首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The phylogenetic relationships between genera of the Polysphincta group of Pimplinae (Ichneumonidae) were surveyed using molecular markers, partial sequences of cytochrome c oxidase I (COI), 28S rRNA and elongation factor 1α, and maximum likelihood and Bayesian approaches to obtain a robust phylogenetic hypothesis to understand the evolution of the group. The Polysphincta group was recovered as monophyletic, although relationships between genera were different from previous hypotheses based on morphological data. Within the Polysphincta group, three major clades were recognized and phylogenetic relationships among them were well resolved as (Schizopyga subgroup + (Acrodactyla subgroup + Polysphincta subgroup)). The Schizopyga subgroup consisted of the genera Piogaster, Schizopyga, Zabrachypus and Brachyzapus. As the genus Schizopyga was found to be polyphyletic, the genus Dreisbachia, which had been synonymized under Schizopyga, was resurrected and Iania gen.n. is proposed for Dreisbachia pictifrons, to maintain monophyletic genera. Species of the Schizopyga subgroup utilize spiders constructing egg‐laying chambers or funnel webs as hosts. The genus Piogaster was not recovered as the sister to all other members of the genus group, unlike previous hypotheses, but was nested in this clade as (Zabrachypus + ((Brachyzapus + Schizopyga) + (Dreisbachia + (Iania + Piogaster)))). Members of the Acrodactyla and Polysphincta subgroups attack spiders that weave aerial webs. The host range of the former is centred on tetragnathid and linyphiid spiders, the host range of the latter seems to centre mainly on orb‐weaving araneids and partly on theridiids weaving three‐dimensional (3D) irregular webs. Based on the obtained phylogeny of the group, the evolution of larval and cocoon morphology, and the mode of parasitism are discussed. Acrodactyla varicarinata Uchida & Momoi and A. inoperta Kusigemati are transferred to the genus Megaetaira ( comb.n.). This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:0AB1086F‐9F23‐4057‐B7ED‐3A3943E19C61 .  相似文献   

3.
The monophyly of the ichneumonid clade Pimpliformes is established and the phylogenetic relationships of the eight component subfamilies are resolved. The clade (Acaenitinae + (Diacritinae + (Cylloceriinae + (Diplazontinae + Orthocentrinae)))) is the sister-lineage to the clade (Pimplinae + (Rhyssinae + Poemeniinae)). The Nearctic genus Cressonia Dasch is transferred to the Diacritinae from the Orthocentrinae. Tribes are not recognized in the Acaenitinae as the Coleocentrini (sensu Townes, 1971) is paraphyletic with respect to the Acaenitini. The Cylloceriinae is recognized as comprising three genera, Cylloceria Schiødte, Allomacrus Förster and Sweaterella gen.n. The Orthocentrinae, including the Helictinae of authors, is shown to be monophyletic, but the latter is clearly shown to be paraphyletic if the Orthocentrus genus-group is excluded. The Pimplinae comprises four monophyletic tribes: the Delomeristini, consisting of Delomerista Förster and Atractogaster Kriechbaumer; the Perithoini trib.n., which includes only Perithous Holmgren (= Hybomischos Baltazar syn.n.); the Pimplini, which includes the Theronia genus-group as well as the Pimpla genus-group; and the Ephialtini, which includes the Polysphinctini syn.n., a monophyletic group that previously rendered the restricted Ephialtini paraphyletic. The tribe Delomeristini is the sister-group to the clade (Ephialtini + (Perithoini + Pimplini)). The subfamily Poemeniinae is recognized as comprising three tribes: the Pseudorhyssini (trib.n.) which includes the single Holarctic genus Pseudorhyssa Merrill; the Rodrigamini (trib.n.) which includes only the Costa Rican genus Rodrigama Gauld; and the Poemeniini. The tribe Pseudorhyssini is the sister-group to the clade (Rodrigamini + Poemeniini). The phylogenetic inter-relationships of the genera of Poemeniini are resolved. A new genus from South Africa, Guptella (gen.n.) is described, and Achorocephalus Kriechbaumer is shown to be a synonym of Eugalta Cameron (syn.n.). The evolution of biological traits within the Pimpliformes is discussed with reference to the elucidated phylogeny, and zoogeographic patterns are outlined.  相似文献   

4.
Parasitoid wasps of the subfamily Telenominae (Hymenoptera: Platygastroidea, Platygastridae) develop as immatures within the eggs of other insects (Lepidoptera, Hemiptera, Diptera and Neuroptera). Rearing records indicate that individual species are restricted to attack hosts within only one of these four main groups. We conducted a phylogenetic analysis of the group using sequence data from multiple genes (18S, 28S, COI, EF‐1α) to assess the pattern of shifts among host groups and to test the monophyly of and relationships among genera and species‐groups. Telenominae sensu Masner—that is, including only the nominate tribe Telenomini—is not monophyletic. Representatives of the Psix group of genera (Psix Kozlov & Lê and Paratelenomus Dodd) form a monophyletic group that is sister to Gryon Haliday (Scelioninae: Gryonini) and are excluded from the subfamily. The remaining telenomines are monophyletic. The genus Phanuromyia Dodd and the crassiclava group of Telenomus Haliday, both recorded as parasitoids of planthopper eggs (Hemiptera: Auchenorrhyncha, Fulgoroidea), form a monophyletic group that is sister to all other telenomines exclusive of the Psix group. Twenty‐nine species of the crassiclava and aradi groups of Telenomus are transferred to Phanuromyia as new combinations. Basal elements of the remaining species are all in groups reared from the eggs of true bugs (Heteroptera), primarily the stink bugs (Pentatomoidea) and seed bugs (Lygaeoidea). A shift to parasitism of lepidopteran eggs evolved within a single clade, occurring either one or two times. From this clade a small group of species, the Telenomus tabanivorus group, subsequently shifted to parasitism of egg masses of true flies (Tabanidae and Stratiomyiidae). Aholcus Kieffer and Platytelenomus Dodd both belong to the clade of lepidopteran parasitoids and are considered as junior synonyms of Telenomus (new synonymy for Aholcus). The monophyletic status of the two core genera, Telenomus and Trissolcus could not be resolved using these data. The phylogenetic pattern of host shifts suggests comparisons among taxa that may be fruitful in elucidating mechanisms by which parasitoids locate their hosts, the proximate factors that determine the host range, and the changes in these factors that influence host changes.  相似文献   

5.
6.
Deparia, including the previously recognized genera Lunathyrium, Dryoathyrium (=Parathyrium), Athyriopsis, Triblemma, and Dictyodroma, is a fern genus comprising about 70 species in Athyriaceae. In this study, we inferred a robust Deparia phylogeny based on a comprehensive taxon sampling (~81% of species) that captures the morphological diversity displayed in the genus. All Deparia species formed a highly supported monophyletic group. Within Deparia, seven major clades were identified, and most of them were characterized by inferring synapomorphies using 14 morphological characters including leaf architecture, petiole base, rhizome type, soral characters, spore perine, and leaf indument. These results provided the morphological basis for an infra‐generic taxonomic revision of Deparia.  相似文献   

7.
Many species within Elmidae (Coleoptera: Byrrhoidea) have plastrons composed of flattened setae. However, some genera display fine plastrons on the epicuticle, called plastron hairs. In Japanese elmids, members of the genera Stenelmis, Ordobrevia, Nomuraelmis and Leptelmis bear ventral plastron hairs. Based on a maximum likelihood tree including most Japanese genera within Elmidae, we found that these genera are monophyletic and that plastron hairs are a derived character in Elmidae. We also found that the genus Graphelmis bears jigsaw puzzle‐like plastron scales with plastron hair‐like projections, and is sister to the group with plastron hairs.  相似文献   

8.
Juncus and Luzula are the largest, almost cosmopolitan, genera in the Juncaceae. Relationships within Juncus and Luzula and among other genera of Juncaceae (Distichia, Marsippospermum, Oxychloë, Patosia and Rostkovia) remain incompletely resolved. RbcL sequence data resolved a part of the supraspecific phylogeny, but many clades remain polytomic. For this reason, the non‐coding cpDNA regions, trnL intron and trnL‐trnF intergenic spacer, were sequenced. We intended to create hypotheses of relationships within Juncaceae and to test the classification of the sections, but a primary goal to this study was to assess the relationships within Juncus and Luzula and to test for monophyly of groups recognized from rbcL data (especially the monophyly of genus Luzula and the Southern Hemisphere Clade (SHC)). Furthermore, we tested the influence of different rooting and ingroup composition on the tree topology. The parsimony analyses revealed several well‐supported lineages. The traditionally distinguished genus Luzula is monophyletic and Juncus is non‐monophyletic. Two subgenera of Luzula (Pterodes and Luzula) are non‐monophyletic, while subg. Marlenia forms a sister group to the whole Luzula clade (trnL‐F data set). Within Juncus, both subgenus Juncus and subgenus Agathryon are non‐monophyletic. SHC is clustered not only with the South African J. lomatophylus and J. capensis, but also together with members of the section Juncus, Caespitosi and Graminifolii. These sections form a well‐separated sister group to the SHC. Within the genera Juncus and Luzula, monophyly is demonstrated for a number of groups (e.g., Juncus section Stygiopsis, Luzula section Luzula) but questioned for others (e.g., Juncus section Graminifolii). The unusual, separate positioning of Juncus trifidus and J. monanthos were clarified by trnL‐trnF sequence data, but vary within the tree topology depending on outgroup selection and also due to LBA phenomenon. © The Willi Hennig Society 2006.  相似文献   

9.
Ophion Fabricius is a diverse genus of nocturnal ichneumonid wasps (Insecta: Hymenoptera) that is particularly species‐rich in temperate areas, yet has received little taxonomic attention in the Holarctic region, where most species occur. While there have been some attempts to divide Ophion into monophyletic species groups, the vast majority of species have been lumped into a single, paraphyletic group, the O. luteus species group, which is defined only by the lack of characters specific to the other groups. The challenging morphology of this large catch‐all group has limited attempts to subdivide it, and no phylogenetic hypothesis has been proposed for the genus as a whole. In this study, we use DNA sequence data [28S ribosomal RNA (28S), cytochrome oxidase 1 (COI) and internal transcribed spacer 2 (ITS2)] to present the first molecular phylogeny of Ophion. We also describe the secondary structure of ITS2 for the first time in Ichneumonidae, and explore its implications for phylogeny estimation. We define 13 species groups, nine of which were previously considered part of the O. luteus species group s.l. The included species groups are the O. minutus, O. areolaris, O. scutellaris, O. flavidus, O. parvulus, O. slossonae, O. nigrovarius, O. pteridis, O. luteus s.s., and O. obscuratus species groups, along with three groups lacking described species (Species group 1, New Zealand group, Madagascar group). This study provides a framework for future studies of this diverse and morphologically challenging genus.  相似文献   

10.
The phylogenetic relationships of Lordiphosa and some taxa in Drosophilinae were analysed on the basis of a total of forty‐one selected drosophilid species. These included eighteen species of five Lordiphosa species‐groups as the main target, twenty‐three species representative of the major drosophiline ingroup taxa and four species of Steganinae as outgroup. Sixty‐eight morphological characters of adults were subjected to cladistic analysis. From the results it is concluded that Lordiphosa is polyphyletic; the Lo. tenuicauda species‐group and genus Nesiodrosophila form a single monophyletic group; Lordiphosa proper (i.e. Lordiphosa spp. minus the tenuicauda group) comprises another monophyletic group; within Lordiphosa proper the fenestrarum, nigricolor and denticeps groups are all monophyletic, but monophyly of the miki group is not strongly supported; genera Hirtodrosophila and Scaptomyza and subgenus Sophophora are all monophyletic; and within Drosophilinae, genus Scaptodrosophila is the first to have split from the main lineage, but the branching order of other clades, Chymomyza, Lordiphosa proper, Sophophora, Hirtodrosophila, Nesiodrosophila+ Lo. tenuicauda group, Scaptomyza, Dorsilopha and subgenus Drosophila, remains unresolved. The topology of maximum parsimony cladograms suggests that Lordiphosa proper lies close to Sophophora as proposed previously, although its phylogenetic position could not be determined conclusively. By contrast, bootstrap values tended to contradict another hypothesis that Lordiphosa and Scaptomyza are sister groups.  相似文献   

11.
Abstract A phylogeny of the tribe Aphidini (Hemiptera: Aphididae) was reconstructed from three gene fragments: two mitochondrial regions, partial tRNA‐leucine + cytochrome oxidase II (tRNA/COII), partial 12S rRNA + tRNA‐valine + 16S rRNA (12S/16S) and one nuclear gene, the elongation factor‐1 alpha (EF1α). Bayesian phylogenetic (BP) analyses were performed on each individual dataset of tRNA/COII, 12S/16S and EF1α, and maximum parsimony (MP), Bremer support test, maximum likelihood (ML) and BP analysis were performed on the combined dataset. After comparing our molecular phylogenetic results with the classic classification based on morphological and ecological data, we analysed three main issues: the monophyletic relationships among tribes and subtribes, the validities of the latest taxonomic positions of genera and species and the status of certain Aphis species groups. Our results indicate that 36 of the species analysed, with the exception of Cryptosiphum artemisiae, are clustered within the clade of Aphidini. Also, the 28 species representative of the subtribe Aphidina were separated from the eight species representative of Rhopalosiphina; each monophyletic subtribe was supported by significant P‐values in the combined analysis. According to our results, Cryptosiphum should be moved to Macrosiphini because it is more closely related to the genera Lipaphis and Brevicoryne. The genus Toxoptera was recovered as non‐monophyletic. In Rhopalosiphina, three genera, Hyalopterus, Rhopalosiphum and Schizaphis, were relatively closer to each other than to the genus Melanaphis. In the relationships between species‐groups among Aphis, most species were separated into two main lineages; the fabae group seemed to be more closely related to the spiraecola and craccivora group rather than to the gossypii group.  相似文献   

12.
Phylogenetic relationships among forty‐nine taxa representing twenty‐four genera of Aphidiinae (Hymenoptera: Braconidae) were investigated using DNA sequence of a portion of the mitochondrial 16S rRNA gene and parsimony analysis. Seven species in six other subfamilies of Braconidae were used as outgroup. The results suggested that members of Aphidiinae are monophyletic. The basal lineage of Aphidiinae was Aclitus in weighted and unweighted parsimony analyses and Praini was basal relative to Ephedrini. With the exception of Pauesia and Aphidius, all genera were monophyletic. The results support generic status for Euaphidius, but not for Lysaphidus. Diaeretus leucopterus was internal to a clade composed of three Pauesia species, suggesting that the latter genus may be paraphyletic. A combined analysis that included DNA sequence of 16S rRNA, NADH1 dehydrogenase and 28S rRNA resulted in more robust cladograms with topologies similar to those inferred from the 16S rRNA gene sequence alone. The results are compared to previously proposed phylogenies of Aphidiinae based on morphological and molecular characters.  相似文献   

13.
Bayesian and maximum‐likelihood (ML) analyses of the combined multigene data (nuclear SSU rDNA, and plastid SSU and LSU rDNA) were conducted to evaluate the phylogeny of photosynthetic euglenoids. The combined data set consisted of 108 strains of photosynthetic euglenoids including a colorless sister taxon. Bayesian and ML analyses recovered trees of almost identical topology. The results indicated that photosynthetic euglenoids were divided into two major clades, the Euglenaceae clade (Euglena, Euglenaria, Trachelomonas, Strombomonas, Monomorphina, Cryptoglena, Colacium) and the Phacaceae clade (Phacus, Lepocinclis, Discoplastis). The Euglenaceae clade was monophyletic with high support and subdivided into four main clades: the Colacium, the Strombomonas and Trachelomonas, the Cryptoglena and Monomorphina, and the Euglena and Euglenaria clades. The genus Colacium was positioned at the base of the Euglenaceae and was well supported as a monophyletic lineage. The loricate genera (Strombomonas and Trachelomonas) were located at the middle of the Euglenaceae clade and formed a robust monophyletic lineage. The genera Cryptoglena and Monomorphina also formed a well‐supported monophyletic clade. Euglena and the recently erected genus Euglenaria emerged as sister groups. However, Euglena proxima branched off at the base of the Euglenaceae. The Phacaceae clade was also a monophyletic group with high support values and subdivided into three clades, the Discoplastis, Phacus, and Lepocinclis clades. The genus Discoplastis branched first, and then Phacus and Lepocinclis emerged as sister groups. These genera shared a common characteristic, numerous small discoid chloroplasts without pyrenoids. These results clearly separated the Phacaceae clade from the Euglenaceae clade. Therefore, we propose to limit the family Euglenaceae to the members of the Euglena clade and erect a new family, the Phacaceae, to house the genera Phacus, Lepocinclis, and Discoplastis.  相似文献   

14.
Abstract. We investigated the phylogeny and taxonomy of the Prenolepis genus‐group, a clade of ants we define within the subfamily Formicinae comprising the genera Euprenolepis, Nylanderia, gen. rev. , Paraparatrechina, gen. rev. & stat. nov. , Paratrechina, Prenolepis and Pseudolasius. We inferred a phylogeny of the Prenolepis genus‐group using DNA sequence data from five genes (CAD, EF1αF1, EF1αF2, wingless and COI) sampled from 50 taxa. Based on the results of this phylogeny the taxonomy of the Prenolepis genus‐group was re‐examined. Paratrechina (broad sense) species segregated into three distinct, robust clades. Paratrechina longicornis represents a distinct lineage, a result consistent with morphological evidence; because this is the type species for the genus, Paratrechina is redefined as a monotypic genus. Two formerly synonymized subgenera, Nylanderia and Paraparatrechina, are raised to generic status in order to provide names for the other two clades. The majority of taxa formerly placed in Paratrechina, 133 species and subspecies, are transferred to Nylanderia, and 28 species and subspecies are transferred to Paraparatrechina. In addition, two species are transferred from Pseudolasius to Paraparatrechina and one species of Pseudolasius is transferred to Nylanderia. A morphological diagnosis for the worker caste of all six genera is provided, with a discussion of the morphological characters used to define each genus. Two genera, Prenolepis and Pseudolasius, were not recovered as monophyletic by the molecular data, and the implications of this result are discussed. A worker‐based key to the genera of the Prenolepis genus‐group is provided.  相似文献   

15.
The braconid subfamily Doryctinae (Hymenoptera) is a cosmopolitan, species‐rich group of parasitoid wasps whose known species richness and morphological diversity is mainly concentrated in the Neotropical region. Among the doryctine taxa that are endemic to this region, there is a group of six genera (the Pedinotus genus group) that are mainly characterized by having lateral, posteriorly converging or subparallel grooves on the second metasomal tergite (including Gymnobracon Szépligeti, Hybodoryctes Szépligeti, Lamquetia Braet et van Achterberg, Osmophila Szépligeti, Pedinotus Szépligeti and Trigonophasmus Enderlein). Most of these genera were described more than a century ago, and thus their limits and diagnostic morphological features are not well defined. We present an analysis of the phylogenetic relationships among various representative species of five of the six genera belonging to the Pedinotus genus group based on one mitochondrial (cytochrome oxidase I) and two nuclear (28S, Wingless) gene markers. We also estimated the timing of origin and diversification within the group and investigated the external morphology of the genera involved in order to determine reliable identification characters. The group as a whole, whilst being recovered as monophyletic with the inclusion of Acanthorhogas Szépligeti, was not statistically supported. However, the respective monophyly of all of the morphologically supported genera are confirmed, as are the intergeneric relationships (Gymnobracon, Trigonophasmus) ((Acanthorhogas, Osmophila) (Lamquetia, Pedinotus)). We propose that the pattern of sublateral grooves or depressions appears to be a useful systematic character for recognition of an endemic Neotropical radiation that could have originated c. 41–27 Ma. We redescribe six of the seven genera that we recognize for the Pedinotus genus group and provide a key to enable their identification.  相似文献   

16.
We review feeding biology and mouthpart structure generally among adults of the basal hymenopteran, or ‘symphytan’, lineages (sawflies, woodwasps, horntails and their relatives). These insects feed on a wide range of materials: floral and extrafloral nectar, pollen, plant (floral and leaf) tissues, plant (angiosperm) sap, the juice of ripe fruit, die spermatial fluid of rust fungi, sternorrhynchan bug honeydew, and insect tissues. Adults show feeding‐related mouthpart specialization either for consuming pollen (the Xyelidae only) or for consuming ‘concealed’ floral nectar (several families). Seven functional types of elongated proboscis or ‘concealed‐nectar extraction apparatus (GNEA)’ have previously been recognized among Hymenoptera. We identify an additional type, which appears to be unique among Hy‐menoptera and has probably evolved direcdy from unspecialized mouthparts (labiomaxillary complex). In total, three types of CNEA are known to occur in ‘Symphyta’. Type 1 occurs in Pamphiliidae, Megalodontesidae, Argidae, Pergidae, Tenthredinidae, Cimbicidae and Cephidae. Type 5 occurs in Pergidae (in two unidentified species of Euryinae). Type 8 occurs in Tenthredinidae (in the genus Nipponorhynchus Takeuchi). CNEA of some type or other has arisen at least twice within the family Tenthredinidae and at least twice widiin die pergid subfamily Euryinae. Evolutionary parallelism in CNEA structure has occurred between the basal, ‘symphytan’, hymenopteran lineages and die Apocrita, a phenomenon hitherto not mentioned in the literature. Within the ‘Symphyta’, possession of Type 1 CNEA appears to be a ground plan feature of each of the following taxa: the pergid genus Eurys Newman, the megalodontesid genus Megalodontes Latreille (the only extant representative of the Megalodontesidae) and the tenthredinid genus Cuneala Zirngiebl, while possession of Type 8 appears to be a ground plan feature of die tenthredinid genus Mpponorhynchus Takeuchi. However, in general among ‘Symphyta’, possession of CNEA is characteristic of only small and taxonomically subordinate groups, suggesting that CNEA has evolved independendy many times within the basal hymenopteran lineages rather than being inherited from a common ancestor early in the evolutionary history of the Hymenoptera. In other words, ecological expediency radier than phylogenetic history mainly accounts for its distribution pattern within the basal lineages. The results of a morphological survey of ‘Symphyta’ indicate that the habit of exploiting ‘concealed nectar’, by means of CNEA, is fairly  相似文献   

17.
The processes underlying parasitoid community structure are little known. Stochastic niche-apportionment models provide one route to underlying assemblage rules in this and other groups. Previous work has applied this approach to parasitoids found on single host species in single populations. However, parasitoid communities are known to extend across multiple hosts and scales. The patterns of relative abundances generated by five niche-apportionment models were compared to those observed in assemblages of two sub-families of the Ichneumonidae, the Diplazontinae and Pimplinae, at landscape and patch scales, Yorkshire, UK. Three of the five models produced patterns that were significantly different to the observed pattern for all taxonomic levels at both spatial scales. The Diplazontinae fit the random fraction (RF) model at the landscape scale in broadleaved woods. This suggests that hierarchical structuring and biotic interactions may play a role in the structuring of Diplazontinae assemblages at this scale. In contrast the Pimplinae fit the RF model only at the patch scale and only at one site. However, the Pimplini tribe (all chiefly parasitoids of Lepidoptera) fit the random assortment (RA) model at both the landscape and the patch scales, whilst the Ephialtini tribe (wide range of hosts) fit no model at either scale. The ecological interpretation of the RA model suggests that the Pimplini tribe is an unsaturated assemblage, where some of the total available resources are unused. Our results show, through the fit of mechanistic niche-apportionment models, that the processes that may structure ichneumonid parasitoid assemblages are not consistent across taxa and spatial scales.  相似文献   

18.
A partial sequence of the cytb gene (382 bp) was amplified and sequenced from 35 individuals (mainly museum specimens) of the genus Pernis representing all valid taxa (10) and two taxa (P. p. gurneyi, P. p. japonicus) with questionable validity as well as representatives of the Old World Perninae, namely Henicopernis and Aviceda, to assess their relationships to the genus Pernis. Furthermore, Gypaetus barbatus, Neophron percnopterus, and Buteo buteo were included as outgroup taxa. In the trees derived from the sequence data, Aviceda represents the sister group of the genus Pernis. The genus Henicopernis and the Old World vultures Gypaetus andNeophron appear rather distantly related to Pernis. Within the genus Pernis, two of the described species (Pernis apivorus, Pernis ptilorhyncus) form monophyletic groups, whereas the relationships of the two clades representing three subspecies of Pernis celebensis are still uncertain. Although this study is based on comparatively short DNA‐sections, the trees deduced from these sequences can be considered as a first approach for inferring the phylogenetic relationships of the genus Pernis and related genera and for addressing questions concerning the evolutionary history, biogeography, and systematics of this group.  相似文献   

19.
The internal transcribed spacer (ITS1, 5.8S rDNA, and ITS2) region of nuclear ribosomal DNA (nrDNA) was sequenced from 53 species, which represent most of the living species diversity in the genus Phalaenopsis (Orchidaceae). A phylogeny was developed for the genus based on the neighbor-joining and maximum parsimony analyses of molecular data. Results of these analyses provided support for the monophyly of the genus Phalaenopsis and concurred in that the genera Doritis and Kingidium should be treated as being parts of the genus Phalaenopsis as suggested by Christenson (2001). Within the genus Phalaenopsis, neither subgenera Aphyllae nor Parishianae were monophyletic, and they were highly clustered with subgenus Proboscidioides plus sections Esmeralda and Deliciosae of subgenus Phalaenopsis based on ITS data. Those species also have the same characters of morphology of four pollinia and similar biogeographies. Furthermore, neither subgenus Phalaenopsis nor Polychilos was monophyletic. Within the subgenus Phalaenopsis, only section Phalaenopsis was highly supported as being monophyletic. As for the subgenus Polychilos, only section Polychilos was moderately supported as being monophyletic. In conclusion, the present molecular data obtained from the ITS sequence of nrDNA of the genus Phalaenopsis provide valuable information for elucidating the phylogeny of this genus.  相似文献   

20.
The Botiinae have traditionally represented a subfamily of the Cobitidae. At present, the classification and phylogenetic relationships of the Botiinae are controversial. To address systematic and phylogenetic questions concerning this group, we sequenced the complete cytochrome b gene from 34 samples, of which 24 represented 13 species of the East Asian botiine fishes, while the other 10 were non-botiine loach species. For the 1140 bp sequences determined, 494 sites were variable ones, of which 424 were parsimony informative. With Myxocyprinus asiaticus as an outgroup, molecular phylogenetic trees were constructed using the neighbor-joining, maximum parsimony, maximum likelihood and Bayesian methods. All molecular phylogenetic trees revealed that botiine fishes form a monophyletic group and are distantly related to other loaches, suggesting that the Botiinae should be placed in their own family. Within the Botiinae, there are three genera; Botia, Parabotia, andLeptobotia, each genus forming a monophyletic group, with the genus Botia as the most ancestral split. Our molecular results are in agreement with morphological analyses of botiines, suggesting that Botia is the ancestral genus, while Leptobotia and Parabotia were resolved as more derived sister groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号