首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alphaherpesvirus tegument protein VP22 has been characterized with multiple traits including microtubule reorganization, nuclear localization, and nonclassical intercellular trafficking. However, all these data were derived from studies using herpes simplex virus type 1 (HSV-1) and may not apply to VP22 homologs of other alphaherpesviruses. We compared subcellular attributes of HSV-1 VP22 (HVP22) with bovine herpesvirus 1 (BHV-1) VP22 (BVP22) using green fluorescent protein (GFP)-fused VP22 expression vectors. Fluorescence microscopy of cell lines transfected with these constructs revealed differences as well as similarities between the two VP22 homologs. Compared to that of HVP22, the BVP22 microtubule interaction was much less pronounced. The VP22 nuclear interaction varied, with a marbled or halo appearance for BVP22 and a speckled or nucleolus-bound appearance for HVP22. Both VP22 homologs associated with chromatin at various stages of mitosis and could traffic from expressing cells to the nuclei of nonexpressing cells. However, distinct qualitative differences in microtubule, nuclear, and chromatin association as well as trafficking were observed. The differences in VP22 homolog characteristics revealed in this study will help define VP22 function within HSV-1 and BHV-1 infection.  相似文献   

2.
BACKGROUND: VP22 is a herpes simplex virus type 1 (HSV-1) tegument protein that has been suggested to spread from cell to cell, alone or as a part of fusion proteins. Creating controversy, some reports indicate that VP22 cannot facilitate significant intercellular spreading. To study the capacity of VP22 to cause spreading and enhance thymidine kinase/ganciclovir cancer gene therapy, we constructed a novel triple fusion protein containing VP22, HSV thymidine kinase and green fluorescent protein (VP22-Tk-GFP). This fusion protein has three functional domains in the same polypeptide, thus making it possible to reliably compare the causality between transduction rate and cell killing efficiency in vitro and in vivo. METHODS: VP22-Tk-GFP was cloned into lenti- and adenoviral vectors and used for expression studies, analyses for VP22-mediated protein spreading, and to study the effect of VP22 to thymidine kinase/ganciclovir-mediated cytotoxicity. The function of VP22-Tk-GFP was also investigated in vivo. RESULTS: The triple fusion protein was expressed correctly in vitro, but intercellular trafficking was not observed in any of the studied cell lines. However, under certain conditions, VP22-Tk-GFP sensitized cells more efficiently to ganciclovir than Tk-GFP. In vivo there was a trend for increased inhibition of tumor growth with VP22-Tk-GFP when ganciclovir was present, but the difference with Tk-GFP was not statistically significant. CONCLUSIONS: Based on our results, VP22 fusion proteins do not seem to traffic intercellularly at detectable levels in most tumor cell types. Even though VP22 enhanced cytotoxicity in one cell line in vitro, the effect in vivo was modest. Therefore, our results do not support the utility of VP22 as an enhancer of enzyme prodrug cancer gene therapy.  相似文献   

3.
In vitro experiments have demonstrated intercellular trafficking of the VP22 tegument protein of herpes simplex virus type 1 from infected cells to neighboring cells, which internalize VP22 and transport it to the nucleus. VP22 also can mediate intercellular transport of fusion proteins, providing a strategy for increasing the distribution of therapeutic proteins in gene therapy. Intercellular trafficking of the p53 tumor suppressor protein was demonstrated in vitro using a plasmid expressing full-length p53 fused in-frame to full-length VP22. The p53-VP22 chimeric protein induced apoptosis both in transfected tumor cells and in neighboring cells, resulting in a widespread cytotoxic effect. To evaluate the anti-tumor activity of p53-VP22 in vivo, we constructed recombinant adenoviruses expressing either wild-type p53 (FTCB) or a p53-VP22 fusion protein (FVCB) and compared their effects in p53-resistant tumor cells. In vitro, treatment of tumor cells with FVCB resulted in enhanced p53-specific apoptosis compared to treatment with equivalent doses of FTCB. However, in normal cells there was no difference in the dose-related cytotoxicity of FVCB compared to that of FTCB. In vivo, treatment of established tumors with FVCB was more effective than equivalent doses of FTCB. The dose-response curve to FVCB was flatter than that to FTCB; maximal antitumor responses could be achieved using FVCB at doses 1 log lower than those obtained with FTCB. Increased antitumor efficacy was correlated with increased distribution of p53 protein in FVCB-treated tumors. This study is the first demonstration that VP22 can enhance the in vivo distribution of therapeutic proteins and improve efficacy in gene therapy.  相似文献   

4.
BACKGROUND: The herpes simplex virus type 1 (HSV-1) VP22 protein has the property to mediate intercellular trafficking of heterologous proteins fused to its C- or N-terminus. We have previously shown improved delivery and enhanced therapeutic effect in vitro and in vivo with a P27-VP22 fusion protein. In this report, we were interested in studying the spread and biological activity of VP22 fused to the P53 tumor suppressor. METHODS: Expression of the VP22-P53 and P53-VP22 fusion proteins was shown by Western blot and intercellular spreading was monitored by immunofluorescence on transiently transfected cells. In vitro antiproliferative activity of wild-type (wt) P53 and P53-VP22 was assessed by proliferation assays and transactivating ability was studied by a reporter gene test and a gel-shift assay. Antitumor activity was also tested in vivo by intratumoral injections of naked DNA in a model of subcutaneous tumors implanted in nude mice. RESULTS: Our results show that the C-terminal fusion or the N-terminal P53-VP22 fusion proteins are not able to spread as efficiently as VP22. Moreover, we demonstrate that VP22-P53 does not possess any transactivating ability. P53-VP22 has an antiproliferative activity, but this activity is not superior to the one of P53 alone, in vitro or in vivo. CONCLUSIONS: Our study indicates that a gene transfer strategy using VP22 cannot be considered as a universal system to improve the delivery of any protein.  相似文献   

5.
The bovine herpesvirus 1 (BHV-1) UL49 gene encodes a viral tegument protein termed VP22. UL49 homologs are conserved among alphaherpesviruses. Interestingly, the BHV-1 VP22 deletion mutant virus is asymptomatic and avirulent in infected cattle but produces only a slight reduction in titer in vitro. Attenuation of the BHV-1 VP22 deletion mutant virus in vivo suggests that VP22 plays a functional role in BHV-1 replication. In herpes simplex virus type 1, the VP22 homolog was previously shown to interact with another tegument protein,VP16, the alpha-transinducing factor in vitro. In this report, we show that (i) the nuclear targeting of VP22 is independent of other viral factors, (ii) the carboxyl terminus of VP22 is required for its nuclear localization, (iii) VP22 associates with histones and nucleosomes, (iv) an antihistone monoclonal antibody cross-reacts with VP22, and (v) acetylation of histone H4 is decreased in VP22-expressing cells as well as virus-infected cells. Our data suggest that VP22 may have a modulatory function during BHV-1 infection.  相似文献   

6.
BACKGROUND: The intercellular transport properties of the herpes simplex virus (HSV) protein VP22 have been harnessed to enhance the effectiveness of viral gene transfer. We investigated the intercellular transport and biological effects of VP22 fused with the dominant negative c-Myb chimera, MybEngrailed (MybEn) and HSV-I thymidine kinase (TK), in primary vascular smooth muscle cells (VSMC) following non-viral transfection. MATERIALS AND METHODS: Porcine VSMC transfected with plasmids encoding MybEn, TK and their respective N- and C-terminal VP22 fusion proteins were assayed for the extent and distribution of transgene expression (by immunohistochemistry), culture growth and apoptosis. RESULTS: The N-terminal MybEn fusion with VP22 (MybEnVP22) and both TK fusions, but not VP22MybEn, exhibited intercellular spread from primary transfected to up to 200 surrounding cells. pMybEnVP22-transfected cultures exhibited growth inhibition and apoptosis rates that were 10.6 +/- 3.6 and 3.2 +/- 1.0 fold higher than in pMybEn-transfected cultures; pVP22MybEn-transfected cultures showed no difference in these parameters. pTK-transfected cultures underwent 60-70% cell death in the presence of ganciclovir despite <2% primary transfection, which was not increased in cultures transfected with plasmids encoding VP22-TK fusions. CONCLUSIONS: The close correlation between immunocytochemical and biological assays suggests that intercellular transport is crucial to the enhanced biological activity of the MybEnVP22 fusion. The "intrinsic" bystander activity of TK was 4-fold greater than was "engineered" by VP22 fusion, probably reflecting the abundance of gap junctions between VSMC. VP22 fusion may enhance the efficiency of non-viral gene delivery when combined with the appropriate therapeutic transgene, target tissue and transfection method.  相似文献   

7.
VP22, a tegument protein of bovine herpesvirus 1, accumulates in the nucleus of infected and transiently transfected cells. Previous studies indicated a possible regulatory function of VP22 within nuclei, but how VP22 enters nuclei is unknown. Despite the abundance of basic residues within this protein, no classic nuclear localization signal (NLS) motif has been identified. To identify the signal directing nuclear accumulation, a series of truncations, internal deletions, and point mutations were constructed. Fluorescence microscopy of cells transfected with VP22 constructs indicated that a sequence of 103 residues is necessary and sufficient for nuclear localization. This NLS sequence is conformation-sensitive in contrast to a classical sequential NLS. Energy depletion assays and co-immunoprecipitation suggested that this NLS sequence also binds histone H4, resulting in nuclear retention of VP22. In addition, a mitochondrial targeting sequence was identified at the C-terminal 49 amino acids, which overlapped the sequence required for nuclear targeting. Our findings demonstrate the diversity of VP22 protein to localize within the cell and provide the opportunity for VP22 to direct cargo specifically to different subcellular compartments.  相似文献   

8.
Tyrosine phosphorylation has been shown to play a role in the replication of several herpesviruses. In this report, we demonstrate that bovine herpesvirus 1 infection triggered tyrosine phosphorylation of proteins with molecular masses similar to those of phosphorylated viral structural proteins. One of the tyrosine-phosphorylated viral structural proteins was the tegument protein VP22. A tyrosine 38-to-phenylalanine mutation totally abolished the phosphorylation of VP22 in transfected cells. However, construction of a VP22 tyrosine 38-to-phenylalanine mutant virus demonstrated that VP22 was still phosphorylated but that the phosphorylation site may change to the C terminus rather than be in the N terminus as in wild-type VP22. In addition, the loss of VP22 tyrosine phosphorylation correlated with reduced incorporation of VP22 compared to that of envelope glycoprotein D in the mutant viruses but not with the amount of VP22 produced during virus infection. Our data suggest that tyrosine phosphorylation of VP22 plays a role in virion assembly.  相似文献   

9.
Tegument proteins of herpes simplex virus type 1 (HSV-1) are hypothesized to contain the functional information required for the budding or envelopment process proposed to occur at cytoplasmic compartments of the host cell. One of the most abundant tegument proteins of HSV-1 is the U(L)49 gene product, VP22, a 38-kDa protein of unknown function. To study its subcellular localization, a VP22-green fluorescent protein chimera was expressed in transfected human melanoma (A7) cells. In the absence of other HSV-1 proteins, VP22 localizes to acidic compartments of the cell that may include the trans-Golgi network (TGN), suggesting that this protein is membrane associated. Membrane pelleting and membrane flotation assays confirmed that VP22 partitions with the cellular membrane fraction. Through truncation mutagenesis, we determined that the membrane association of VP22 is a property attributed to amino acids 120 to 225 of this 301-amino-acid protein. The above results demonstrate that VP22 contains specific information required for targeting to membranes of acidic compartments of the cell which may be derived from the TGN, suggesting a potential role for VP22 during tegumentation and/or final envelopment.  相似文献   

10.
The present study aimed to establish a novel efficient nonviral strategy for suicide gene transfer in hepatocellular carcinoma (HCC) in vivo. We employed branched polyethylenimine (PEI) and combined it with Epstein-Barr virus (EBV)-based plasmid vectors. The HCC cells transfected with an EBV-based plasmid carrying the herpes simplex virus-1 thymidine kinase (HSV-1 Tk) gene (pSES.Tk) showed up to 30-fold higher susceptibilities to ganciclovir (GCV) than those transfected with a conventional plasmid vector carrying the HSV-1 Tk gene (pS.Tk). The therapeutic effect in vivo was tested by intratumoral injection of the plasmids into HuH-7 hepatomas transplanted into C.B-17 scid/scid mutant (SCID) mice and subsequent GCV administrations. Treatment with pSES.Tk, but not pS.Tk, markedly suppressed growth of hepatomas in vivo, resulting in a significantly prolonged survival period of the mice. These findings suggest that PEI-mediated gene transfer system can confer efficient expression of the suicide gene in HCC cells in vivo by using EBV-based plasmid vectors.  相似文献   

11.
Anticancer suicide gene therapy using herpes simplex virus-thymidine kinase (HSV-tk) and ganciclovir (GCV) features the unique advantage of being able to elicit brisk host immune response against tumors and the host response reportedly can be potentiated with the co-expression of other appropriate immune- or apoptosis-related genes. We introduced a novel antiapoptotic gene, bfl-1, to test its applicability in the HSV-tk/GCV system. CT-26 murine colon cancer cells transfected with HSV-tk, alone or in combination with bcl-xL or bfl-1, were either grown in vitro or injected into syngeneic mice, followed by GCV administration. The co-expression of bfl-1 was associated with the upregulation of CD95 and CD40 ligand (CD40L) in vitro and with pronounced intratumoral T-lymphocyte infiltration in vivo. These results add to the previous findings that antiapoptotic genes can be used as an adjunctive component in the HSV-tk/GCV system to enhance host immune response against tumors.  相似文献   

12.
VP22 of Marek’s disease virus serotype 1 (MDV-1) could function in protein transduction. In this study, an infectious bursal disease virus VP2 gene was fused to the carboxyl termini of VP22. It showed that the fusion protein did not spread into the bystander cells from the cells transfected with pVP22-VP2, as the VP22 alone could. The VP22 proteins were found to be translocated into all the nuclei in the neighboring COS-1 cells, as analyzed by a fluorescence assay. Although mice were immunized with the recombinant DNAs mixed with polyethylenimine (PEI) at a dose of 1:2, it failed to enhance the antibody response against IBDV VP2, as measured by the indirect ELISA assay, yet the cell mediated immune response was significantly increased. The ratio of CD8 /CD4 T cells was significantly increased in the immunized group with the fusion genes, compared with the group immunized with VP2 (P<0.05). Our results demonstrated that VP22 indeed enhances the cell-mediated response in the fused VP2 in a mice model system, possibly due to the fact that the IBDV VP2 could be carried into the surrounding cells at a limited level under pressure from MDV VP22.  相似文献   

13.
Cheng WF  Hung CH  Chai CY  Hsu KF  He L  Ling M  Wu TC 《Journal of virology》2001,75(5):2368-2376
Recently, self-replicating and self-limiting RNA vaccines (RNA replicons) have emerged as an important form of nucleic acid vaccines. Self-replicating RNA eventually causes lysis of transfected cells and does not raise the concern associated with naked DNA vaccines of integration into the host genome. This is particularly important for development of vaccines targeting proteins that are potentially oncogenic. However, the potency of RNA replicons is significantly limited by their lack of intrinsic ability to spread in vivo. The herpes simplex virus type 1 protein VP22 has demonstrated the remarkable property of intercellular transport and provides the opportunity to enhance RNA replicon vaccine potency. We therefore created a novel fusion of VP22 with a model tumor antigen, human papillomavirus type 16 E7, in a Sindbis virus RNA replicon vector. The linkage of VP22 with E7 resulted in a significant enhancement of E7-specific CD8+ T-cell activities in vaccinated mice and converted a less effective RNA replicon vaccine into one with significant potency against E7-expressing tumors. These results indicate that fusion of VP22 to an antigen gene may greatly enhance the potency of RNA replicon vaccines.  相似文献   

14.
The bovine herpesvirus 1 (BHV-1) tegument protein VP22 is predominantly localized in the nucleus after viral infection. To analyze subcellular localization in the absence of other viral proteins, a plasmid expressing BHV-1 VP22 fused to enhanced yellow fluorescent protein (EYFP) was constructed. The transient expression of VP22 fused to EYFP in COS-7 cells confirmed the predominant nuclear localization of VP22. Analysis of the amino acid sequence of VP22 revealed that it does not have a classical nuclear localization signal (NLS). However, by constructing a series of deletion derivatives, we mapped the nuclear targeting domain of BHV-1 VP22 to amino acids (aa) 121 to 139. Furthermore, a 4-aa motif, 130PRPR133, was able to direct EYFP and an EYFP dimer (dEYFP) or trimer (tEYFP) predominantly into the nucleus, whereas a deletion or mutation of this arginine-rich motif abrogated the nuclear localization property of VP22. Thus, 130PRPR133 is a functional nonclassical NLS. Since we observed that the C-terminal 68 aa of VP22 mediated the cytoplasmic localization of EYFP, an analysis was performed on these C-terminal amino acid sequences, and a leucine-rich motif, 204LDRMLKSAAIRIL216, was detected. Replacement of the leucines in this putative nuclear export signal (NES) with neutral amino acids resulted in an exclusive nuclear localization of VP22. Furthermore, this motif was able to localize EYFP and dEYFP in the cytoplasm, and the nuclear export function of this NES could be blocked by leptomycin B. This demonstrates that this leucine-rich motif is a functional NES. These data represent the first identification of a functional NLS and NES in a herpesvirus VP22 homologue.  相似文献   

15.
Conformational lability of herpesvirus protein VP22   总被引:2,自引:0,他引:2  
The herpesvirus protein VP22 traffics between cells, being exported from expressing cells in a non-Golgi-dependent manner and localizing in the nuclei of surrounding cells. This transport is retained in certain VP22 fusion proteins, making VP22 a candidate for use in macromolecular drug delivery. In an effort to understand the physical basis for this activity, we have initiated structural studies of VP22.C1, the C-terminal half of VP22, which possesses the full transport activity of the native protein. CD and Fourier transform infrared analyses indicate a secondary structure consisting of approximately 30% alpha-helix, 17% beta-sheet, and 51% disordered and turn structure. Unfolding studies conducted by CD, differential scanning calorimetry, and fluorescence reveal a series of discrete structural transitions in the range of 20-60 degrees C. CD and fluorescence studies of interactions between VP22.C1 and divalent cations and model polyanions indicate that Mg(2+), Zn(2+), oligonucleotides, and heparin interact with the protein, causing changes in secondary structure and thermal stability. Additionally, the interaction of VP22.C1 with model lipids was examined. Fluorescence titrations of the protein with trans-parinaric acid at various temperatures suggest the binding of one to two molecules of parinaric acid to VP22.C1 at temperatures >40 degrees C, suggesting the possibility of conformation dependent membrane interaction under physiological conditions.  相似文献   

16.
Nasopharyngeal carcinoma (NPC) is a human cancer of epithelial cell origin. Infection by Epstein-Barr virus has been shown to be closely associated with this tumor. Recent studies have indicated that another common epitheliotropic virus, human papillomavirus (HPV), is also found in a significant number of NPC cases. In this study, we evaluated the feasibility of using the HPV regulatory long control region (LCR) to drive the expression of the thymidine kinase (tk) gene to achieve chemosensitivity for gene therapeutic treatment of NPC. Testing HPV-11-LCR-tk constructs in NPC cell lines in the presence of ganciclovir (GCV) led to 50-60% cell death of transfected cells. The therapeutic efficacy was further tested in an in vivo model using nude mice transplanted with tumors derived from transfected NPC cells. Injection of 50 mg/kg body weight GCV twice daily for 14 days resulted in visually complete regression of the transplanted NPC tumor loads within 20 days after GCV treatment. Taken together, results from this pilot study indicate the feasibility of the development of a gene therapeutic protocol based on the chemosensitive gene constructs described in this paper.  相似文献   

17.
18.
The ability of herpes simplex virus type 1 thymidine kinase (HSV-tk)-expressing cells incubated with ganciclovir (GCV) to induce cytotoxicity in neighboring HSV-tk-negative (bystander) cells has been well documented. Although it has been suggested that this bystander cell killing occurs via the transfer of phosphorylated GCV, the mechanism(s) of this bystander effect and the importance of gap junctions for the effect of prodrug/suicide gene therapy in primary human glioblastoma cells remains elusive. Surgical biopsies of malignant gliomas were used to establish explant primary cultures. Proliferating tumor cells were characterized immunohistochemically and found to express glial tumor markers including nestin, vimentin, glial fibrillary acidic protein (GFAP), S-100, and gap junction protein connexin 43 (Cx43). Western blot analysis revealed the presence of phosphorylated isoforms of Cx43 and Calcein/DiI fluorescent dye transfer showed evidence of efficient gap junction communication (GJC). In order to study the effect(s) of prodrug/suicide gene therapy in these cultures, human glioblastoma cell cultures were transfected with the HSVtk gene for transient or stable expression. Ganciclovir treatment of these cultures led to >90% of cells dead within 1 week. Eradication of cells could be inhibited by the addition of alpha-glycyrrhetinic acid (AGA), a GJC inhibitor. In parallel experiments, AGA decreased the immunodetection of phosphorylated Cx43 as analyzed by Western blot and inhibited fluorescent dye transfer. In conclusion, these observations are consistent with GJC as the mediator of the bystander effect in primary cultures of human glioblastoma cells by the transfer of phosphorylated GCV from HSVtk gene transfected cells to untransfected ones.  相似文献   

19.
Recently, a serious adverse effect of uncontrolled clonal T cell proliferation due to insertional mutagenesis of retroviral vector was reported in X-SCID gene therapy clinical trial. To offset the side effect, we have incorporated a suicide gene into therapeutic retroviral vector for selective elimination of transduced cells. In this study, B-cell lines from two X-SCID patients were transduced with bicistronic retroviral vector carrying human gamma c chain cDNA and Herpes simplex virus thymidine kinase gene. After confirmation of functional reconstitution of the gamma c chain, the cells were treated with ganciclovir (GCV). The gamma c chain positive cells were eliminated under low concentration without cytotoxicity on untransduced cells and have not reappeared at least for 5 months. Furthermore, the gamma c chain transduced cells were still sensitive to GCV after five months. These results demonstrated the efficacy of the suicide gene therapy although further in vivo studies are required to assess feasibility of this approach in clinical trial.  相似文献   

20.
The ability of herpes simplex virus type 1 thymidine kinase (HSV-tk)-expressing cells incubated with ganciclovir (GCV) to induce cytotoxicity in neighboring HSV-tk-negative (bystander) cells has been well documented. Although it has been suggested that this bystander cell killing occurs via the transfer of phosphorylated GCV, the mechanism(s) of this bystander effect and the importance of gap junctions for the effect of prodrug/suicide gene therapy in primary human glioblastoma cells remains elusive. Surgical biopsies of malignant gliomas were used to establish explant primary cultures. Proliferating tumor cells were characterized immunohistochemically and found to express glial tumor markers including nestin, vimentin, glial fibrillary acidic protein (GFAP), S-100, and gap junction protein connexin 43 (Cx43). Western blot analysis revealed the presence of phosphorylated isoforms of Cx43 and Calcein/DiI fluorescent dye transfer showed evidence of efficient gap junction communication (GJC). In order to study the effect(s) of prodrug/suicide gene therapy in these cultures, human glioblastoma cell cultures were transfected with the HSVtk gene for transient or stable expression. Ganciclovir treatment of these cultures led to >90% of cells dead within 1 week. Eradication of cells could be inhibited by the addition of α-glycyrrhetinic acid (AGA), a GJC inhibitor. In parallel experiments, AGA decreased the immunodetection of phosphorylated Cx43 as analyzed by Western blot and inhibited fluorescent dye transfer. In conclusion, these observations are consistent with GJC as the mediator of the bystander effect in primary cultures of human glioblastoma cells by the transfer of phosphorylated GCV from HSVtk gene transfected cells to untransfected ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号