共查询到20条相似文献,搜索用时 15 毫秒
1.
Potassium-dependant mutants of Escherichia coli K-12 总被引:28,自引:14,他引:14
Mutants of Escherichia coli K-12 that grow more slowly in media containing low concentrations of K have been isolated. All independent mutants of this type which have been studied carry a mutation in a small region of the bacterial chromosome between the supE and gal loci. The growth rate of the mutants is the same as that of the parental strains in medium containing more than 1 mm K, but is only 50% that of the parent when the K concentration is reduced to 0.1 mm. The mutants do not appear to have a primary alteration in K transport, and are therefore referred to as K-dependent. The abbreviation kdp is proposed for this class of mutant. 相似文献
2.
The flavodoxins are flavin mononucleotide-containing electron transferases. Flavodoxin I has been presumed to be the only flavodoxin of Escherichia coli, and its gene, fldA, is known to belong to the soxRS (superoxide response) oxidative stress regulon. An insertion mutation of fldA was constructed and was lethal under both aerobic and anaerobic conditions; only cells that also had an intact (fldA(+)) allele could carry it. A second flavodoxin, flavodoxin II, was postulated, based on the sequence of its gene, fldB. Unlike the fldA mutant, an fldB insertion mutant is a viable prototroph in the presence or absence of oxygen. A high-copy-number fldB(+) plasmid did not complement the fldA mutation. Therefore, there must be a vital function for which FldB cannot substitute for flavodoxin I. An fldB-lacZ fusion was not induced by H(2)O(2) and is therefore not a member of the oxyR regulon. However, it displayed a soxS-dependent induction by paraquat (methyl viologen), and the fldB gene is preceded by two overlapping regions that resemble known soxS binding sites. The fldB insertion mutant did not have an increased sensitivity to the effects of paraquat on either cellular viability or the expression of a soxS-lacZ fusion. Therefore, fldB is a new member of the soxRS (superoxide response) regulon, a group of genes that is induced primarily by univalent oxidants and redox cycling compounds. However, the reactions in which flavodoxin II participates and its role during oxidative stress are unknown. 相似文献
3.
While attempting to isolate d-serine-sensitive mutants of Escherichia coli K-12, we found a class of mutants sensitive to low concentrations of l-serine (10 to 25 mug/ml). 相似文献
4.
Analysis of melibiose mutants deficient in alpha-galactosidase and thiomethylgalactoside permease II in Escherichia coli K-12 总被引:7,自引:7,他引:7
R Schmitt 《Journal of bacteriology》1968,96(2):462-471
Three types of mutants (mel(-)) unable to metabolize the alpha-d-galactoside, melibiose, were derived from Escherichia coli K-12. One type lacked alpha-galactosidase; another lacked a specific transport system, termed thiomethylgalactoside (TMG) permease II; and the third lacked both of these functions. The mutational sites were genetically mapped by recombination frequency with different markers and by determination of chromosomal transfer in interrupted-mating experiments. All three mel(-) mutant types mapped in a cluster near to the metA marker on the E. coli chromosome and were cotransducible. Induction studies revealed that the three alpha-d-galactosides, melibiose, melibiitol, and galactinol, induced alpha-galactosidase and TMG permease II coordinately; d-galactose also induced them but only in a galactokinaseless mutant. These data suggest that alpha-galactosidase and TMG permease II may be components of a common operon. 相似文献
5.
Actinomycin sensitive mutants of Escherichia coli K-12 总被引:1,自引:0,他引:1
Summary Actinomycin sensitive mutants of E. coli K12 have been isolated and shown to have pleiotropic defects in the fermentation of sugars. The locus of a gene controlling actinomycin resistance is very close to that of the lactose gene. 相似文献
6.
A Del Campillo-Campbell G Kayajanian A Campbell S Adhya 《Journal of bacteriology》1967,94(6):2065-2066
7.
Hemin-deficient mutants of Escherichia coli K-12. 总被引:32,自引:16,他引:16
A Ssrman M Surdeanu G Szgli T Horodniceanu V Greceanu A Dumitrescu 《Journal of bacteriology》1968,96(2):570-572
8.
9.
10.
11.
M. K. Chattopadhyay A. K. Ghosh Saswati Sengupta D. Sengupta S. Sengupta 《Biotechnology letters》1995,17(6):567-570
Summary Mutants of Escherichia coli K-12 resistant to a threonine analogue (-amino--hydroxy valeric acid) were predominantly resistant to ethionine and overproduced both threonine and methionine (2 mg/ml each). Novelty of the mutants is discussed. 相似文献
12.
Novel ompC(Dex) alleles were utilized to isolate mutants defective in OmpC biogenesis. These ompC(Dex) alleles also conferred sensitivity to sodium dodecyl sulfate (SDS), which permitted the isolation of SDS-resistant and OmpC-specific phage-resistant mutants that remained Dex+. Many mutants acquired resistance against these lethal agents by lowering the OmpC level present in the outer membrane. In the majority of these mutants, a defect in the assembly (metastable to stable trimer formation) was responsible for lowering OmpC levels. The assembly defects in various mutant OmpC proteins were caused by single-amino-acid substitutions involving the G-39, G-42, G-223, G-224, Q-240, G-251, and G-282 residues of the mature protein. This assembly defect was correctable by an assembly suppressor allele, asmA3. In addition, we investigated one novel OmpC mutant in which an assembly defect was caused by a disulfide bond formation between two nonnative cysteine residues. The assembly defect was fully corrected in a genetic background in which the cell's ability to form disulfide bonds was compromised. The assembly defect of the two-cysteine OmpC protein was also mended by asmA3, whose suppressive effect was not achieved by preventing disulfide bond formation in the mutant OmpC protein. 相似文献
13.
14.
15.
Summary A set of dilv phage has been examined that carry overlapping segments of isoleucine-valine structural and regulatory genes derived from the ilv cluster at 83 min on the Escherichia coli K-12 chromosome. The ilv genes present in these phage, and their order, have been determined by transduction of auxotrophs, escape synthesis, and deletion mapping. The order of ilv genes in the phage, and hence the order in the host chromosome, was found to be ilvG-ilvO-ilvEDA-ilvC. Lysogens containing dilv phage were constructed for dominance analysis of regulatory mutations in the ilvO and ilvA genes. The ilvO671 allele is cis-dominant to ilvO
+, while the ilvA538 allele is trans-recessive to ilvA
+. Thus, the ilvO gene, that is identified by cis-dominant regulatory mutations that result in increased ilvG and ilvEDA expression, is situated between and may be contiguous with ilvG and ilvEDA. 相似文献
16.
Thymidine-requiring strains of Escherichia coli isolated by trimethoprim selection often simultaneously acquire the ability to suppress bacteriophage T4 nonsense mutations. Suppression is lost in Thy+ revertants and recombinants, but is sometimes retained in thyA plasmid-bearing transformants. Suppression is restricted in Strr derivatives of the Thy- mutants, indicating that suppression occurs at the level of translation. 相似文献
17.
Identification and characterization of a cyanate permease in Escherichia coli K-12. 总被引:1,自引:2,他引:1 下载免费PDF全文
Escherichia coli contains an inducible enzyme, cyanase, that catalyzes the decomposition of cyanate into ammonia and bicarbonate. The gene encoding cyanase, cynS, was cloned and found to be on a DNA fragment that contained the lac operon. Characterization of a plasmid encoding cyanase indicated that a 26-kilodalton (kDa) protein of unknown function was also induced by cyanate (Y-C. Sung, D. Parsell, P.M. Anderson, and J.A. Fuchs, J. Bacteriol. 169:2639-2642, 1987). The gene encoding the 26-kDa protein was located between cynS and its promoter, indicating the existence of a cyn operon. The 26-kDa protein was identified as a cyanate permease that transports exogenous cyanate by active transport. E. coli was shown to contain a cyanate transport system that is energy dependent and saturable by cyanate. 相似文献
18.
Isolation of protease-proficient, recombinase-deficient recA mutants of Escherichia coli K-12 总被引:4,自引:12,他引:4 下载免费PDF全文
We isolated recA mutants with altered protease activity and then examined recombinase activity to determine whether the protease and recombinase functions of the RecA protein of Escherichia coli are separable. We found five mutants that had moderately strong constitutive RecA protease activity but no recombinase activity above the delta recA strain background, the first clear-cut examples of mutants of this class, designated Prtc Rec-. We also isolated 65 mutants that were protease-defective toward the LexA repressor and found that all of them were also recombinase deficient. Four of these mutants retained both partial recombinase activity and partial inducible protease activity. The recombinase-defective mutants were much more sensitive than the recA+ strain to crystal violet, kanamycin, and chloramphenicol, indicating altered membrane permeability. The recA (Prtc Rec-) mutants had a subtle alteration in protease specificity, all being defective in spontaneous induction of phages lambda imm434 and 21. They differed from Prtc Rec+ mutants of comparable or even weaker constitutive protease strength, all of which showed dramatic spontaneous induction of these prophages. However, treating a Prtc Rec- mutant with mitomycin C resulted in significant prophage induction. Thus, the RecA proteins of the Prtc Rec- mutants have constitutive protease activity toward the LexA repressor, but have only DNA damage-activable protease activity toward phage repressors. UV-induced mutagenesis from his to his+ was studied for one Prtc Rec- mutant, and induced mutation frequencies as high as those for the recA+ strain were found despite the absence of recombinase activity. 相似文献
19.
Characterization of lipopolysaccharides from Escherichia coli K-12 mutants. 总被引:9,自引:17,他引:9 下载免费PDF全文
Chemical analyses of the carbohydrate composition of lipopolysaccharides (LPS) from a number of LPS mutants were used to propose a schematic composition for the LPS from Escherichia coli K-12. The formula contains four regions: the first consists of lipid A, ketodeoxyoctonoic acid, and a phosphorous component; the second contains only heptose; the third only glucose; and the fourth additional glucose, galactose, and rhamnose. LPS from E. coli B may have a similar composition but lacks the galactose and rhamnose units. A set of LPS-specific bacteriophages were used for comparing three mutants of Salmonella with a number of LPS mutants of E. coli K-12. The results confirm that there are basic similarities in the first and second regions of the LPS structure; they also support the four region divisions of the LPS formula. Paper chromatography was used for characterization of 32-P-labeled LPS from different strains of E. coli and Salmonella. The Rf values for LPS varied from 0.27 to 0.75 depending on the amounts of carbohydrates in the molecule. LPS from all strains studied was homogenous except for strain D31 which produced two types of LPS. Mild acid hydrolysis of labeled LPS liberated lipid A and two other components with phosphate, one of which was assigned to the first region. It is suggested that paper chromatography can be used in biosynthetic studies concerning regions 2 to 4. 相似文献
20.
We have investigated the genetics of photoreactivation in Escherichia coli K-12. We found that strains with point mutations or deletions in the phr gene showed a significant residual level of photoreactivation after exposure to large fluences of photoreactivating light. It had been previously proposed that a gene in the gal-att lambda interval is also involved in photoreactivation and that the residual photoreactivating activity might be due to this so-called phrA gene located at this interval. We found that deletions of the gal-att lambda region had no effect on either the rate or the final extent of photoreactivation observed in phr+ cells or phr mutants; however strains carrying the delta (gal-att lambda) deletions displayed increased sensitivity to near-UV radiation. 相似文献