首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cobra CTX A3, the major cardiotoxin (CTX) from Naja atra, is a cytotoxic, basic β-sheet polypeptide that is known to induce a transient membrane leakage of cardiomyocytes through a sulfatide-dependent CTX membrane pore formation and internalization mechanism. The molecular specificity of CTX A3-sulfatide interaction at atomic levels has also been shown by both nuclear magnetic resonance (NMR) and X-ray diffraction techniques to reveal a role of CTX-induced sulfatide conformational changes for CTX A3 binding and dimer formation. In this study, we investigate the role of sulfatide lipid domains in CTX pore formation by various biophysical methods, including fluorescence imaging and atomic force microscopy, and suggest an important role of liquid-disordered (ld) and solid-ordered (so) phase boundary in lipid domains to facilitate the process. Fluorescence spectroscopic studies on the kinetics of membrane leakage and CTX oligomerization further reveal that, although most CTXs can oligomerize on membranes, only a small fraction of CTXs oligomerizations form leakage pores. We therefore suggest that CTX binding at the boundary between the so and so/ld phase coexistence sulfatide lipid domains could form effective pores to significantly enhance the CTX-induced membrane leakage of sulfatide-containing phosphatidylcholine vesicles. The model is consistent with our earlier observations that CTX may penetrate and lyse the bilayers into small aggregates at a lipid/protein molar ratio of about 20 in the ripple P(β)' phase of phosphatidylcholine bilayers and suggest a novel mechanism for the synergistic action of cobra secretary phospholipase A2 and CTXs.  相似文献   

2.
Huang WN  Sue SC  Wang DS  Wu PL  Wu WG 《Biochemistry》2003,42(24):7457-7466
Cobra cardiotoxin, a cytotoxic beta-sheet basic polypeptide, is known to cause membrane leakage in many cells including human erythrocytes. Herein, we demonstrate that the major cobra cardiotoxin from Naja atra, CTX A3, can cause leakage of vesicle contents in phosphatidylglycerol (PG) and phosphatidylserine containing, but not in pure phosphatidylcholine (PC), membrane bilayers. By the combined polarized attenuated total reflection infrared spectroscopy and computer simulation studies, CTX A3 is shown to peripherally bind to both zwitterionic and anionic monolayers in a similar edgewise manner with a tilted angle of approximately 48 +/- 20 degrees between the beta-sheet plane of the CTX molecule and the normal of the membrane surface. The average surface area expansion induced by CTX A3 binding to the PG monolayer, however, is two times larger than that of the PC monolayer as determined by the Langmuir minitrough method. Interaction energy considerations of CTX A3 on neutral and negatively charged membrane surfaces suggests that the electrostatic interaction between anionic lipid and cationic CTXs plays a role in modulating the penetration depth of CTX molecules on the initial peripheral binding mode and reveals a pathway leading to the formation of an inserted mode in negatively charged membrane bilayers.  相似文献   

3.
Tjong SC  Wu PL  Wang CM  Huang WN  Ho NL  Wu WG 《Biochemistry》2007,46(43):12111-12123
The major cardiotoxin from Taiwan cobra (CTX A3) is a pore forming beta-sheet polypeptide that requires sulfatide (sulfogalactosylceramide, SGC) on the plasma membrane of cardiomyocytes for CTX-induced membrane leakage and cell internalization. Herein, we demonstrate by fluorescence spectroscopic studies that sulfatides induce CTX A3 oligomerization in sulfatide containing phosphatidylcholine (PC) vesicles to form transient pores with pore size and lifetime in the range of about 30 A and 10(-2) s, respectively. These values are consistent with the CTX A3-induced conductance and mean lifetime determined previously by using patch-clamp electrophysiological experiments on the plasma membrane of H9C2 cells. We also derived the peripheral binding structural model of CTX A3-sulfatide complex in sulfatide containing PC micelles by NMR and molecular docking method and compared with other CTX A3-sulfatide complex structure determined previously by X-ray in membrane-like environment. The NMR results indicate that sulfatide head group conformation changes from a bent shovel (-sc/ap) to an extended (sc/ap) conformation upon initial binding of CTX A3. An additional global reorientation of sulfatide molecule is also needed for CTX A3 dimer formation as inferred by the difference between the X-ray and NMR complex structure. Since the overall folding of CTX A3 molecules remained the same, sulfatide in phospholipid bilayer is proposed to play an active role by involving its local and global conformational changes to promote both the oligomerization and reorientation of CTX A3 molecule for its transient pore formation and cell internalization.  相似文献   

4.
Cobra cardiotoxins, a family of basic polypeptides having lipid- and heparin-binding capacities similar to the cell-penetrating peptides, induce severe tissue necrosis and systolic heart arrest in snakebite victims. Whereas cardiotoxins are specifically retained on the cell surface via heparan sulfate-mediated processes, their lipid binding ability appears to be responsible, at least in part, for cardiotoxin-induced membrane leakage and cell death. Although the exact role of lipids involved in toxin-mediated cytotoxicity remains largely unknown, monoclonal anti-sulfatide antibody O4 has recently been shown to inhibit the action of CTX A3, the major cardiotoxin from Taiwan cobra venom, on cardiomyocytes by preventing cardiotoxin-induced membrane leakage and CTX A3 internalization into mitochondria. Here, we show that anti-sulfatide acts by blocking the binding of CTX A3 to the sulfatides in the plasma membrane to prevent sulfatide-dependent CTX A3 membrane pore formation and internalization. We also describe the crystal structure of a CTX A3-sulfatide complex in a membrane-like environment at 2.3 angstroms resolution. The unexpected orientation of the sulfatide fatty chains in the structure allows prediction of the mode of toxin insertion into the plasma membrane. CTX A3 recognizes both the headgroup and the ceramide interfacial region of sulfatide to induce a lipid conformational change that may play a key role in CTX A3 oligomerization and cellular internalization. This proposed lipid-mediated toxin translocation mechanism may also shed light on the cellular uptake mechanism of the amphiphilic cell-penetrating peptides known to involve multiple internalization pathways.  相似文献   

5.
Interplay between lipids and the proteinaceous membrane fusion machinery   总被引:1,自引:0,他引:1  
For membrane fusion to occur, opposed lipid bilayers initially establish a fusion pore, often followed by complete mixing of the fusing membranes. Contemporary views suggest that during fusion lipid bilayers are continuous passive platforms that are disrupted and remodeled by catalytic proteins. Some models propose that even the architecture and composition of the fusion pore might be dominated by proteins rather than lipids. Hence, lipids have no regulatory contribution to this process; they simply adapt their shape passively for filling space between otherwise autonomous protein machineries.However, an increasing number of experimental findings indicate that membrane fusion critically depends on a variety of lipids and lipid derivatives. Therefore, a purely proteocentric view describes fusion mechanisms insufficiently. Instead, lipids have functions probably at different levels, as (i) a general influence on the propensity of lipid bilayers to fuse, (ii) a role in recruiting exocytotic proteins to the plasma membrane, (iii) a role in organizing membrane domains for fusion and (iv) direct regulatory effects on fusion protein complexes. In this review we have made an attempt to bring together the large body of evidence supporting a major role for lipids in membrane fusion either directly or indirectly.  相似文献   

6.
Photoactivation of rhodopsin in lipid bilayers results within milliseconds in a metarhodopsin I (MI)-metarhodopsin II (MII) equilibrium that is very sensitive to the lipid composition. It has been well established that lipid bilayers that are under negative curvature elastic stress from incorporation of lipids like phosphatidylethanolamines (PE) favor formation of MII, the rhodopsin photointermediate that is capable of activating G protein. Furthermore, formation of the MII state is favored by negatively charged lipids like phosphatidylserine and by lipids with longer hydrocarbon chains that yield bilayers with larger membrane hydrophobic thickness. Cholesterol and rhodopsin-rhodopsin interactions from crowding of rhodopsin molecules in lipid bilayers shift the MI-MII equilibrium towards MI. A variety of mechanisms seems to be responsible for the large, lipid-induced shifts between MI and MII: adjustment of the thickness of lipid bilayers to rhodopsin and adjustment of rhodopsin helicity to the thickness of bilayers, curvature elastic deformations in the lipid matrix surrounding the protein, direct interactions of PE headgroups and polyunsaturated hydrocarbon chains with rhodopsin, and direct or lipid-mediated interactions between rhodopsin molecules. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

7.
Tatulian SA  Tamm LK 《Biochemistry》2000,39(3):496-507
Influenza virus hemagglutinin (HA), the viral envelope glycoprotein that mediates fusion between the viral and cellular membranes, is a homotrimer of three subunits, each containing two disulfide-linked polypeptide chains, HA(1) and HA(2). Each HA(2) chain spans the viral membrane with a single putative transmembrane alpha-helix near its C-terminus. Fusion experiments with recombinant HAs suggest that this sequence is required for a late step of membrane fusion, as a glycosylphosphatidylinositol-anchored analogue of HA only mediates "hemifusion" of membranes, i.e., the merging of the proximal, but not distal, leaflets of the two juxtaposed lipid bilayers [Kemble et al. (1994) Cell 76, 383-391]. To find a structural explanation for the function of the transmembrane domain of HA(2) in membrane fusion, we have studied the secondary structure, orientation, oligomerization, and lipid interactions of a synthetic peptide representing the transmembrane segment of X:31 HA (TMX31) by circular dichroism and attenuated total reflection Fourier transform infrared spectroscopy and by gel electrophoresis. The peptide was predominantly alpha-helical in detergent micelles and in phospholipid bilayers. The helicity was increased in lipid bilayers composed of acidic lipids compared to pure phosphatidylcholine bilayers. In planar lipid bilayers, the helices were oriented close to the membrane normal. TMX31 aggregated into small heat-resistant oligomers composed of two to five subunits in SDS micelles. Amide hydrogen exchange experiments indicated that a large fraction of the helical residues were accessible to water, suggesting the possibility that TMX31 forms pores in lipid bilayers. Finally, the peptide increased the acyl chain order in lipid bilayers, which may be related to the preferential association of HA with lipid "rafts" in the cell surface and which may be an important prerequisite for complete membrane fusion.  相似文献   

8.
In this study, we performed all-atom long-timescale molecular dynamics simulations of phospholipid bilayers incorporating three different proportions of negatively charged lipids in the presence of K(+), Mg(2+), and Ca(2+) ions to systemically determine how membrane properties are affected by cations and lipid compositions. Our simulations revealed that the binding affinity of Ca(2+) ions with lipids is significantly stronger than that of K(+) and Mg(2+) ions, regardless of the composition of the lipid bilayer. The binding of Ca(2+) ions to the lipids resulted in bilayers having smaller lateral areas, greater thicknesses, greater order, and slower rotation of their lipid head groups, relative to those of corresponding K(+)- and Mg(2+)-containing systems. The Ca(2+) ions bind preferentially to the phosphate groups of the lipids. The complexes formed between the cations and the lipids further assembled to form various multiple-cation-centered clusters in the presence of anionic lipids and at higher ionic strength-most notably for Ca(2+). The formation of cation-lipid complexes and clusters dehydrated and neutralized the anionic lipids, creating a more-hydrophobic environment suitable for membrane aggregation. We propose that the formation of Ca(2+)-phospholipid clusters across apposed lipid bilayers can work as a "cation glue" to adhere apposed membranes together, providing an adequate configuration for stalk formation during membrane fusion.  相似文献   

9.
Bax is a pro-apoptotic Bcl-2 family protein. The activated Bax translocates to mitochondria, where it forms pore and permeabilizes the mitochondrial outer membrane. This process requires the BH3-only activator protein (i.e. tBid) and can be inhibited by anti-apoptotic Bcl-2 family proteins such as Bcl-xL. Here by using single molecule fluorescence techniques, we studied the integration and oligomerization of Bax in lipid bilayers. Our study revealed that Bax can bind to lipid membrane spontaneously in the absence of tBid. The Bax pore formation undergoes at least two steps: pre-pore formation and membrane insertion. The activated Bax triggered by tBid or BH3 domain peptide integrates on bilayers and tends to form tetramers, which are termed as pre-pore. Subsequent insertion of the pre-pore into membrane is highly dependent on the composition of cardiolipin in lipid bilayers. Bcl-xL can translocate Bax from membrane to solution and inhibit the pore formation. The study of Bax integration and oligomerization at the single molecule level provides new evidences that may help elucidate the pore formation of Bax and its regulatory mechanism in apoptosis.  相似文献   

10.
The distribution of cholesterol in asymmetric lipid bilayers was studied by extensive coarse-grained molecular dynamics simulations. The effects of the lipid head group charge, acyl chain saturation, spontaneous membrane curvature and surface tension of the membrane were investigated. Four asymmetric bilayers containing DOPC, DOPS, DSPC or DSPS lipids were simulated on a time scale extended to tens of microseconds. We show that cholesterol strongly prefers anionic lipids to neutral and saturated lipid tails to unsaturated with a distribution ratio of ~0.7 in neutral/anionic bilayers and of ~0.4 in unsaturated/saturated bilayers. Multiple flip-flop transitions of cholesterol were observed directly, and their mean times ranged from 80 to 250?ns. It was shown that the distribution of cholesterol in the asymmetric membrane depends not only on the type of lipid, but also on the local membrane curvature and the surface tension. The membrane curvature enhances the influence of the lipid head groups on cholesterol distribution, while non-optimal surface tension caused by different areas per lipid in different monolayers increases the effect of the lipid tail saturation. It was clearly seen that the monolayers of asymmetric bilayers are interdependent. Mean distances from the bilayer center to cholesterol molecules depend not only on the type of the lipid in the considered monolayer but also on the composition of the opposite monolayer.  相似文献   

11.
While the specificity and timing of membrane fusion in diverse physiological reactions, including virus–cell fusion, is determined by proteins, fusion always involves the merger of membrane lipid bilayers. We have isolated a lipid-dependent stage of cell–cell fusion mediated by influenza hemagglutinin and triggered by cell exposure to mildly acidic pH. This stage preceded actual membrane merger and fusion pore formation but was subsequent to a low pH–induced change in hemagglutinin conformation that is required for fusion. A low pH conformation of hemagglutinin was required to achieve this lipid-dependent stage and also, downstream of it, to drive fusion to completion. The lower the pH of the medium applied to trigger fusion and, thus, the more hemagglutinin molecules activated, the less profound was the dependence of fusion on lipids. Membrane-incorporated lipids affected fusion in a manner that correlated with their dynamic molecular shape, a characteristic that determines a lipid monolayer's propensity to bend in different directions. The lipid sensitivity of this stage, i.e., inhibition of fusion by inverted cone–shaped lysophosphatidylcholine and promotion by cone-shaped oleic acid, was consistent with the stalk hypothesis of fusion, suggesting that fusion proteins begin membrane merger by promoting the formation of a bent, lipid-involving, stalk intermediate.  相似文献   

12.
The membrane-active, cationic, β-hairpin peptide, arenicin, isolated from marine polychaeta Arenicola marina exhibits a broad spectrum of antimicrobial activity. The peptide in aqueous solution adopts the significantly twisted β-hairpin conformation without pronounced amphipathicity. To assess the mechanism of arenicin action, the spatial structure and backbone dynamics of the peptide in membrane-mimicking media and its pore-forming activity in planar lipid bilayers were studied. The spatial structure of the asymmetric arenicin dimer stabilized by parallel association of N-terminal strands of two β-hairpins was determined using triple-resonance nuclear magnetic resonance (NMR) spectroscopy in dodecylphosphocholine (DPC) micelles. Interaction of arenicin with micelles and its oligomerization significantly decreased the right-handed twist of the β-hairpin, increased its amphipathicity, and led to stabilization of the peptide backbone on a picosecond to nanosecond time scale. Relaxation enhancement induced by water-soluble (Mn(2+)) and lipid-soluble (16-doxylstearate) paramagnetic probes pointed to the dimer transmembrane arrangement. Qualitative NMR and circular dichroism study of arenicin-2 in mixed DPC/1,2-dioleoyl-sn-glycero-3-phosphoglycerol bicelles, sodium dodecyl sulfate micelles, and lipid vesicles confirmed that a similar dimeric assembly of the peptide was retained in membrane-mimicking systems containing negatively charged lipids and detergents. Arenicin-induced conductance was dependent on the lipid composition of the membrane. Arenicin low-conductivity pores were detected in the phosphatidylethanolamine-containing lipid mixture, whereas the high-conductivity pores were observed in an exclusively anionic lipid system. The measured conductivity levels agreed with the model in which arenicin antimicrobial activity was mediated by the formation of toroidal pores assembled of two, three, or four β-structural peptide dimers and lipid molecules. The structural transitions involved in arenicin membrane-disruptive action are discussed.  相似文献   

13.
The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers.  相似文献   

14.
The process of secretory granule-plasma membrane fusion can be studied in sea urchin eggs. Micromolar calcium concentrations are all that is required to bring about exocytosisin vitro. I discuss recent experiments with sea urchin eggs that concentrate on the biophysical aspects of granule-membrane fusion. The backbone of biological membranes is the lipid bilayer. Sea urchin egg membrane lipids have negatively charged head groups that give rise to an electrical potential at the bilayer-water interface. We have found that this surface potential can affect the calcium required for exocytosis. Effects on the surface potential may also explain why drugs like trifluoperazine and tetracaine inhibit exocytosis: they absorb to the bilayer and reduce the surface potential. The membrane lipids may also be crucial to the formation of the exocytotic pore through which the secretory granule contents are released. We have measured calcium-induced production of the lipid, diacylglycerol. This lipid can induce a phase transition that will promote fusion of apposed lipid bilayers. The process of exocytosis involves the secretory granule core as well as the lipids of the membrane. The osmotic properties of the granule contents lead to swelling of the granule during exocytosis. Swelling promotes the dispersal of the contents as they are extruded through the exocytotic pore. The movements of water and ions during exocytosis may also stabilize the transient fusion intermediate and consolidate the exocytotic pore as fusion occurs.  相似文献   

15.
Thundimadathil J  Roeske RW  Jiang HY  Guo L 《Biochemistry》2005,44(30):10259-10270
Beta sheet peptides (e.g., amyloid beta) are known to form ion channels in lipid bilayers possibly through aggregation, though the channel structure is not clear. We have recently reported that a short beta sheet peptide, (xSxG)(6), forms porin-like voltage-gated channels in lipid bilayers [Thundimadathil et al. (2005) Biochem. Biophys. Res. Commun. 330, 585-590]. To account for the porin-like activity, oligomerization of the peptide into a beta barrel-like structure was proposed. In this work, peptide aggregation in aqueous and membrane environments and a detailed study of channel properties were performed to gain insight into the mechanism of channel formation. The complex nature of the channel was revealed by kinetic analysis and the occurrence of interconverting multiple conductance states. Ion channels were inhibited by Congo red, suggesting that the peptide aggregates are the active channel species. Peptide aggregation and fibril formation in water were confirmed by electron microscopy (EM) and Congo red binding studies. Furthermore, oligomeric structures in association with lipid bilayers were detected. Circular dichroism of peptide-incorporated liposomes and peptide-lipid binding studies using EM suggest a lipid-induced beta sheet aggregation. Gel electrophoresis of peptide-incorporated liposomes showed dimeric and multimeric structures. Taken together, this work indicates insertion of (xSxG)(6) as oligomers into the lipid bilayer, followed by rearrangement into a beta barrel-like pore structure. A large peptide pore comprising several individual beta sheets or smaller beta sheet aggregates is expected to have a complex behavior in membranes. A dyad repeat sequence and the presence of glycine, serine, and hydrophobic residues in a repeated pattern in this peptide may be providing a favorable condition for the formation of a beta barrel-like structure in lipid bilayers.  相似文献   

16.
This study provides evidence of a novel function for mitochondrial creatine kinase (MtCK) and nucleoside diphosphate kinase (NDPK-D). Both are basic peripheral membrane proteins with symmetrical homo-oligomeric structure, which in the case of MtCK was already shown to allow crossbridging of lipid bilayers. Here, different lipid dilution assays clearly demonstrate that both kinases also facilitate lipid transfer from one bilayer to another. Lipid transfer occurs between liposomes mimicking the lipid composition of mitochondrial contact sites, containing 30 mol % cardiolipin, but transfer does not occur when cardiolipin is replaced by phosphatidylglycerol. Ubiquitous MtCK, but not NDPK-D, shows some specificity in the nature of the lipids transferred and it is not active with phosphatidylcholine alone. MtCK can undergo reversible oligomerization between dimeric and octameric forms, but only the octamer can bridge membranes and promote lipid transfer. Cytochrome c, another basic mitochondrial protein known to bind to anionic membranes but not crosslinking them, is also incapable of promoting lipid transfer. The lipid transfer process does not involve vesicle fusion or loss of the internal contents of the liposomes.  相似文献   

17.
Yang R  Yang J  Weliky DP 《Biochemistry》2003,42(12):3527-3535
In the HIV-1 gp41 and other viral fusion proteins, the minimal oligomerization state is believed to be trimeric with three N-terminal fusion peptides inserting into the membrane in close proximity. Previous studies have demonstrated that the fusion peptide by itself serves as a useful model fusion system, at least to the hemifusion stage in which the viral and target cell lipids are mixed. In the present study, HIV-1 fusion peptides were chemically synthesized and cross-linked at their C-termini to form dimers or trimers. C-terminal trimerization is their likely topology in the fusogenic form of the intact gp41 protein. The fusogenicity of the peptides was then measured in an intervesicle lipid mixing assay, and the assay results were compared to those of the monomer. For monomer, dimer, and trimer at peptide strand/lipid mol ratios between 0.0050 and 0.010, the final extent of lipid mixing for the dimer and trimer was 2-3 times greater than for the monomer. These data suggest that the higher local concentration of peptide strands in the cross-linked peptides enhances fusogenicity and that oligomerization of the fusion peptide in gp41 may enhance the rate of viral/target cell membrane fusion. For gp41, this effect is in addition to the role of the trimeric coiled-coil structure in bringing about apposition of viral and target cell membranes. NMR measurements on the membrane-associated dimeric fusion peptide were consistent with an extended structure at Phe-8, which is the same as has been observed for the membrane-bound monomer in the same lipid composition.  相似文献   

18.
Lipid bilayers can be induced to adhere to each other by molecular mediators, and, depending on the lipid composition, such adhesion can lead to merging of the contacting monolayers in a process known as hemifusion. Such bilayer-bilayer reactions have never been systematically studied. In the course of our studies of membrane-active molecules, we encountered such reactions. We believe that they need to be understood whenever bilayer-bilayer interactions take place, such as during membrane fusion. For illustration, we discuss three examples: spontaneous adhesion between phospholipid bilayers induced by low pH, polymer-induced osmotic depletion attraction between lipid bilayers, and anionic lipid bilayers cross-bridged by multicationic peptides. Our purpose here is to describe a general method for studying such interactions. We used giant unilamellar vesicles, each of which was aspirated in a micropipette so that we could monitor the tension of the membrane and the membrane area changes during the bilayer-bilayer interaction. We devised a general method for measuring the free energy of adhesion or hemifusion. The results show that the energies of adhesion or hemifusion of lipid bilayers could vary over 2 orders of magnitude from −1 to −50 × 10−5 J/m2 in these examples alone. Our method can be used to measure the energy of transition in each step of lipid transformation during membrane fusion. This is relevant for current research on membrane fusion, which focuses on how fusion proteins induce lipid transformations.  相似文献   

19.
The HIV-1 Nef protein plays a critical role in viral infectivity, high-titer replication in vivo, and immune escape of HIV-infected cells. Nef lacks intrinsic biochemical activity, functioning instead through interactions with diverse host cell signaling proteins and intracellular trafficking pathways. Previous studies have established an essential role for Nef homodimer formation at the plasma membrane for most if not all its functions. Here we combined neutron reflectometry of full-length myristoylated Nef bound to model lipid bilayers with molecular simulations based on previous X-ray crystal structures of Nef homodimers. This integrated approach provides direct evidence that Nef associates with the membrane as a homodimer with its structured core region displaced from the membrane for partner protein engagement. Parallel studies of a dimerization-defective mutant, Nef-L112D, demonstrate that the helical dimerization interface present in previous crystal structures stabilizes the membrane-bound dimer. X-ray crystallography of the Nef-L112D mutant in complex with the SH3 domain of the Nef-associated host cell kinase Hck revealed a monomeric 1:1 complex instead of the 2:2 dimer complex formed with wild-type Nef. Importantly, the crystal structure of the Nef-L112D core and SH3 interface are virtually identical to the wild-type complex, indicating that this mutation does not affect the overall Nef fold. These findings support the intrinsic capacity of Nef to homodimerize at lipid bilayers using structural features present in X-ray crystal structures of dimeric complexes.  相似文献   

20.
Most bacterial chemoreceptors are transmembrane proteins. Although less than 10% of a transmembrane chemoreceptor is embedded in lipid, separation from the natural membrane environment by detergent solubilization eliminates most receptor activities, presumably because receptor structure is perturbed. Reincorporation into a lipid bilayer can restore these activities and thus functionally native structure. However, the extent to which specific lipid features are important for effective restoration is unknown. Thus we investigated effects of membrane lipid composition on chemoreceptor Tar from Escherichia coli using Nanodiscs, small (∼10-nm) plugs of lipid bilayer rendered water-soluble by an annulus of “membrane scaffold protein.” Disc-enclosed bilayers can be made with different lipids or lipid combinations. Nanodiscs carrying an inserted receptor dimer have high protein-to-lipid ratios approximating native membranes and in this way mimic the natural chemoreceptor environment. To identify features important for functionally native receptor structure, we made Nanodiscs using natural and synthetic lipids, assaying extents and rates of adaptational modification. The proportion of functionally native Tar was highest in bilayers closest in composition to E. coli cytoplasmic membrane. Some other lipid compositions resulted in a significant proportion of functionally native receptor, but simply surrounding the chemoreceptor transmembrane segment with a lipid bilayer was not sufficient. Membranes effective in supporting functionally native Tar contained as the majority lipid phosphatidylethanolamine or a related zwitterionic lipid plus a rather specific proportion of anionic lipids, as well as unsaturated fatty acids. Thus the chemoreceptor is strongly influenced by its lipid environment and is tuned to its natural one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号