首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscle atrophy in chronic obstructive pulmonary disease (COPD) is associated with reduced exercise tolerance, muscle strength, and survival. The molecular mechanisms leading to muscle atrophy in COPD remain elusive. The mitogen-activated protein kinases (MAPKs) such as p38 MAPK and ERK 1/2 can increase levels of MAFbx/Atrogin and MuRF1, which are specifically involved in muscle protein degradation and atrophy. Our aim was to investigate the level of activation of p38 MAPK, ERK 1/2, and JNK in the quadriceps of patients with COPD. A biopsy of the quadriceps was obtained in 18 patients with COPD as well as in 9 healthy controls. We evaluated the phosphorylated as well as total protein levels of p38 MAPK, ERK 1/2, and JNK as well as MAFbx/Atrogin and MuRF1 in these muscle samples. The corresponding mRNA expression was also assessed by RT-PCR. Ratios of phosphorylated to total level of p38 MAPK (P = 0.02) and ERK 1/2 (P = 0.01) were significantly elevated in patients with COPD compared with controls. Moreover, protein levels of MAFbx/Atrogin showed a tendency to be greater in patients with COPD (P = 0.08). mRNA expression of p38 MAPK (P = 0.03), ERK 1/2 (P = 0.02), and MAFbx/Atrogin (P = 0.04) were significantly elevated in patients with COPD. In addition, phosphorylated-to-total p38 MAPK ratio (Pearson's r = -0.45; P < 0.05) and phosphorylated-to-total ERK 1/2 ratio (Pearson's r = -0.47; P < 0.05) were negatively associated with the mid-thigh muscle cross-sectional area. These data support the hypothesis that the MAPKs might play a role in the development of muscle atrophy in COPD.  相似文献   

2.
Growing evidence suggests that activation of mitogen-activated protein kinase (MAPK) signal transduction mediates changes in muscle gene expression in response to exercise. Nevertheless, little is known about upstream or downstream regulation of MAPK in response to muscle contraction. Here we show that ex vivo muscle contraction stimulates extracellular signal-regulated kinase 1 and 2 (ERK1/2), and p38(MAPK) phosphorylation. Phosphorylation of ERK1/2 or p38(MAPK) was unaffected by protein kinase C inhibition (GF109203X), suggesting that protein kinase C is not involved in mediating contraction-induced MAPK signaling. Contraction-stimulated phosphorylation of ERK1/2 and p38(MAPK) was completely inhibited by pretreatment with PD98059 (MAPK kinase inhibitor) and SB203580 (p38(MAPK) inhibitor), respectively. Muscle contraction also activated MAPK downstream targets p90 ribosomal S6 kinase (p90(Rsk)), MAPK-activated protein kinase 2 (MAPKAP-K2), and mitogen- and stress-activated protein kinase 1 (MSK1). Use of PD98059 or SB203580 revealed that stimulation of p90(Rsk) and MAPKAP-K2 most closely reflects ERK and p38(MAPK) stimulation, respectively. Stimulation of MSK1 in contracting skeletal muscle required the activation of both ERK and p38(MAPK). These data demonstrate that muscle contraction, separate from systemic influence, activates MAPK signaling. Furthermore, we are the first to show that contractile activity stimulates MAPKAP-K2 and MSK1.  相似文献   

3.
Low-energy laser irradiation (LELI) has been shown to promote skeletal muscle regeneration in vivo and to activate skeletal muscle satellite cells, enhance their proliferation and inhibit differentiation in vitro. In the present study, LELI, as well as the addition of serum to serum-starved myoblasts, restored their proliferation, whereas myogenic differentiation remained low. LELI induced mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) phosphorylation with no effect on its expression in serum-starved myoblasts. Moreover, a specific MAPK kinase inhibitor (PD098059) inhibited the LELI- and 10% serummediated ERK1/2 activation. However, LELI did not affect Jun N-terminal kinase (JNK) or p38 MAPK phosphorylation or protein expression. Whereas a 3-sec irradiation induced ERK1/2 phosphorylation, a 12-sec irradiation reduced it, again with no effect on JNK or p38. Moreover, LELI had distinct effects on receptor phosphorylation: it caused phosphorylation of the hepatocyte growth factor (HGF) receptor, previously shown to activate the MAPK/ERK pathway, whereas no effect was observed on tumor suppressor necrosis alpha (TNF-alpha) receptor which activates the p38 and JNK pathways. Therefore, by specifically activating MAPK/ERK, but not JNK and p38 MAPK enzymes, probably by specific receptor phosphorylation, LELI induces the activation and proliferation of quiescent satellite cells and delays their differentiation.  相似文献   

4.
Glial glutamate transporter GLT-1 mRNA was selectively induced in C6 glioma cells exposed to hypertonic stress (HS), while the expression of two other subtypes, GLAST and EAAC1, was suppressed. HS increased phosphorylation of the MAPK family, ERK, p38 MAPK, and JNK. Treatment with a PKC inhibitor showed that phosphorylation of both p38 MAPK and JNK is PKC-dependent but ERK phosphorylation is independent. Inhibition of either ERK or p38 MAPK did not abolish GLT-1 mRNA induction. Inhibition of PKC also had no effect. These findings indicate that the induction of GLT-1 mRNA by HS is independent of the MAPK pathways. This is the first report that the expression of glial glutamate transporters is osmotically regulated.  相似文献   

5.
6.
Cell cycle arrest is essential for initiation of muscle differentiation in myoblasts. Given the previously described essential role for p38 MAPK in myogenesis, we undertook the present study to investigate the role of p38 MAPK in the cell cycle arrest that initiates muscle differentiation. p38 MAPK activity increased during, and was required for, muscle differentiation. Inhibition of p38 MAPK stimulated Raf and ERK activities, and induced cell proliferation in differentiation medium. The concomitant inhibition of p38 MAPK and ERK, however, failed to induce differentiation or proliferation. In conclusion, inhibition of the Raf/ERK pathway and the consequent cell cycle arrest is one of the major functions of p38 MAPK during muscle differentiation.  相似文献   

7.
8.
Mitogen-activated protein kinase (MAPK) family members such as c-jun N-terminal kinase (JNK) may act as signal transducers early during pancreatitis development and evidence indicates that MAPK phosphatases (MKP) downregulate MAPK. We therefore investigated expression and regulation of pancreatic MKP in vivo. Pancreatic MKP mRNA levels were near or below the detection threshold in unstimulated animals. Cerulein hyperstimulation strongly induced MKP-1, MKP-3, and MKP-5 expression, peaking 30 to 60 min after treatment. Thus, MKP's clearly are early responsive genes during pancreatitis induction. Interestingly, inhibition of MKP-1 expression by Ro-31-8220 maximally induced activation of JNK but not of p38 and ERK in acutely isolated acini. These effects indicate that JNK may indeed be a preferred MKP-1 substrate in vivo.  相似文献   

9.
10.
Esophageal (ESO) circular muscle contraction and lower esophageal sphincter (LES) tone are PKC dependent. Because MAPKs may be involved in PKC-dependent contraction, we examined ERK1/ERK2 and p38 MAPKs in ESO and LES. In permeabilized LES muscle cells, ERK1/2 antibodies reduced 1,2-dioctanoylglycerol (DG)- and threshold ACh-induced contraction, which are PKC dependent, but not maximal ACh, which is calmodulin dependent. LES tone was reduced by the ERK1/2 kinase inhibitor PD-98059 and by the p38 MAPK inhibitor SB-203580. In permeable ESO cells, ACh contraction was reduced by ERK1/ERK2 and p38 MAPK antibodies and by PD-98059 and SB-203580. ACh increased MAPK activity and phosphorylation of MAPK and of p38 MAPK. The 27-kDa heat shock protein (HSP27) antibodies reduced ACh contraction. HSP27 and p38 MAPK antibodies together caused no greater inhibition than either one alone. p38 MAPK and HSP27 coprecipitated after ACh stimulation, suggesting that HSP27 is linked to p38 MAPK. These data suggest that PKC-dependent contraction in ESO and LES is mediated by the following two distinct MAPK pathways: ERK1/2 and HSP27-linked p38 MAPK.  相似文献   

11.
In this study, the roles of the p38 MAPK, ERK1/2 and JNK signaling pathway in IGF-I-induced AR induction and activation were examined. C2C12 cells were treated with IGF-I in the absence or presence of various inhibitors of p38 MAPK (SB203580), ERK1/2 (PD98059), and JNK (SP600125). Inhibition of the MAPK pathway with SB203580, PD98059, or SP600125 significantly decreased IGF-I-induced AR phosphorylation and total AR protein expression. IGF-I-induced nuclear fraction of total AR and phosphorylated AR were significantly inhibited by SB203580, PD98059, or SP600125. Furthermore, IGF-I-induced AR mRNA and skeletal α-actin mRNA were blocked by those inhibitors in dose-dependent manner. Confocal images showed that IGF-I-induced AR nuclear translocation from cytosol was significantly blocked by SB203580, PD98059, or SP600125, suggesting that the MAPK pathway regulates IGF-I-induced AR nuclear localization in skeletal muscle cells. The present results suggest that the MAPK pathways are required for the ligand-independent activation of AR by IGF-I in C2C12 skeletal muscle cells.  相似文献   

12.
ICAM-1 is a transmembrane glycoprotein of the Ig superfamily involved in cell adhesion. ICAM-1 is aberrantly expressed by astrocytes in CNS pathologies such as multiple sclerosis, experimental allergic encephalomyelitis, and Alzheimer's disease, suggesting a possible role for ICAM-1 in these disorders. ICAM-1 has been shown to be important for leukocyte diapedesis through brain microvessels and subsequent binding to astrocytes. However, other functional roles for ICAM-1 expression on astrocytes have not been well elucidated. Therefore, we investigated the intracellular signals generated upon ICAM-1 engagement on astrocytes. ICAM-1 ligation by a mAb to rat ICAM-1 induced mRNA expression of proinflammatory cytokines such as IL-1alpha, IL-1beta, IL-6, and TNF-alpha. Examination of cytokine protein production revealed that ICAM-1 ligation results in IL-6 secretion by astrocytes, whereas IL-1beta and IL-1alpha protein is expressed intracellularly in astrocytes. The involvement of mitogen-activated protein kinases (MAPKs) in ICAM-1-mediated cytokine expression in astrocytes was tested, as the MAPK extracellular signal-regulated kinase (ERK) was previously shown to be activated upon ICAM-1 engagement. Our results indicate that ERK1/ERK2, as well as p38 MAPK, are activated upon ligation of ICAM-1. Studies using pharmacological inhibitors demonstrate that both p38 MAPK and ERK1/2 are involved in ICAM-1-induced IL-6 expression, whereas only ERK1/2 is important for IL-1alpha and IL-1beta expression. Our data support the role of ICAM-1 on astrocytes as an inflammatory mediator in the CNS and also uncover a novel signal transduction pathway through p38 MAPK upon ICAM-1 ligation.  相似文献   

13.
14.
Transforming growth factor (TGF)-beta1 induces fibroblast transdifferentiation to myofibroblasts, a process that requires the involvement of integrin-mediated signaling and focal adhesion kinase (FAK). FAK-related non-kinase (FRNK) is known for its role in inhibiting integrin-mediated cell migration; however, its role in myofibroblast differentiation has not been defined. Here, we report that FRNK abrogates TGF-beta1-induced myofibroblast differentiation in vitro and in vivo. TGF-beta1 can induce alpha-smooth muscle actin (alpha-SMA) expression in the presence or absence of FAK; however, TGF-beta1-induced alpha-SMA expression is reduced (approximately 73%) in FAK-deficient fibroblasts. Although both ERK and p38 MAPK activation is required for maximal TGF-beta1-induced alpha-SMA expression, ERK is the major signaling intermediate in cells that express FAK. In contrast, p38 MAPK is the dominant mediator of TGF-beta1-induced alpha-SMA expression in FAK-deficient cells. FRNK overexpression blocks TGF-beta1-induced ERK or p38 MAPK activation in the presence, and surprisingly, in the absence of FAK. The loss of FRNK was tested in vivo during experimentally induced pulmonary fibrosis in mice. FRNK knock-out mice have a greater increase in alpha-SMA-expressing cells in response to a pulmonary fibrotic stimulus in vivo, as compared with congenic wild type mice. This is the first time that FRNK loss has been shown to modify the pathobiology in any animal disease model. Together, the data demonstrate that FRNK negatively regulates myofibroblast differentiation in vitro and in vivo. These data further suggest that modulation FRNK expression may be a novel avenue for therapeutic intervention in tissue fibrosis.  相似文献   

15.
The p38 mitogen-activated protein kinase (MAPK) signaling pathway, acting through the downstream kinase MK2, regulates the stability of many proinflammatory mRNAs that contain adenosine/uridine-rich elements (AREs). It is thought to do this by modulating the expression or activity of ARE-binding proteins that regulate mRNA turnover. MK2 phosphorylates the ARE-binding and mRNA-destabilizing protein tristetraprolin (TTP) at serines 52 and 178. Here we show that the p38 MAPK pathway regulates the subcellular localization and stability of TTP protein. A p38 MAPK inhibitor causes rapid dephosphorylation of TTP, relocalization from the cytoplasm to the nucleus, and degradation by the 20S/26S proteasome. Hence, continuous activity of the p38 MAPK pathway is required to maintain the phosphorylation status, cytoplasmic localization, and stability of TTP protein. The regulation of both subcellular localization and protein stability is dependent on MK2 and on the integrity of serines 52 and 178. Furthermore, the extracellular signal-regulated kinase (ERK) pathway synergizes with the p38 MAPK pathway to regulate both stability and localization of TTP. This effect is independent of kinases that are known to be synergistically activated by ERK and p38 MAPK. We present a model for the actions of TTP and the p38 MAPK pathway during distinct phases of the inflammatory response.  相似文献   

16.
Articular chondrocytes respond to mechanical forces by alterations in gene expression, proliferative status, and metabolic functions. Little is known concerning the cell signaling systems that receive, transduce, and convey mechanical information to the chondrocyte interior. Here, we show that ex vivo cartilage compression stimulates the phosphorylation of ERK1/2, p38 MAPK, and SAPK/ERK kinase-1 (SEK1) of the JNK pathway. Mechanical compression induced a phased phosphorylation of ERK consisting of a rapid induction of ERK1/2 phosphorylation at 10 min, a rapid decay, and a sustained level of ERK2 phosphorylation that persisted for at least 24 h. Mechanical compression also induced the phosphorylation of p38 MAPK in strictly a transient fashion, with maximal phosphorylation occurring at 10 min. Mechanical compression stimulated SEK1 phosphorylation, with a maximum at the relatively delayed time point of 1 h and with a higher amplitude than ERK1/2 and p38 MAPK phosphorylation. These data demonstrate that mechanical compression alone activates MAPK signaling in intact cartilage. In addition, these data demonstrate distinct temporal patterns of MAPK signaling in response to mechanical loading and to the anabolic insulin-like growth factor-I. Finally, the data indicate that compression coactivates distinct signaling pathways that may help define the nature of mechanotransduction in cartilage.  相似文献   

17.
Priming with interfon (IFN)alpha enhanced the ability of the synthetic double-stranded RNA polyriboinosinic acid: polyribocytidilic acid (pI:C), but not interleukin-1 beta, to activate both p38 mitogen-activated kinase (MAPK) and extracellular signal-regulated kinase (ERK) signaling cascades. Activation by pI:C in IFN alpha-primed cells was delayed compared to activation with interleukin-1 beta, and this delay was followed by high, sustained activation of p38 MAPK and a modest elevation of ERK activation. Pharmacologic inhibition of either the ERK or the p38 MAPK pathway, using U0126 and SB203580, respectively, reduced interleukin-6 protein induction by at least 70%, and combined inhibition of both pathways fully blocked interleukin-6 protein expression and reduced interleukin-6 mRNA induction by more than 80%. In contrast, induction of double-stranded RNA-activated protein kinase (PKR) mRNA and protein by IFN alpha and/or pI:C was minimally affected by either inhibitor. Induction of interferon-regulatory factor-1 (IRF-1) by pI:C in IFN alpha primed cells was profoundly inhibited by U0126 but not by SB203580. Thus, IFN alpha priming enhances activation of p38 MAPK and ERK pathways by pI:C but not by interleukin-1 beta, thereby enhancing the expression of some, but not all, genes that are induced by pI:C.  相似文献   

18.
Evidence indicates that stretch of theuterus imposed by the growing fetus contributes to the onset of labor.Previously we have shown that mechanically stretching rat myometrialsmooth muscle cells (SMCs) induces c-fos expression. Toinvestigate this stretch-induced signaling, we examined the involvementof the mitogen-activated protein kinase (MAPK) family. We show thatstretching rat myometrial SMCs induces a rapid and transientphosphorylation (activation) of MAPKs: extracellular signal-regulatedprotein kinase (ERK), c-Jun NH2-terminal kinase (JNK), andp38. The use of selective inhibitors for the ERK pathway (PD-98059 andU-0126), p38 (SB-203580), and JNK pathway (curcumin) demonstrated that activation of all three MAPK signaling pathways was necessary foroptimal stretch-induced c-fos expression. We alsodemonstrate that upstream tyrosine kinase activity is involved in themechanotransduction pathway leading to stretch-induced MAPK activationand c-fos mRNA expression. To further examine the role ofMAPKs in vivo, we used a unilaterally pregnant rat model. MAPKs (ERKand p38) are expressed in the pregnant rat myometrium with maximal ERKand p38 phosphorylation occurring in the 24 h immediatelypreceding labor. Importantly, the rise in MAPK phosphorylation wasconfined to the gravid horn and was absent in the empty uterine horn,suggesting that mechanical strain imposed by the growing fetus controlsMAPK activation in the myometrium. Collectively, this data indicatethat mechanical stretch modulates MAPK activity in the myometriumleading to c-fos expression.

  相似文献   

19.
20.
In the present study, we tested our hypothesis that atorvastatin exerts its anti-inflammation effect via suppressing LPS-induced rapid upregulation of Toll-like receptor 4 (TLR4) mRNA and its downstream p38, ERK, and NF-κB signaling pathways in human umbilical-vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs). TLR4 mRNA expression and its downstream kinase activities induced by LPS alone or atorvastatin + LPS in endothelial cells were quantified using quantitative real-time PCR and enzyme-linked immunosorbent assay. Preincubation of LPS-stimulated endothelial cells with TLR4 siRNA was conducted to identify the target of the anti-inflammatory effects of atorvastatin. Atorvastatin incubation resulted in the reduction of LPS-induced TLR4 mRNA expression, ERK1/2 and P38 MAPK phosphorylation, and NF-κB binding activity. Pretreatment with MEK/ERK1/2 inhibitor PD98059 attenuated atorvastatin + LPS-induced NF-κB activity but had no effect on P38 MAPK phosphorylation. In contrast, pretreatment with P38 MAPK inhibitor SB203580 resulted in upregulation of atorvastatin + LPS-induced ERK1/2 phosphorylation but had no significant effects on NF-κB activity. On the other hand, blocking NF-κB with SN50 produced no effects on atorvastatin + LPS-induced ERK1/2 and P38 MAPK phosphorylation. Moreover, TLR4 gene silencing produced the same effects as the atorvastatin treatment. In conclusion, atorvastatin downregulated TLR4 mRNA expression by two distinct signaling pathways. First, atorvastatin stabilized Iκ-Bα, which directly inhibited NF-κB activation. Second, atorvastatin inactivated ERK phosphorylation, which indirectly inhibited NF-κB activation. Suppression of p38 MAPK by atorvastatin upregulates ERK but exerts no effect on NF-κB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号