首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epithelial cells display apical-basal polarity, and the apical surface is segregated from the basolateral membranes by a barrier called the tight junction (TJ). TJs are constructed from transmembrane proteins that form cell-cell contacts-claudins, occludin, and junctional adhesion molecule (JAM)-plus peripheral proteins such as ZO-1. The Par proteins (partitioning-defective) Par3 and Par6, plus atypical protein kinase C (aPKC) function in the formation or maintenance of TJs and more generally in metazoan cell polarity establishment. Par6 contains a PDZ domain and a partial CRIB (Cdc42/Rac interactive binding) domain and binds the small GTPase Cdc42. Here, we show that Par6 inhibits TJ assembly in MDCK II epithelial cells after their disruption by Ca(2+) depletion but does not inhibit adherens junction (AJ) formation. Transepithelial resistance and paracellular diffusion assays confirmed that assembly of functional TJs is delayed by Par6 overexpression. Strikingly, the isolated, N-terminal fragment of PKCzeta, which binds Par6, also inhibits TJ assembly. Activated Cdc42 can disrupt TJs, but neither a dominant-negative Cdc42 mutant nor the CRIB domain of gammaPAK (p21-activated kinase), which inhibits Cdc42 function, observably inhibit TJ formation. These results suggest that Cdc42 and Par6 negatively regulate TJ assembly in mammalian epithelial cells.  相似文献   

2.
Regulation of protein interaction domains is required for cellular signaling dynamics. Here, we show that the PDZ protein interaction domain from the cell polarity protein Par-6 is regulated by the Rho GTPase Cdc42. Cdc42 binds to a CRIB domain adjacent to the PDZ domain, increasing the affinity of the Par-6 PDZ for its carboxy-terminal ligand by approximately 13-fold. Par-6 PDZ regulation is required for function as mutational disruption of Cdc42-Par-6 PDZ coupling leads to inactivation of Par-6 in polarized MDCK epithelial cells. Structural analysis reveals that the free PDZ domain has several deviations from the canonical PDZ conformation that account for its low ligand affinity. Regulation results from a Cdc42-induced conformational transition in the CRIB-PDZ module that causes the PDZ to assume a canonical, high-affinity PDZ conformation. The coupled CRIB and PDZ architecture of Par-6 reveals how simple binding domains can be combined to yield complex regulation.  相似文献   

3.
Isoforms of the polarity protein par6 have distinct functions   总被引:4,自引:0,他引:4  
PAR-6 is essential for asymmetric division of the Caenorhabditis elegans zygote. It is also critical for cell polarization in many other contexts throughout the Metazoa. The Par6 protein contains a PDZ domain and a partial CRIB (Cdc42/Rac interactive binding) domain, which mediate interactions with other polarity proteins such as Par3, Cdc42, Pals1, and Lgl. A family of mammalian Par6 isoforms (Par6A-D) has been described, but the significance of this diversification has been unclear. Here we demonstrate that Par6 family members localize differently when expressed in Madin-Darby canine kidney epithelial cells and have distinct effects on tight junction (TJ) assembly. Par6B localizes to the cytosol and inhibits TJ formation, but Par6A co-localizes predominantly with the TJ marker ZO-1 at cell-cell contacts and does not affect junctions. These functional differences correlate with differences in Pals1 binding; Par6B interacts strongly with Pals1, whereas Par6A binds weakly to Pals1 even in the presence of active Cdc42. Pals1 has a low affinity for the isolated CRIB-PDZ domain of Par6A, but analysis of chimeras showed that in addition Pals1 binding is blocked by an inhibitory property of the N terminus of Par6A. Unexpectedly, the localization of Par6A to cell-cell contacts is Cdc42-independent.  相似文献   

4.
Tight junctions are the structures in mammalian epithelial cells that separate the apical and basolateral membranes and may also be important in the establishment of cell polarity. Two evolutionarily conserved multiprotein complexes, Crumbs-PALS1 (Stardust)-PATJ and Cdc42-Par6-Par3-atypical protein kinase C, have been implicated in the assembly of tight junctions and in polarization of Drosophila melanogaster epithelia. These two complexes have been linked physically and functionally by an interaction between PALS1 and Par6. Here we identify an evolutionarily conserved region in the amino terminus of PALS1 as the Par6 binding site and identify valine and aspartic acid residues in this region as essential for interacting with the PDZ domain of Par6. We have also characterized, in more detail, the amino terminus of Drosophila Stardust and demonstrate that the interaction mechanism between Stardust and Drosophila Par6 is evolutionarily conserved. Par6 interferes with PATJ in binding PALS1, and these two interactions do not appear to function synergistically. Taken together, these results define the molecular mechanisms linking two conserved polarity complexes.  相似文献   

5.
PDZ protein interaction domains are typically selective for C-terminal ligands, but non-C-terminal, 'internal' ligands have also been identified. The PDZ domain from the cell polarity protein Par-6 binds C-terminal ligands and an internal sequence from the protein Pals1/Stardust. The structure of the Pals1-Par-6 PDZ complex reveals that the PDZ ligand-binding site is deformed to allow for internal binding. Whereas binding of the Rho GTPase Cdc42 to a CRIB domain adjacent to the Par-6 PDZ regulates binding of C-terminal ligands, the conformational change that occurs upon binding of Pals1 renders its binding independent of Cdc42. These results suggest a mechanism by which the requirement for a C terminus can be readily bypassed by PDZ ligands and reveal a complex set of cooperative and competitive interactions in Par-6 that are likely to be important for cell polarity regulation.  相似文献   

6.
Tight junctions help establish polarity in mammalian epithelia by forming a physical barrier that separates apical and basolateral membranes. Two evolutionarily conserved multi-protein complexes, Crumbs (Crb)-PALS1 (Stardust)-PATJ (DiscsLost) and Cdc42-Par6-Par3-atypical protein kinase C (aPKC), have been implicated in the assembly of tight junctions and in polarization of Drosophila melanogaster epithelia. Here we identify a biochemical and functional link between these two complexes that is mediated by Par6 and PALS1 (proteins associated with Lin7). The interaction between Par6 and PALS1 is direct, requires the amino terminus of PALS1 and the PDZ domain of Par6, and is regulated by Cdc42-GTP. The transmembrane protein Crb can recruit wild-type Par6, but not Par6 with a mutated PDZ domain, to the cell surface. Expression of dominant-negative PALS1-associated tight junction protein (PATJ) in MDCK cells results in mis-localization of PALS1, members of the Par3-Par6-aPKC complex and the tight junction marker, ZO-1. Similarly, overexpression of Par6 in MDCK cells inhibits localization of PALS1 to the tight junction. Our data highlight a previously unrecognized link between protein complexes that are essential for epithelial polarity and formation of tight junctions.  相似文献   

7.
The animal cell polarity regulator Par-3 recruits the Par complex (consisting of Par-6 and atypical PKC, aPKC) to specific sites on the cell membrane. Although numerous physical interactions have been reported between Par-3 and the Par complex, it is unclear how each of these interactions contributes to the overall binding. Using a purified, intact Par complex and a quantitative binding assay, here, we found that the energy required for this interaction is provided by the second and third PDZ protein interaction domains of Par-3. We show that both Par-3 PDZ domains bind to the PDZ-binding motif of aPKC in the Par complex, with additional binding energy contributed from the adjacent catalytic domain of aPKC. In addition to highlighting the role of Par-3 PDZ domain interactions with the aPKC kinase domain and PDZ-binding motif in stabilizing Par-3–Par complex assembly, our results indicate that each Par-3 molecule can potentially recruit two Par complexes to the membrane during cell polarization. These results provide new insights into the energetic determinants and structural stoichiometry of the Par-3–Par complex assembly.  相似文献   

8.
Allostery is commonly described as a functional connection between two distant sites in a protein, where a binding event at one site alters affinity at the other. Here, we review the conformational dynamics that encode an allosteric switch in the PDZ domain of Par-6, which is a scaffold protein that organizes other proteins into a complex required to initiate and maintain cell polarity. NMR measurements revealed that the PDZ domain samples an evolutionarily conserved unfolding intermediate allowing rearrangement of two adjacent loop residues that control ligand binding affinity. Cdc42 binding to Par-6 creates a novel interface between the PDZ domain and the adjoining CRIB motif that stabilizes the high-affinity PDZ conformation. Thermodynamic and kinetic studies suggest that partial PDZ unfolding is an integral part of the Par-6 switching mechanism. The Par-6 CRIB-PDZ module illustrates two important structural aspects of protein evolution: the interface between adjacent domains in the same protein can give rise to allosteric regulation, and thermodynamic stability may be sacrificed to increase the sampling frequency of an unfolding intermediate required for conformational switching.  相似文献   

9.
Gao L  Macara IG  Joberty G 《Gene》2002,294(1-2):99-107
The partitioning-defective 3 (par3) gene encodes a protein with three postsynaptic density90/DiscslargeA/ZO-1 (PDZ) domains that is required for cell polarity establishment in metazoans. Par3 is a component of a protein complex that can include Cdc42-GTP, Par6 and atypical protein kinase Cs (aPKCs). We now describe the identification of a related human gene, Par3L. Both Par3L and Par3 are expressed as numerous alternatively spliced variants. Although Par3 expression appears to be ubiquitous, that of Par3L is more restricted. Multiple variants are often expressed simultaneously within a specific cell type or tissue. Although all of the Par3L/Par3 isoforms can associate with tight junctions in epithelial cells, they show different binding properties. No Par3L isoforms and only a subset of Par3 isoforms detectably bind aPKCs. These data suggest that aPKC binding or phosphorylation is not required for targeting of Par3/Par3L to cell-cell contacts. Par3L isoforms also show differential binding to Par6. Despite these differences, the N-terminal region of Par3L, like that of Par3, can disrupt the formation of tight junctions when ectopically expressed in Madin-Darby canine kidney (MDCK) cells.  相似文献   

10.
BACKGROUND: Rac and Cdc42 are members of the Rho family of small GTPases. They modulate cell growth and polarity, and contribute to oncogenic transformation by Ras. The molecular mechanisms underlying these functions remain elusive, however. RESULTS: We have identified a novel effector of Rac and Cdc42, hPar-6, which is the human homolog of a cell-polarity determinant in Caenorhabditis elegans. hPar-6 contains a PDZ domain and a Cdc42/Rac interactive binding (CRIB) motif, and interacts with Rac1 and Cdc42 in a GTP-dependent manner. hPar-6 also binds directly to an atypical protein kinase C isoform, PKCzeta, and forms a stable ternary complex with Rac1 or Cdc42 and PKCzeta. This association results in stimulation of PKCzeta kinase activity. Moreover, hPar-6 potentiates cell transformation by Rac1/Cdc42 and its interaction with Rac1/Cdc42 is essential for this effect. Cell transformation by hPar-6 involves a PKCzeta-dependent pathway distinct from the pathway mediated by Raf. CONCLUSIONS: These findings indicate that Rac/Cdc42 can regulate cell growth through Par-6 and PKCzeta, and suggest that deregulation of cell-polarity signaling can lead to cell transformation.  相似文献   

11.
Cdc42 has been implicated in numerous biochemical pathways during epithelial morphogenesis, including the control of spindle orientation during mitosis, the establishment of apical-basal polarity, the formation of apical cell–cell junctions, and polarized secretion. To investigate the signaling pathways through which Cdc42 mediates these diverse effects, we have screened an siRNA library corresponding to the 36 known Cdc42 target proteins, in a human bronchial epithelial cell line. Two targets, PAK4 and Par6B, were identified as necessary for the formation of apical junctions. PAK4 is recruited to nascent cell–cell contacts in a Cdc42-dependent manner, where it is required for the maturation of primordial junctions into apical junctions. PAK4 kinase activity is essential for junction maturation, but overexpression of an activated PAK4 mutant disrupts this process. Par6B, together with its binding partner aPKC, is necessary both for junction maturation and for the retention of PAK4 at sites of cell–cell contact. This study demonstrates that controlled regulation of PAK4 is required for apical junction formation in lung epithelial cells and highlights potential cross-talk between two Cdc42 targets, PAK4 and Par6B.  相似文献   

12.
Hepatocytes differ from columnar epithelial cells by their multipolar organization, which follows the initial formation of central lumen-sharing clusters of polarized cells as observed during liver development and regeneration. The molecular mechanism for hepatocyte polarity establishment, however, has been comparatively less studied than those for other epithelial cell types. Here, we show that the tight junction protein Par3 organizes hepatocyte polarization via cooperating with the small GTPase Cdc42 to target atypical protein kinase C (aPKC) to a cortical site near the center of cell–cell contacts. In 3D Matrigel culture of human hepatocytic HepG2 cells, which mimics a process of liver development and regeneration, depletion of Par3, Cdc42, or aPKC results in an impaired establishment of apicobasolateral polarity and a loss of subsequent apical lumen formation. The aPKC activity is also required for bile canalicular (apical) elongation in mouse primary hepatocytes. The lateral membrane-associated proteins Lgl1 and Lgl2, major substrates of aPKC, seem to be dispensable for hepatocyte polarity establishment because Lgl-depleted HepG2 cells are able to form a single apical lumen in 3D culture. On the other hand, Lgl depletion leads to lateral invasion of aPKC, and overexpression of Lgl1 or Lgl2 prevents apical lumen formation, indicating that they maintain proper lateral integrity. Thus, hepatocyte polarity establishment and apical lumen formation are organized by Par3, Cdc42, and aPKC; Par3 cooperates with Cdc42 to recruit aPKC, which plays a crucial role in apical membrane development and regulation of the lateral maintainer Lgl.  相似文献   

13.
PAR (partitioning-defective) proteins, which were first identified in the nematode Caenorhabditis elegans, are essential for asymmetric cell division and polarized growth, whereas Cdc42 mediates establishment of cell polarity. Here we describe an unexpected link between these two systems. We have identified a family of mammalian Par6 proteins that are similar to the C. elegans PDZ-domain protein PAR-6. Par6 forms a complex with Cdc42-GTP, with a human homologue of the multi-PDZ protein PAR-3 and with the regulatory domains of atypical protein kinase C (PKC) proteins. This assembly is implicated in the formation of normal tight junctions at epithelial cell-cell contacts. Thus, Par6 is a key adaptor that links Cdc42 and atypical PKCs to Par3.  相似文献   

14.
Cell polarity is essential for cell division, cell differentiation, and most differentiated cell functions including cell migration. The small G protein Cdc42 controls cell polarity in a wide variety of cellular contexts. Although restricted localization of active Cdc42 seems to be important for its distinct functions, mechanisms responsible for the concentration of active Cdc42 at precise cortical sites are not fully understood. In this study, we show that during directed cell migration, Cdc42 accumulation at the cell leading edge relies on membrane traffic. Cdc42 and its exchange factor βPIX localize to intracytosplasmic vesicles. Inhibition of Arf6-dependent membrane trafficking alters the dynamics of Cdc42-positive vesicles and abolishes the polarized recruitment of Cdc42 and βPIX to the leading edge. Furthermore, we show that Arf6-dependent membrane dynamics is also required for polarized recruitment of Rac and the Par6-aPKC polarity complex and for cell polarization. Our results demonstrate influence of membrane dynamics on the localization and activation of Cdc42 and consequently on directed cell migration.  相似文献   

15.
Regulation of cell polarity is an important biological event that governs diverse cell functions such as localization of embryonic determinants and establishment of tissue and organ architecture. The Rho family GTPases and the polarity complex Par6/Par3/atypical protein kinase C (PKC) play a key role in the signaling pathway, but the molecules that regulate upstream signaling are still not known. Here we identified the guanine nucleotide exchange factor ECT2 as an activator of the polarity complex. ECT2 interacted with Par6 as well as Par3 and PKCzeta. Coexpression of Par6 and ECT2 efficiently activated Cdc42 in vivo. Overexpression of ECT2 also stimulated the PKCzeta activity, whereas dominant-negative ECT2 inhibited the increase in PKCzeta activity stimulated by Par6. ECT2 localization was detected at sites of cell-cell contact as well as in the nucleus of MDCK cells. The expression and localization of ECT2 were regulated by calcium, which is a critical regulator of cell-cell adhesion. Together, these results suggest that ECT2 regulates the polarity complex Par6/Par3/PKCzeta and possibly plays a role in epithelial cell polarity.  相似文献   

16.
Here, we report a novel mechanism of PDZ (PSD-95/Dlg/ZO-1) domain regulation that distorts?a conserved element of PDZ ligand recognition. The polarity regulator Par-6 assembles a conserved multiprotein complex and is directly modulated by the?Rho GTPase Cdc42. Cdc42 binds the adjacent Cdc42/Rac interactive binding (CRIB) and PDZ domains of Par-6, increasing C-terminal ligand binding affinity by 10-fold. By solving structures of the isolated PDZ domain and a disulfide-stabilized CRIB-PDZ, we detected a conformational switch that controls affinity by altering the configuration of the conserved "GLGF" loop. As a result, lysine 165 is displaced from the PDZ core by an adjacent hydrophobic residue, disrupting coordination of the PDZ ligand-binding cleft. Stabilization of the CRIB:PDZ interface restores K165 to its canonical location in the binding pocket. We conclude that a unique "dipeptide switch" in the Par-6 PDZ transmits a signal for allosteric activation to the ligand-binding pocket.  相似文献   

17.
In epithelia, cells are arranged in an orderly pattern with a defined orientation and shape. Cadherin containing apical adherens junctions (AJs) and the associated actomyosin cytoskeleton likely contribute to epithelial cell shape by providing apical tension. The Rho guanosine triphosphatases are well known regulators of cell junction formation, maintenance, and function. Specifically, Rho promotes actomyosin activity and cell contractility; however, what controls and localizes this Rho activity as epithelia remodel is unresolved. Using mosaic clonal analysis in the Drosophila melanogaster pupal eye, we find that Cdc42 is critical for limiting apical cell tension by antagonizing Rho activity at AJs. Cdc42 localizes Par6–atypical protein kinase C (aPKC) to AJs, where this complex limits Rho1 activity and thus actomyosin contractility, independent of its effects on Wiskott-Aldrich syndrome protein and p21-activated kinase. Thus, in addition to its role in the establishment and maintenance of apical–basal polarity in forming epithelia, the Cdc42–Par6–aPKC polarity complex is required to limit Rho activity at AJs and thus modulate apical tension so as to shape the final epithelium.  相似文献   

18.
Cdc42 plays an evolutionarily conserved role in promoting cell polarity and is indispensable during epithelial morphogenesis. To further investigate the role of Cdc42, we have used a three-dimensional matrigel model, in which single Caco-2 cells develop to form polarized cysts. Using this system, we previously reported that Cdc42 controls mitotic spindle orientation during cell division to correctly position the apical surface in a growing epithelial structure. In the present study, we have investigated the specific downstream effectors through which Cdc42 controls this process. Here, we report that Par6B and its binding partner, atypical protein kinase C (aPKC), are required to regulate Caco-2 morphogenesis. Depletion or inhibition of Par6B or aPKC phenocopies the loss of Cdc42, inducing misorientation of the mitotic spindle, mispositioning of the nascent apical surface, and ultimately, the formation of aberrant cysts with multiple lumens. Mechanistically, Par6B and aPKC function interdependently in this context. Par6B localizes to the apical surface of Caco-2 cysts and is required to recruit aPKC to this compartment. Conversely, aPKC protects Par6B from proteasomal degradation, in a kinase-independent manner. In addition, we report that depletion or inhibition of aPKC induces robust apoptotic cell death in Caco-2 cells, significantly reducing both cyst size and number. Cell survival and apical positioning depend upon different thresholds of aPKC expression, suggesting that they are controlled by distinct downstream pathways. We conclude that Par6B and aPKC control mitotic spindle orientation in polarized epithelia and, furthermore, that aPKC coordinately regulates multiple processes to promote morphogenesis.  相似文献   

19.
The novel small GTPases Rin and Rit are close relatives of Ras, and recent studies show that they play a role in mediating neuronal differentiation. However, the direct effectors of Rin and Rit have yet to be fully characterized. Here we showed that Rin and Rit directly bind to the PDZ domain of PAR6, a cell polarity-regulating protein, in a GTP-dependent manner both in vivo and in vitro. Moreover, Rin and Rit can form a ternary complex consisting of PAR6 and Rac/Cdc42, members of the Rho family of small GTPases modulating cell growth and polarity. This ternary complex synergistically potentiates cell transformation in NIH3T3 cells, and the interaction between Rin/Rit and the PDZ domain of PAR6 is important for this effect. These results suggest that the Rin/Rit-PAR6-Rac/Cdc42 ternary complex may work physiologically in the cells, such as in tumorigenesis.  相似文献   

20.
Cell rearrangements require dynamic changes in cell–cell contacts to maintain tissue integrity. We investigated the function of Cdc42 in maintaining adherens junctions (AJs) and apical polarity in the Drosophila melanogaster neuroectodermal epithelium. About one third of cells exit the epithelium through ingression and become neuroblasts. Cdc42-compromised embryos lost AJs in the neuroectoderm during neuroblast ingression. In contrast, when neuroblast formation was suppressed, AJs were maintained despite the loss of Cdc42 function. Loss of Cdc42 function caused an increase in the endocytotic uptake of apical proteins, including apical polarity factors such as Crumbs, which are required for AJ stability. In addition, Cdc42 has a second function in regulating endocytotic trafficking, as it is required for the progression of apical cargo from the early to the late endosome. The Par complex acts as an effector for Cdc42 in controlling the endocytosis of apical proteins. This study reveals functional interactions between apical polarity proteins and endocytosis that are critical for stabilizing dynamic basolateral AJs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号