首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Precise oxygen equilibrium curves have been obtained for cobalt hemoglobin at pH values from 5.5 to 8.2. The Hill plots are symmetric having asymptotes with slopes of unity. At pH 7.0, cobalt hemoglobin has p0.5 = 116 toor (15.45 kPa), pm = 117 torr (15.58 kPa) and a Hill coefficient of n = 1.72. The values of n decrease slightly with either decrease or increase of pH; the protein is almost non-cooperative at pH greater than 8.2. The Adair constants have been calculated with a non-linear least-squares program. From deltalnpm/deltapH a maximum of 2.5 Bohr protons was calculated at physiological pH values. The majority of alkaline Bohr protons are released after binding of the first and the third oxygen with maxima at pH 7.6 and 7.3, respectively. The acid Bohr effect was also observed with the majority of the protons taken up following the first and third oxygen bound. Smaller alkaline Bohr effects were obtained by differential titration and at higher pH than that calculated from oxygen equilibria. The discrepancy can be largely attributed to the binding of salt components to cobalt hemoglobin.  相似文献   

3.
The hemoglobin oxidation Bohr effect is larger than the ligation Bohr effect, even when the former is corrected for any ionization of the water molecule bound to the ferric iron of methemoglobin. This residual oxidation Bohr effect is here shown to be solely caused by the influence of the positively charged ferriheme, and is abolished when the oxidized heme binds an anion. This result frees the formal equivalence of hemoglobin ligation and oxidation from the last apparent experimental discrepancy.  相似文献   

4.
5.
The pH dependence of oxygen affinity of hemoglobin (Bohr effect) is due to ligand-linked pK shifts of ionizable groups. Attempt to identify these groups has produced controversial data and interpretations. In a further attempt to clarify the situation, we noticed that hemoglobin alkylated in its liganded form lost the Bohr effect while hemoglobin alkylated in its unliganded form showed the presence of a practically unmodified Bohr effect. In spite of this difference, analyses of the extent of alkylation of the two compounds failed to identify the presence of specific preferential alkylations. In particular, the alpha 1 valines and beta 146 histidines appeared to be alkylated to the same extent in the two proteins. Focusing our attention on the effect of the anions on the functional properties of hemoglobin, we measured the Bohr effect of untreated hemoglobin in buffers made with HEPES [N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid], MES [2-(N-morpholino)ethanesulfonic acid], and MOPS [3-(N-morpholino)propanesulfonic acid], which being zwitterions do not need addition of chlorides or other anions for reaching the desired pH. The shape acquired by the Bohr effect curves, either as pH dependence of oxygen affinity or as pH dependence of protons exchanged with the solution, was irreconcilable with that of the Bohr effect curves in usual buffers. This indicated the relevance of solvent components in determining the functional properties of hemoglobin. A new thermodynamic model is proposed for the Bohr effect that includes the interaction of hemoglobin with solvent components. The classic proton Bohr effect is a special case of the new theory.  相似文献   

6.
7.
Alkaline Bohr effect of human hemoglobin Ao   总被引:3,自引:0,他引:3  
  相似文献   

8.
Deoxyhemoglobins substituted with pyridoxal 5'-phosphate or pyridoxal 5'-deoxymethylenephosphonate at the N-terminal amino groups of the alpha-chains were investigated by 31P-NMR spectroscopy. Titration curves of the 5'-side-chains show a substantial increase in acid strength in alpha-pyridoxylated deoxyhemoglobins when compared to the corresponding CO-liganded hemoglobins. These derivatives therefore contain a new oxygenation-linked acid group which opposes the normal Bohr effect. The loss in stabilization of the monoanion of the phosphate or phosphonate group derived from the three-dimensional structure can account for the lower pK of this ionization in deoxyhemoglobin as compared to CO-liganded hemoglobin. The reduction in the Bohr effect caused by modification of the alpha-chains with pyridoxal 5'-deoxymethyl-enephosphonate is quantitatively equal to the expected contribution of alpha-chain N-terminal amino groups.  相似文献   

9.
10.
The unusual aspects of the reaction of oxygen with hemoglobin are believed to be due to the free energy of the conformational change in the hemoglobin molecule upon oxygenation. The conformational free energy change due to oxygenation can be estimated in terms of the surface free energy of an emuslion droplet of the same size as the hemoglobin molecule. Calculations on the basis of this model lead to an equilibrium constant that varies with pH as in the acid and alkaline Bohr Effects, and that also varies with the ionic strength. The model used in this paper provides a simple way of estimating the variation of the equilibrium constant of a reaction involving a globular protein where the free energy of conformational changes can be evaluated in terms of surface properties.  相似文献   

11.
At sufficiently high ionic strength, long-range electrostatic interactions in a polyelectrolyte such as poly(L -glutamic acid) might be adequately approximated in matrix calculations by use of statistical weights representing second-order interactions. The validity of this assumption has been investigated making use of experimental observations (CD spectra and titration curves) for poly(L -glutamic acid) as a function of temperature in 0.1–0.5M sodium chloride. Theoretical analysis, using a statistical weight matrix proposed by Warashina and Ikegami, is based on the Zimm-Rice theory. Implementation differs from that of Warashina and Ikegami in one respect. Refinement of the initial estimates is achieved using a form of the configuration partition function which does not assume diagonalization of the statistical weight matrix. This difference is of no consequence for the values of σ and s, but it does produce somewhat different values for the statistical weights used to represent the electrostatic interactions. The method used to treat electrostatic interactions in poly(L -glutamic acid) in 0.1M sodium chloride can be viewed as successful in that it properly reproduces the helix–coil transition and titration curves in this solvent and the molecular-weight dependence of the titration curves yields values for s in harmony with those obtained using a treatment which is independent of model, and gives a reasonable ionic-strength dependence for the electrostatic parameters. Furthermore, the model can account for measured helix–coil transitions and titration curves in homopolypeptides in which the side chain is —(CH2)xNHCO(CH2)yCOOH. The model, however, is not exact. It does not properly account for the molecular-weight dependence of the helical content for polymers of low degree of polymerization.  相似文献   

12.
The normal and differential titration curves of liganded and unliganded hemoglobin were measured at various KCl concentrations (0.1 to 2.0 M). In this range of KCl concentrations, the curves for deoxyhemoglobin showed no salt-induced pK changes of titratable groups. In the same salt concentration range oxyhemoglobin showed a marked change in titration behavior which could only be accounted for by a salt-induced increase in pK of some titratable groups. These results show that the suppression of the alkaline Bohr effect by high concentrations of neutral univalent salt is not caused by a weakening of the salt bridges in deoxyhemoglobin but is due to an interaction of chloride ions with oxyhemoglobin. Measurements of the Bohr effect at various KCl concentrations showed that at low chloride ion concentration (5 times 10-3 M) the alkaline Bohr effect is smaller than at a concentration of 0.1 M. This observation indicates that at a chloride ion concentration of 0.1 M, part of the alkaline Bohr effect is due to an interaction of chloride ions with hemoglobin. Furthermore, at low concentrations of chloride ions the acid Bohr effect has almost vanished. This result suggests that part of the acid Bohr effect arises from an interaction of chloride ions with oxyhemoglobin. The dependence of the Bohr effect upon the chloride ion concentration can be explained by assuming specific binding of chloride ions to both oxy- and deoxyhemoglobin, with deoxyhemoglobin having the highest affinity.  相似文献   

13.
Alkalin Bohr effect of nitric oxide binding by hemoglobin   总被引:1,自引:0,他引:1  
The alkaline Bohr effect of nitric oxide binding by hemoglobin has been determined by differnetial titration. Binding of nitric oxide releases 2.6 protons per hemoglobin tetramer.  相似文献   

14.
15.
The kinetics of proton release on ligation of menhaden hemoglobin was studied by flash photolysis over a range of pH. In contrast to all previous kinetic work with human hemoglobin, a nonlinear relationship between proton release and CO binding was found. Proton uptake was also observed in the course of O2 replacement by CO at low pH. It follows that at least part of the proton release is associated with quaternary rather than tertiary conformational changes i.e. this result is consistent with a two-state model in which L is a function of pH.  相似文献   

16.
The presence of alanine (Ala) or acetyl serine (AcSer) instead of the normal Val residues at the N-terminals of either the alpha- or the beta-subunits of human adult hemoglobin confers some novel and unexpected features on the protein. Mass spectrometric analysis confirmed that these substitutions were correct and that they were the only ones. Circular dichroism studies indicated no global protein conformational changes, and isoelectric focusing showed the absence of impurities. The presence of Ala at the N-terminals of the alpha-subunits of liganded hemoglobin results in a significantly increased basicity (increased pK(a) values) and a reduction in the strength of subunit interactions at the allosteric tetramer-dimer interface. Cooperativity in O(2) binding is also decreased. Substitution of Ala at the N-terminals of the beta-subunits gives neither of these effects. The substitution of Ser at the N terminus of either subunit leads to its complete acetylation (during expression) and a large decrease in the strength of the tetramer-dimer allosteric interface. When either Ala or AcSer is present at the N terminus of the alpha-subunit, the slope of the plot of the tetramer-dimer association/dissociation constant as a function of pH is decreased by 60%. It is suggested that since the network of interactions involving the N and C termini of the alpha-subunits is less extensive than that of the beta-subunits in liganded human hemoglobin disruptions there are likely to have a profound effect on hemoglobin function such as the increased basicity, the effects on tetramer strength, and on cooperativity.  相似文献   

17.
18.
Using NO and CO as ligands the Bohr effect of human hemoglobin has been measured with and without inositolhexophosphate. It appears that in the absence and presence of inositolhexaphosphate hemoglobin shows a distinct ligand specificity with respect to the Bohr effect. Ligation with NO is accompanied by release of a larger number of Bohr effect. It is shown that this latter result is due to the fact that the number of protons taken up upon binding of inositolhexaphosphate to ligated hemoglobin is larger for HbNO than for HbCO. It is suggested that this additional proton uptake is partially due to a restoration of the saltbridge between His 146beta and Asp 94beta upon addition of IHP.  相似文献   

19.
In order to solve the problem of an apparent discrepancy between the pH variance of oxygen equilibrium curve and the linear relation between the number of released Bohr protons and the degree of ligation, precise oxygen equilibrium curves of human hemoglobin were determined at a number of pH values from 6.5 to 8.8. From the equilibrium data individual steps (Adair constants), ki (i equals 1, 2, 3, 4), were obtained and the number of Bohr protons (deltaHi+) released on the ith stage of oxygenation was estimated. The pH dependence of k4 was very small, while the other ks strongly depended on pH over the pH range examined. As a consequence, the contribution of each step of oxygen binding to the alkaline Bohr effect nonuniform: deltaH4 was very small compared with deltaH1+, deltaH2+, and deltaH3+. In spite of this, calcuation has shown that the fractional number of released protons is essentially proportional to fractional oxygen saturation because of cooperative effects in hemoglobin. Thus, the present study indicates that the linear relationship between the fractional number of released protons and the degree of ligation, as obtained from titration experiments, is not necessarily incompatible with the pH variance of the shape of the oxygen equilibrium curve. The nonuniform pH depencence of the Adair constants implies that the two-state allosteric model of Monod, J., Wyman, J., and Changeus, J.P. (1965) J. Mol. Biol. 12, 88-118 is not adequate to describe the heterotropic effect caused by protons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号