共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee SC Guan HH Wang CH Huang WN Tjong SC Chen CJ Wu WG 《The Journal of biological chemistry》2005,280(10):9567-9577
Anionic citrate is a major component of venom, but the role of venom citrate in toxicity other than its inhibitory effect on the cation-dependent action of venom toxins is poorly understood. By immobilizing Chinese hamster ovary cells in microcapillary tubes and heparin on sensor chips, we demonstrated that heparan sulfate-mediated cell retention of the major cardiotoxin (CTX) from the Taiwan cobra, CTX A3, near membrane surfaces is citrate-dependent. X-ray determination of a CTX A3-heparin hexasaccharide complex structure at 2.4 A resolution revealed a molecular mechanism for toxin retention in which heparin-induced conformational changes of CTX A3 lead to citrate-mediated dimerization. A citrate ion bound to Lys-23 and Lys-31 near the tip of loop II stabilizes hydrophobic contact of the CTX A3 homodimer at the functionally important loop I and II regions. Additionally, the heparin hexasaccharide interacts with five CTX A3 molecules in the crystal structure, providing another mechanism whereby the toxin establishes a complex network of interactions that result in a strong interaction with cell surfaces presenting heparan sulfate. Our results suggest a novel role for venom citrate in biological activity and reveal a structural model that explains cell retention of cobra CTX A3 through heparan sulfate-CTX interactions. 相似文献
2.
《Biochimica et Biophysica Acta - Proteins and Proteomics》2020,1868(2):140324
Excitation energy migration via homo-Förster resonance energy transfer (homo-FRET) can serve as an intermolecular proximity ruler within complex biomolecular assemblies. Here we present a unique case to demonstrate that energy migration can be a novel and sensitive readout to capture the membrane-mediated misfolding and oligomerization of the human prion protein (PrP), which is known to undergo an aberrant conformational conversion from an α-helical form into a self-propagating aggregated β-rich state causing deadly transmissible neurodegenerative diseases. Using site-specific energy migration studies by monitoring steady-state and time-resolved fluorescence anisotropy of fluorescently-tagged PrP, we elucidate the molecular details of lipid membrane-induced oligomers. We show that the intrinsically disordered N-terminal segment is critical for lipid-induced conformational sequestration of PrP into higher-order, β-rich oligomeric species that exhibit membrane permeabilization. Our results revealed that the N-terminal regions constitute the central core of the oligomeric architecture, whereas the distal C-terminal ends participate in peripheral association with the lipid membrane. Our study will find applications in the sensitive detection and in the structural characterization of membrane-induced protein misfolding and aggregation in a variety of deadly amyloid diseases. 相似文献
3.
Tilak Kumar Gupta Sven Klumpe Karin Gries Steffen Heinz Wojciech Wietrzynski Norikazu Ohnishi Justus Niemeyer Benjamin Spaniol Miroslava Schaffer Anna Rast Matthias Ostermeier Mike Strauss Jürgen M. Plitzko Wolfgang Baumeister Till Rudack Wataru Sakamoto Jörg Nickelsen Jan M. Schuller Benjamin D. Engel 《Cell》2021,184(14):3643-3659.e23
4.
Nakamura F Osborn TM Hartemink CA Hartwig JH Stossel TP 《The Journal of cell biology》2007,179(5):1011-1025
Filamin A (FLNa) can effect orthogonal branching of F-actin and bind many cellular constituents. FLNa dimeric subunits have N-terminal spectrin family F-actin binding domains (ABDs) and an elongated flexible segment of 24 immunoglobulin (Ig) repeats. We generated a library of FLNa fragments to examine their F-actin binding to define the structural properties of FLNa that enable its various functions. We find that Ig repeats 9–15 contain an F-actin–binding domain necessary for high avidity F-actin binding. Ig repeats 16–24, where most FLNa-binding partners interact, do not bind F-actin, and thus F-actin does not compete with Ig repeat 23 ligand, FilGAP. Ig repeats 16–24 have a compact structure that suggests their unfolding may accommodate pre-stress–mediated stiffening of F-actin networks, partner binding, mechanosensing, and mechanoprotection properties of FLNa. Our results also establish the orientation of FLNa dimers in F-actin branching. Dimerization, mediated by FLNa Ig repeat 24, accounts for rigid high-angle FLNa/F-actin branching resistant to bending by thermal forces, and high avidity F-actin binding and cross-linking. 相似文献
5.
Lata S Roessle M Solomons J Jamin M Gottlinger HG Svergun DI Weissenhorn W 《Journal of molecular biology》2008,378(4):818-827
Endosomal sorting complexes required for transport (ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III) are selectively recruited to cellular membranes to exert their function in diverse processes, such as multivesicular body biogenesis, enveloped virus budding, and cytokinesis. ESCRT-III is composed of members of the charged multivesicular body protein (CHMP) family—cytosolic proteins that are targeted to membranes via yet unknown signals. Membrane targeting is thought to result in a membrane-associated protein network that presumably acts at a late budding step. Here we provide structural evidence based on small-angle X-ray scattering data that ESCRT-III CHMP3 can adopt two conformations in solution: a closed globular form that most likely represents the cytosolic conformation and an open extended conformation that might represent the activated form of CHMP3. Both the closed and open conformations of CHMP3 interact with AMSH with high affinity. Although the C-terminal region of CHMP3 is required for AMSH interaction, a peptide thereof reveals only weak binding to AMSH, suggesting that other regions of CHMP3 contribute to the high-affinity interaction. Thus, AMSH, including its MIT (microtubule interacting and transport) domain, interacts with ESCRT-III CHMP3 differently from reported Vps4 MIT domain-CHMP protein interactions. 相似文献
6.
The 14-3-3 proteins, a family of conserved regulatory molecules, participate in a wide range of cellular processes through binding interactions with hundreds of structurally and functionally diverse proteins. Several distinct mechanisms of the 14-3-3 protein function were described, including conformational modulation of the bound protein, masking of its sequence-specific or structural features, and scaffolding that facilitates interaction between two simultaneously bound proteins. Details of these functional modes, especially from the structural point of view, still remain mostly elusive. This review gives an overview of the current knowledge concerning the structure of 14-3-3 proteins and their complexes as well as the insights it provides into the mechanisms of their functions. We discuss structural basis of target recognition by 14-3-3 proteins, common structural features of their complexes and known mechanisms of 14-3-3 protein-dependent regulations. 相似文献
7.
Alcami A 《Trends in microbiology》2003,11(5):191-192
Viruses have been fighting the immune systems of their hosts for millions of years and have evolved evasion strategies to ensure their survival. Viruses can teach us efficient mechanisms to control the immune system, and this information can be used to design new strategies of immune modulation that we might apply to diminish immunopathological responses that cause human diseases. Large DNA viruses, such as poxviruses and herpesviruses, encode proteins that are secreted from infected cells, bind cytokines and neutralize their activity. A subgroup of these viral proteins binds chemokines, a complex family of cytokines that control the recruitment of cells to sites of infection and inflammation. One of the major unresolved questions in the field was to understand how these viral secreted proteins bind chemokines with high affinity, despite having no amino acid sequence similarity to the host chemokine receptors, which are seven-transmembrane-domain proteins that cannot be engineered as soluble proteins. 相似文献
8.
Solomons J Sabin C Poudevigne E Usami Y Hulsik DL Macheboeuf P Hartlieb B Göttlinger H Weissenhorn W 《Structure (London, England : 1993)》2011,19(8):1149-1159
Endosomal sorting complexes required for transport (ESCRT) recognize ubiquitinated cargo and catalyze diverse budding processes including multivesicular body biogenesis, enveloped virus egress, and cytokinesis. We present the crystal structure of an N-terminal fragment of the deubiquitinating enzyme AMSH (AMSHΔC) in complex with the C-terminal region of ESCRT-III CHMP3 (CHMP3ΔN). AMSHΔC folds into an elongated 90?? long helical assembly that includes an unusual MIT domain. CHMP3ΔN is unstructured in solution and helical in complex with AMSHΔC, revealing a novel MIT domain interacting motif (MIM) that does not overlap with the CHMP1-AMSH binding site. ITC and SPR measurements demonstrate an unusual high-affinity MIM-MIT interaction. Structural analysis suggests a regulatory role for the N-terminal helical segment of AMSHΔC and its destabilization leads to a loss of function during HIV-1 budding. Our results indicate a tight coupling of ESCRT-III CHMP3 and AMSH functions and provide insight into the regulation of ESCRT-III. 相似文献
9.
Structural basis for ubiquitin recognition by SH3 domains 总被引:1,自引:0,他引:1
The SH3 domain is a protein-protein interaction module commonly found in intracellular signaling and adaptor proteins. The SH3 domains of multiple endocytic proteins have been recently implicated in binding ubiquitin, which serves as a signal for diverse cellular processes including gene regulation, endosomal sorting, and protein destruction. Here we describe the solution NMR structure of ubiquitin in complex with an SH3 domain belonging to the yeast endocytic protein Sla1. The ubiquitin binding surface of the Sla1 SH3 domain overlaps substantially with the canonical binding surface for proline-rich ligands. Like many other ubiquitin-binding motifs, the SH3 domain engages the Ile44 hydrophobic patch of ubiquitin. A phenylalanine residue located at the heart of the ubiquitin-binding surface of the SH3 domain serves as a key specificity determinant. The structure of the SH3-ubiquitin complex explains how a subset of SH3 domains has acquired this non-traditional function. 相似文献
10.
11.
12.
Young Joo Yeon Hyung-Yeon Park Kyungmoon Park Hyun June Park Young Je Yoo 《Biotechnology and Bioprocess Engineering》2016,21(3):364-372
The substrate specificity of 3-hydroxybutyrate dehydrogenase from Alcaligenes faecalis with a non-native substrate, levulinic acid, was studied by analysis of the enzyme-substrate molecular interactions. The relation between structural and kinetic parameters was investigated considering the catalytic mechanism of the enzyme. The effects of key positive mutations (H144L, H144L/W187F) on the catalytic activity of the enzyme were studied by employing a surface analysis of its interatomic contacts between the enzyme and substrate atoms. The results revealed that the alteration of hydrogen bond network and rearrangement of the hydrophobic interactions between the active site and substrate molecule are the key structural basis for the change of the substrate specificity of 3-hydroxybutyrate dehydrogenase toward levulinic acid. With this approach, the structural basis for the substrate specificity of the enzyme could be elucidated in a quantitative manner. 相似文献
13.
Lietzke SE Bose S Cronin T Klarlund J Chawla A Czech MP Lambright DG 《Molecular cell》2000,6(2):385-394
Lipid second messengers generated by phosphoinositide (PI) 3-kinases regulate diverse cellular functions through interaction with pleckstrin homology (PH) domains in modular signaling proteins. The PH domain of Grp1, a PI 3-kinase-activated exchange factor for Arf GTPases, selectively binds phosphatidylinositol 3,4,5-trisphosphate with high affinity. We have determined the structure of the Grp1 PH domain in the unliganded form and bound to inositol 1,3,4,5-tetraphosphate. A novel mode of phosphoinositide recognition involving a 20-residue insertion within the beta6/beta7 loop explains the unusually high specificity of the Grp1 PH domain and the promiscuous 3-phosphoinositide binding typical of several PH domains including that of protein kinase B. When compared to other PH domains, general determinants of 3-phosphoinositide recognition and specificity can be deduced. 相似文献
14.
Eukaryotic chromosomes contain a specialised region known as the centromere, which forms the platform for kinetochore assembly and microtubule attachment. The centromere is distinguished by the presence of nucleosomes containing the histone H3 variant, CENP‐A. In budding yeast, centromere establishment begins with the recognition of a specific DNA sequence by the CBF3 complex. This in turn facilitates CENP‐ACse4 nucleosome deposition and kinetochore assembly. Here, we describe a 3.6 Å single‐particle cryo‐EM reconstruction of the core CBF3 complex, incorporating the sequence‐specific DNA‐binding protein Cep3 together with regulatory subunits Ctf13 and Skp1. This provides the first structural data on Ctf13, defining it as an F‐box protein of the leucine‐rich‐repeat family, and demonstrates how a novel F‐box‐mediated interaction between Ctf13 and Skp1 is responsible for initial assembly of the CBF3 complex. 相似文献
15.
Divya Kesters Andrew J Thompson Marijke Brams René van Elk Radovan Spurny Matthis Geitmann Jose M Villalgordo Albert Guskov U Helena Danielson Sarah C R Lummis Chris Ulens 《EMBO reports》2013,14(1):49-56
The 5‐HT3 receptor is a pentameric serotonin‐gated ion channel, which mediates rapid excitatory neurotransmission and is the target of a therapeutically important class of anti‐emetic drugs, such as granisetron. We report crystal structures of a binding protein engineered to recognize the agonist serotonin and the antagonist granisetron with affinities comparable to the 5‐HT3 receptor. In the serotonin‐bound structure, we observe hydrophilic interactions with loop E‐binding site residues, which might enable transitions to channel opening. In the granisetron‐bound structure, we observe a critical cation–π interaction between the indazole moiety of the ligand and a cationic centre in loop D, which is uniquely present in the 5‐HT3 receptor. We use a series of chemically tuned granisetron analogues to demonstrate the energetic contribution of this electrostatic interaction to high‐affinity ligand binding in the human 5‐HT3 receptor. Our study offers the first structural perspective on recognition of serotonin and antagonism by anti‐emetics in the 5‐HT3 receptor. 相似文献
16.
Aitio O Hellman M Kesti T Kleino I Samuilova O Pääkkönen K Tossavainen H Saksela K Permi P 《Journal of molecular biology》2008,382(1):167-178
We have determined the solution structure of epidermal growth factor receptor pathway substrate 8 (Eps8) L1 Src homology 3 (SH3) domain in complex with the PPVPNPDYEPIR peptide from the CD3ε cytoplasmic tail. Our structure reveals the distinct structural features that account for the unusual specificity of the Eps8 family SH3 domains for ligands containing a PxxDY motif instead of canonical PxxP ligands. The CD3ε peptide binds Eps8L1 SH3 in a class II orientation, but neither adopts a polyproline II helical conformation nor engages the first proline-binding pocket of the SH3 ligand binding interface. Ile531 of Eps8L1 SH3, instead of Tyr or Phe residues typically found in this position in SH3 domains, renders this hydrophobic pocket smaller and nonoptimal for binding to conventional PxxP peptides. A positively charged arginine at position 512 in the n-Src loop of Eps8L1 SH3 plays a key role in PxxDY motif recognition by forming a salt bridge to D7 of the CD3ε peptide. In addition, our structural model suggests a hydrogen bond between the hydroxyl group of the aromatic ring of Y8 and the carboxyl group of E496, thus explaining the critical role of the PxxDY motif tyrosine residue in binding to Eps8 family SH3. These finding have direct implications also for understanding the atypical binding specificity of the amino-terminal SH3 of the Nck family proteins. 相似文献
17.
Structural basis for the inhibition of caspase-3 by XIAP 总被引:63,自引:0,他引:63
Riedl SJ Renatus M Schwarzenbacher R Zhou Q Sun C Fesik SW Liddington RC Salvesen GS 《Cell》2001,104(5):791-800
The molecular mechanism(s) that regulate apoptosis by caspase inhibition remain poorly understood. The main endogenous inhibitors are members of the IAP family and are exemplified by XIAP, which regulates the initiator caspase-9, and the executioner caspases-3 and -7. We report the crystal structure of the second BIR domain of XIAP (BIR2) in complex with caspase-3, at a resolution of 2.7 A, revealing the structural basis for inhibition. The inhibitor makes limited contacts through its BIR domain to the surface of the enzyme, and most contacts to caspase-3 originate from the N-terminal extension. This lies across the substrate binding cleft, but in reverse orientation compared to substrate binding. The mechanism of inhibition is due to a steric blockade prohibitive of substrate binding, and is distinct from the mechanism utilized by synthetic substrate analog inhibitors. 相似文献
18.
Denitrification represents an important part of the biogeochemical cycle of the essential element nitrogen. It constitutes the predominant pathway of the reductive dissimilation of nitrate in the environment. Via four enzymatic reactions, nitrate is transformed stepwise to nitrite (NO2-), nitric oxide (NO), and nitrous oxide (N2O), to finally yield dinitrogen gas (N2). All steps within this metabolic pathway are catalyzed by complex multi-site metalloenzymes with unique spectroscopic and structural features. In recent years, high-resolution crystal structures have become available for these enzymes with the exception of the structure for NO reductase. 相似文献
19.
Saito S Ohno K Sugawara K Suzuki T Togawa T Sakuraba H 《Biochemical and biophysical research communications》2008,377(4):1168-1172
To elucidate the basis of aspartylglucosaminuria (AGU) from the viewpoint of enzyme structure, we constructed structural models of mutant aspartylglucosaminidase (AGA) proteins using molecular modeling software, TINKER. We classified the amino acid substitutions responsible for AGU and divided them into three groups based on the biochemical phenotype. Then, we examined the structural changes in the AGA protein for each group by calculating the solvent-accessible surface area (ASA), the number of atoms affected, and the root-mean-square deviation (RMSD). Our results revealed that the structural changes in group 1, which exhibits folding/transport defects and a complete deficiency of AGA activity, were generally large and located in the core region of the enzyme molecule. In group 2, exhibiting the mature AGA protein but no AGA activity, the functionally important region of the enzyme molecule was seriously affected. In group 3 exhibiting residual AGA activity, the structural changes in AGA were small and localized near the surface of the enzyme molecule. Coloring of affected atoms based on the distances between the wild-type and mutant ones revealed the characteristic structural changes in the AGA protein geographically and semi-quantitatively. Structural investigation provides us with a deeper insight into the basis of AGU. 相似文献
20.
Structural basis of ubiquitylation 总被引:5,自引:0,他引:5
The attachment of the small protein ubiquitin to other proteins, a process known as ubiquitylation, is a widespread form of post-translational modification that regulates numerous cellular functions in eukaryotes. Ubiquitylation is performed by complexes of E2 and E3 enzymes that are assembled and select substrates via a series of protein-protein interactions. Recent structure determinations of the ubiquitylation machinery have revealed some of the various protein-protein interfaces involved. 相似文献