nucleotide and their charges. Independent information on either the atomic displacements contributing to a given vibration or the atomic charges permits a refinement of the unknown quantities. Based on the molecular dynamics calculations of Prohofsky et al., atomic charges of DNA are calculated to reproduce the observed linear dichroism results. Some of the resulting charges are unexpected and may reflect the inadequacy of the molecular dynamic calculation.  相似文献   

19.
Abstract

The role of histidine in channel-forming transmembrane (TM) helices was investigated by comparing the TM helices from Virus protein ‘u' (Vpu) and the M2 proton channel. Both proteins are members of the viroporin family of small membrane proteins that exhibit ion channel activity, and have a single TM helix that is capable of forming oligomers. The TM helices from both proteins have a conserved tryptophan towards the C-terminus. Previously, alanine 18 of Vpu was mutated to histidine in order to artificially introduce the same HXXXW motif that is central to the proton channel activity of M2. Interestingly, the mutated Vpu TM resulted in an increase in helix tilt angle of 11° in lipid bilayers compared to the wild-type Vpu TM. Here, we find the reverse, when histidine 37 of the HXXXW motif in M2 was mutated to alanine, it decreased the helix tilt by 10° from that of wild-type M2. The tilt change is independent of both the helix length and the presence of tryptophan. In addition, compared to wild-type M2, the H37A mutant displayed lowered sensitivity to proton concentration. We also found that the solvent accessibility of histidine-containing M2 is greater than without histidine. This suggests that the TM helix may increase the solvent exposure by changing its tilt angle in order to accommodate a polar/charged residue within the hydrophobic membrane region. The comparative results of M2, Vpu and their mutants demonstrated the significance of histidine in a transmembrane helix and the remarkable plasticity of the function and structure of ion channels stemming from changes at a single amino acid site.  相似文献   

20.
The 115-residue protein CM2 from Influenza C virus has been recently characterized as a tetrameric integral membrane glycoprotein. Infrared spectroscopy and site-directed infrared dichroism were utilized here to determine its transmembrane structure. The transmembrane domain of CM2 is alpha-helical, and the helices are tilted by beta = (14.6 +/- 3.0) degrees from the membrane normal. The rotational pitch angle about the helix axis omega for the 1-(13)C-labeled residues Gly(59) and Leu(66) is omega = (218 +/- 17) degrees, where omega is defined as zero for a residue pointing in the direction of the helix tilt. A detailed structure was obtained from a global molecular dynamics search utilizing the orientational data as an energy refinement term. The structure consists of a left-handed coiled-coil with a helix crossing angle of Omega = 16 degrees. The putative transmembrane pore is occluded by the residue Met(65). In addition hydrogen/deuterium exchange experiments show that the core is not accessible to water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号