首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined how crowding of the surfaces of lipid vesicles with either grafted polyethyleneglycol (PEG) chains or bilayer-anchored protein molecules affects the binding of soluble proteins to the vesicle surface. Escherichia coli dihydrofolate reductase (DHFR, 18 kDa) or a larger fusion protein, NusA-DHFR (72 kDa), binds reversibly but with high affinity to a methotrexate-modified lipid (MTX-PE) incorporated into large unilamellar vesicles. Incorporation of phosphatidylethanolamine-PEG5000 into the vesicles strongly decreases the affinity of binding of both proteins, to a degree that varies roughly exponentially with the lateral density of the PEG chains. Covalently coupling maltose-binding protein (MBP) to the vesicle surfaces also strongly decreases the affinity of binding of NusDHFR or DHFR, to a degree that likewise varies roughly exponentially with the surface density of anchored MBP. Surface-coupled MBP strongly decreases the rate of binding of NusDHFR to MTX-PE-incorporating vesicles but does not affect the rate of NusDHFR dissociation. The large magnitudes of these effects (easily exceeding an order of magnitude for moderate degrees of surface crowding) support previous theoretical analyses and suggest that surface-crowding effects can markedly influence a variety of important aspects of protein behavior in membranes.  相似文献   

2.
Interactions of membrane anchored molecules such as glycolipids with a membrane surface are important in determining headgroup conformation. It is therefore essential to represent these membrane surface interactions in molecular modeling studies of glycolipids and other membrane bound molecules. We introduce here an energy term that represents the interaction of molecules with a membrane bilayer. This membrane interaction energy term has been added to the potential energy function of a molecular dynamics and mechanics program and has been parameterized using partition coefficients between an aqueous solution and a vesicular membrane for two model glycolipids.  相似文献   

3.
It is shown that hydrogen and hydroxyl ions, produced in protonation and deprotonation reactions between ionisable groups in a cell membrane and water, will leave the reaction sites in opposite direction, rather than recombine with them when the electric field strength is equal to the mean value present in squid nerve at the resting potential. It is calculated that this effect could influence the conductance and swelling of intramembrane and sub-axolemmal protein during an inward current pulse, if the hydrogen ions combine with the acidic groups of the macromolecules.  相似文献   

4.
The effects of phase transition on the surface capacitance and conductance parallel to dipalmitoyl- (DPPC) and dimyristoyl-phosphatidylcholine (DMPC) membranes were studied by impedance dispersion. The phospholipid aggregates were embedded into pores of a polycarbonate filter and the impedance dispersions were measured at a frequency range from 30 Hz to 1.0 MHz. When the frequency was below 120 kHz, the capacitance showed a peak at the pretransition temperature and a steep rise at the main-transition temperature. In this system, the observed capacitance consists of frequency-dependent and -independent parts. The frequency-dependent part is a surface phenomenon and arises from the lateral motion of counterions at the membrane/water interface. The frequency-independent part represents mainly the properties of the bulk lipid phase. Addition of halothane decreased the total capacitance of the DPPC aggregates at the low frequency range to 1/2 to 1/8 of the control depending upon the temperature. The surface component was solely responsible for this capacitance decrease, because the non-surface component was slightly increased instead. The data suggest that halothane inhibited the lateral ionic flow parallel to the interface.  相似文献   

5.
Theory for ligand rebinding at cell membrane surfaces.   总被引:1,自引:1,他引:0       下载免费PDF全文
Conditions for which a ligand reversibly bound to a cell surface dissociates and then rebinds to the surface have been theoretically examined. The coupled differential equations that describe reaction at the interface between sites on a plane and three-dimensional solution have been described previously (Thompson, N. L., T. P. Burghardt, and D. Axelrod. 1981. Biophys. J. 33:435-454). Here, we use this theoretical formalism to provide an analytical solution for the spatial and temporal dependence of the probabilities of finding a molecule on the surface or in the solution, given initial placement on the surface at the origin. This general analytical solution is used to derive a simple expression for the probability that a molecule rebinds to the surface at a given position and time after release at the origin and time zero. The probability expressions provide fundamental equations that form a basis for subsequent modeling of ligand-receptor interactions in specific geometries.  相似文献   

6.
Effects of tetracaine and caffeine on snail neurons were studied. They displayed depolarization and an increase of membrane conductance. In addition, tetracaine diminished membrane time constant whereas caffeine augmented hyperpolarizing after-potential. It was also shown that tetracaine blocks the caffeine effect. Microwave irradiation of snail neurons enhanced membrane conductance. This effect was not observed in neurons treated with tetracaine or injected with EDTA. Analysis of these results points to intracellular free calcium as a possible trigger of snail neuron microwave response.  相似文献   

7.
At the early stages of development of the fresh water fish loach (Misgurnus fossilis) the resting membrane potential (Er) of cleaving cells oscillates periodically with an amplitude of 8-12 mV. Er oscillation correlates with the cell cycle and is accompanied by changes of K+ conductivity. Two types of K(+)-selective ionic channels with conductance of approximately 70 and 25 pS in symmetrical (150 mM KCl) solution were observed in the membrane of cleaving loach embryos. 'High' conductance and 'low' conductance channels were recorded in approximately 90% and 10% of patches investigated (n = 275), respectively? The activity of 'high' conductance channels was regulated by the application of pressure to the membrane, ie these channels were stretch-activated (SA). The activity of SA channels changes dramatically during the cell-cleavage cycle. At the beginning of interphase the probability of SA channels being in the open state (P0) was minimal, while at prometaphase the probability was increased 10-100-fold. Application of ATP to the cytoplasmic inside-out patches induced a reversible elevation of stretch sensitivity of the SA channels in 50% of the patches, while the non-hydrolyzable analogue of ATP was not effective. Combined application of ATP, cAMP and cAMP-dependent protein kinase (PK) induced a reversible elevation in the SA channel activity while inhibitors of PK prevented its activating effects. Phosphatase inhibitors prolonged the activating effect of PK on SA channels. We propose that oscillations of the resting potential during the cell-cleavage cycle arise due to modulation of SA channel sensitivity to stretch through cAMP-dependent phosphorylation.  相似文献   

8.
Torsion angle analysis of glycolipid order at membrane surfaces.   总被引:3,自引:3,他引:0  
  相似文献   

9.
Abstract— We have demonstrated significant differences in the circular dichroic (CD) spectra of myelin, synaptic vesicle and synaptosomal membrane preparations from rat brain. Although the measured CD spectra probably contained components attributable to turbidity, we have presented arguments to indicate that turbidity effects could not account for all the observed differences. We think it likely, therefore, that these three membrane fractions exhibit intrinsically different CD spectra, and therefore contain proteins of differing three-dimensional structure. The perturbation of membrane CD produced by electrolytes appeared to involve specific ionic effects. Here again, effects of turbidity were probably involved. The increase in light scattering was demonstrated by an increase in A250 at increasing salt concentrations. The increase in A250 and the decrease in the intensity of [ø] showed no simple correlation. The effect of acidic pH (below pH 6–5) on the membrane CD appeared similar to that of increasing salt concentrations. In contrast, the effect of basic pH appeared to be one of denaturation. The effect of temperature on the membrane CD was one of stability below or at physiological temperatures and of irreversible instability at temperatures slightly above the physiological range. The CD of synaptosomal membrane preparations changed slowly over prolonged periods at low temperatures or by cycles of freezing and thawing. Our observations indicate that careful attention to the physical and chemical environment of membranes is necessary in CD investigations of membrane preparations.  相似文献   

10.
11.
12.
We have studied the conductance properties of unmodified monoglyceride membranes as a function of monoglyceride chain length. As membrane thickness decreases from 31 to 20 nm, the steepness of the current-voltage (I-V) curve increases from 80 mV per e-fold current increase to 52 mV per e-fold current increase. The zero-voltage conductance increases more than 1,000-fold and the apparent activation energy of conductance decreases from 18.4 to 14.2 kcal/mol. We have analyzed our results using both the Nernst-Planck equation and absolute rate theory. Both approaches are consistent with our results and give consistent values for the parameters describing the I-V curves. We conclude that both the surface ion concentration and the distance from the surface of the membrane at which the energy of an ion rises appreciably above its value in solution (position of the barrier) are invariant with thickness.  相似文献   

13.
Glucose-excess cultures of Streptococcus bovis consumed glucose faster than the amount that could be explained by growth or maintenance, and nongrowing chloramphenicol-treated cells had a rate of glucose consumption that was 10-fold greater than the maintenance rate. Because N,N-dicyclohexylcarbodiimide, an inhibitor of the membrane-bound F1F0 ATPase, eliminated the nongrowth energy dissipation (energy spilling) without a decrease in ATP and the rate of energy spilling could be increased by the protonophore 3,3',4',5-tetrachlorosalicylanilide, it appeared that a futile cycle of protons through the cell membrane was responsible for most of the energy spilling. When the rate of energy spilling was decreased gradually with iodoacetate, there was only a small decrease in the phosphorylation potential (delta G'p) and the theoretical estimate of H+ per ATP decreased from 4.2 to 3.6. On the bases of this ratio of H+ to ATP and the rate of ATP production, the flux of protons (amperage) across the cell membrane was directly proportional to the rate of energy spilling. Amperage values estimated from delta G'p were, however, nearly twice as great as values which were estimated from the heat production (delta H) of the cells [amperage = (0.38 x wattage)/delta p]. The last comparison indicated that only a fraction of the delta G of ATP hydrolysis was harvested by the F1F0 ATPase to pump protons. Both estimates of amperage indicated that the resistance of the cell membrane to proton conductance was inversely proportional to the log of the energy-spilling rate.  相似文献   

14.
J Graf  M Rupnik  G Zupancic    R Zorec 《Biophysical journal》1995,68(4):1359-1363
We have used the whole-cell patch-clamp technique to study changes in membrane conductance and membrane capacitance after osmotic swelling in rat hepatocytes. Hypoosmotic solutions induced an instantaneous increase in the volume of patch-clamped cells that was followed by a slow decline reminiscent of regulatory volume decrease as seen in intact cells. These morphological changes were associated with a transient increase in membrane conductance. The rise in conductance was not correlated with changes in capacitance, neither in time after the initiation of cell swelling nor in magnitude. Therefore we conclude that an osmotically induced increase in conductance is probably a result of the activation of existent channels in the plasmalemma and not a result of the fusion of vesicle membrane containing ionic channels.  相似文献   

15.
It has been found that 2450 MHz microwave radiation increases membrane conductance in molluscan neurons. Analysis of this effect points to the important role of Ca++ in the mechanism of neuron microwave response. However, regulation of many intracellular processes is not a direct Ca++ effect, but is mediated through calmodulin, a Ca++-binding multifunctional protein. Furthermore, there is some evidence showing that Ca++ regulation of a Ca pump, endoplasmic reticulum Ca++ buffering, and Ca++-activated K+ conductance are mediated via calmodulin. Based on that, calmodulin is hypothesized to be a microwave susceptible protein, and a qualitative model of microwave enhancement of membrane conductance is suggested.  相似文献   

16.
17.
Hydrogen-bonded structures within lipid membrane surfaces are not disrupted by water and are of thermodynamic and therefore potential structural importance in biological systems.  相似文献   

18.
Most biological membranes are extremely complex structures consisting of hundreds or even thousands of different lipid and protein molecules. The prevailing view regarding the organisation of these membranes is based on the fluid-mosaic model proposed by Singer and Nicholson in 1972. According to this model, phospholipids together with some other lipids form a fluid bilayer in which these lipids are diffusing very rapidly laterally. The idea of rapid lateral diffusion implies that, in general, the different lipid species would be randomly distributed in the plain of the membrane. However, there are recent data indicating that the components tend to adopt regular (superlattice-like) distributions in fluid, mixed bilayers. Based on this, a superlattice model of membranes has been proposed. This superlattice model is intriguing because it allows only a limited certain number of 'critical' compositions. These critical compositions could play a key role in the regulation of the lipid compositions of biological membranes. Furthermore, such putative critical compositions could explain how compositionally distinct organelles can exist despite of rapid inter-organelle membrane traffic. In this review, these intriguing predictions are discussed along with the basic principles of the model and the evidence supporting it.  相似文献   

19.
Poly(L-lysine) exists in a random-coil formation at a low pH, alpha-helix at a pH above 10.6, and transforms into beta-sheet when the alpha-helix polylysine is heated. Each conformation is clearly distinguishable in the amide-I band of the infrared spectrum. The thermotropic alpha-to-beta transition was studied by using differential scanning calorimetry. At pH 10.6, the transition temperature was 43.5 degrees C and the transition enthalpy was 170 cal/mol residue. At pH 11.85, the measurements were 36.7 degrees C and 910 cal/mol residue, respectively. Volatile anesthetics (chloroform, halothane, isoflurane and enflurane) partially transformed alpha-helix polylysine into beta-sheet. The transformation was reversed by the application of hydrostatic pressure in the range of 100-350 atm. Apparently, the alpha-to-beta transition was induced by anesthetics through partial dehydration of the peptide side-chains (beta-sheet surface is less hydrated than alpha-helix). High pressure reversed this process by re-hydrating the peptide. Because the membrane spanning domains of channel and receptor proteins are predominantly in the alpha-helix conformation, anesthetics may suppress the activity of excitable cells by transforming them into a less than optimal structure for electrogenic ion transport and neurotransmission. Proteins and lipid membranes maintain their structural integrity by interaction with water. That which attenuates the interaction will destabilize the structure. These data suggest that anesthetics alter macromolecular conformations essentially by a solvent effect, thereby destroying the solvation water shell surrounding macromolecules.  相似文献   

20.
Sea urchin egg cortices were used as an in vitro natural membrane model system to determine the effects of inhalation anesthetics on the Ca2+-regulated exocytotic fusion of cortical vesicles with the egg plasma membrane. When Ca2+ was either absent or present in amounts below the threshold for exocytosis, methoxyflurane, halothane, enflurane, isoflurane, chloroform and fluoroxene, at concentrations up to S mM, had no effect on the fusion of cortical vesicles with the plasma membrane. However, when Ca2+ was present at or above threshold levels for exocytosis, each of the tested anesthetics caused an inhibition of cortical vesicle fusion. Exocytosis was inhibited most effectively by methoxyflurane (55%), followed by halothane (30%), while fuoroxene consistently had the least effect (< 5%). These observations support the view that volatile anesthetics can impair the Ca2+-regulated fusogenic activities of natural membranes and are consistent with other data showing that inhalational agents inhibit secretory processes in intact cells.Abbreviations PIPES piperazine-N-N-bis (2-ethane sulfonic acid) - PMSF phenylmethylsulfonylfluoride - SW sea water - TAPS trishydroxymethyl-methylaminopropane sulfonic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号