首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Nuclear factor-kappaB (NF-kappaB) is the main target of anti-inflammatory therapies in human chronic inflammatory bowel diseases (IBD), Crohn disease, and ulcerative colitis. This study investigates the molecular anti-inflammatory mechanisms of SB203580, an inhibitor of the mitogen-activated protein kinase p38. The murine trinitrobenzene sulfonic acid (TNBS)-induced colitis was used as an established model of human Crohn disease. Here we show that SB203580 improved the clinical condition, reduced intestinal inflammation, and suppressed mRNA levels of pro-inflammatory cytokines elevated upon induction of colitis. Besides p38 kinase activity, the "classical" IkappaB-dependent NF-kappaB pathway was strongly up-regulated during colitis induction, whereas the "alternative" was not. SB203580 treatment resulted in a drastic down-regulation of p38 and NF-kappaB activity. The molecular analysis of NF-kappaB activation revealed that Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK), a key component of a pathway leading to NF-kappaB induction, is also strongly inhibited by SB203580. In contrast, SB203580 had no effect on the colitis-induced activation of other potential NF-kappaB-activating kinases such as protein kinase C (PKC), mixed lineage kinase 3, and the oncogene product Cot/TPL2. Thus, the inhibitory effect of SB203580 on NF-kappaB activation is to a large extent mediated by RICK inhibition. RICK is the effector kinase of the intracellular receptor of bacterial peptidoglycan NOD. Because bacterial products are suggested to be the key pathogenic agents triggering IBD, inhibition of the NOD/RICK pathway may serve as a novel target of future therapies in human IBD.  相似文献   

4.
5.
Nod1 is an Apaf-1-like molecule composed of a caspase-recruitment domain (CARD), nucleotide-binding domain, and leucine-rich repeats that associates with the CARD-containing kinase RICK and activates nuclear factor kappaB (NF-kappaB). We show that self-association of Nod1 mediates proximity of RICK and the interaction of RICK with the gamma subunit of the IkappaB kinase (IKKgamma). Similarly, the RICK-related kinase RIP associated via its intermediate region with IKKgamma. A mutant form of IKKgamma deficient in binding to IKKalpha and IKKbeta inhibited NF-kappaB activation induced by RICK or RIP. Enforced oligomerization of RICK or RIP as well as of IKKgamma, IKKalpha, or IKKbeta was sufficient for induction of NF-kappaB activation. Thus, the proximity of RICK, RIP, and IKK complexes may play an important role for NF-kappaB activation during Nod1 oligomerization or trimerization of the tumor necrosis factor alpha receptor.  相似文献   

6.
Nod1 and Nod2 are intracellular proteins that are involved in host recognition of specific bacterial molecules and are genetically associated with several inflammatory diseases. Nod1 and Nod2 stimulation activates NF-kappaB through RICK, a caspase-recruitment domain-containing kinase. However, the mechanism by which RICK activates NF-kappaB in response to Nod1 and Nod2 stimulation is unknown. Here we show that RICK is conjugated with lysine-63-linked polyubiquitin chains at lysine 209 (K209) located in its kinase domain upon Nod1 or Nod2 stimulation and by induced oligomerization of RICK. Polyubiquitination of RICK at K209 was essential for RICK-mediated IKK activation and cytokine/chemokine secretion. However, RICK polyubiquitination did not require the kinase activity of RICK or alter the interaction of RICK with NEMO, a regulatory subunit of IkappaB kinase (IKK). Instead, polyubiquitination of RICK was found to mediate the recruitment of TAK1, a kinase that was found to be essential for Nod1-induced signaling. Thus, RICK polyubiquitination links TAK1 to IKK complexes, a critical step in Nod1/Nod2-mediated NF-kappaB activation.  相似文献   

7.
Two related kinases, IkappaB kinase alpha (IKKalpha) and IKKbeta, phosphorylate the IkappaB proteins, leading to their degradation and the subsequent activation of gene expression by NF-kappaB. IKKbeta has a much higher level of kinase activity for the IkappaB proteins than does IKKalpha and is more critical than IKKalpha in modulating tumor necrosis factor alpha activation of the NF-kappaB pathway. These results indicate an important role for IKKbeta in activating the NF-kappaB pathway but leave open the question of the role of IKKalpha in regulating this pathway. In the current study, we demonstrate that IKKalpha directly phosphorylates IKKbeta. Moreover, IKKalpha either directly or indirectly enhances IKKbeta kinase activity for IkappaBalpha. Finally, transfection studies to analyze NF-kappaB-directed gene expression suggest that IKKalpha is upstream of IKKbeta in activating the NF-kappaB pathway. These results indicate that IKKalpha, in addition to its previously described ability to phosphorylate IkappaBalpha, can increase the ability of IKKbeta to phosphorylate IkappaBalpha.  相似文献   

8.
9.
10.
NF-kappaB plays an important role in the early cellular response to pathogens by activating genes involved in inflammation, immune response, and cell proliferation and survival. NF-kappaB is also utilized by many viral pathogens, like human cytomegalovirus (HCMV), to activate their own gene expression programs, reflecting intricate roles for NF-kappaB in both antiviral defense mechanisms and viral physiology. Here we show that the NF-kappaB signaling pathway stimulated by proinflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and interleukin-1beta (IL-1beta) becomes inhibited in HCMV-infected cells. The block to NF-kappaB signaling is first noticeable during the early phase of infection but is fully established only at later times. Biochemical and genetic evidence demonstrates that the viral inhibition of proinflammatory signaling by distinct cytokines occurs upstream of the convergence point of NF-kappaB-activating pathways, i.e., the IkappaB kinase complex, and that it is mediated via different mechanisms. Consistent with this, we further show that an HCMV variant that has lost the ability to downregulate TNF-alpha-induced NF-kappaB signaling also fails to downregulate surface expression of TNF receptor 1, thereby mechanistically linking the inhibition of TNF-alpha-induced NF-kappaB signaling by HCMV to TNF receptor targeting. Our data support a model whereby HCMV inhibits cytokine-induced NF-kappaB signaling at later times during infection, and we suggest that this contributes to the inhibition of the cell's antiviral defense program.  相似文献   

11.
12.
We documented that the NF-kappaB signaling pathway was rapidly induced following human cytomegalovirus (HCMV) infection of human fibroblasts and that this induced NF-kappaB activity promoted efficient transactivation of the major immediate-early promoter (MIEP). Previously, we showed that the major HCMV envelope glycoproteins, gB and gH, initiated this NF-kappaB signaling event. However, we also hypothesized that there were additional mechanisms utilized by the virus to rapidly upregulate NF-kappaB. In this light, we specifically hypothesized that the HCMV virion contained IkappaBalpha kinase activity, allowing for direct phosphorylation of IkappaBalpha following virion entry into infected cells. In vitro kinase assays performed on purified HCMV virion extract identified bona fide IkappaBalpha kinase activity in the virion. The enzyme responsible for this kinase activity was identified as casein kinase II (CKII), a cellular serine-threonine protein kinase. CKII activity was necessary for efficient transactivation of the MIEP and IE gene expression. CKII is generally considered to be a constitutively active kinase. We suggest that this molecular characteristic of CKII represents the biologic rationale for the viral capture and utilization of this kinase early after infection. The packaging of CKII into the HCMV virion identifies that diverse molecular mechanisms are utilized by HCMV for rapid NF-kappaB activation. We propose that HCMV possesses multiple pathways to increase NF-kappaB activity to ensure that the correct temporal regulation of NF-kappaB occurs following infection and that sufficient threshold levels of NF-kappaB are reached in the diverse array of cells, including monocytes and endothelial cells, infected in vivo.  相似文献   

13.
In our previous paper, we reported that myeloid differential primary response protein (MyD88), a key adaptor in the signaling cascade of the innate immune response, inhibits hepatitis B virus (HBV) replication. The MyD88 activated nuclear factor-kappaB (NF-kappaB) signaling pathway and the intracellular upregulation of NF-kappaB signaling can induce an antiviral effect. Therefore, the association between the inhibition of HBV replication by MyD88 and NF-kappaB activation was investigated further. The results show that NF-kappaB activation was moderately increased after MyD88 expression. The strong activation of NF-kappaB by the IkappaB kinase complex IKKalpha/IKKbeta dramatically suppressed HBV replication; the MyD88 dominant negative mutant that abrogated NF-kappaB activity did not inhibit HBV replication. Furthermore, the IkappaBalpha dominant negative mutant restored the inhibition of HBV replication by MyD88. These results support a role for NF-kappaB activation in the inhibition of HBV replication and suggest a novel mechanism for the inhibition of HBV replication by MyD88 protein.  相似文献   

14.
15.
Human Cytomegalovirus (HCMV) infection induces several metabolic activities that have been found to be important for viral replication. The cellular AMP-activated protein kinase (AMPK) is a metabolic stress response kinase that regulates both energy-producing catabolic processes and energy-consuming anabolic processes. Here we explore the role AMPK plays in generating an environment conducive to HCMV replication. We find that HCMV infection induces AMPK activity, resulting in the phosphorylation and increased abundance of several targets downstream of activated AMPK. Pharmacological and RNA-based inhibition of AMPK blocked the glycolytic activation induced by HCMV-infection, but had little impact on the glycolytic pathway of uninfected cells. Furthermore, inhibition of AMPK severely attenuated HCMV replication suggesting that AMPK is an important cellular factor for HCMV replication. Inhibition of AMPK attenuated early and late gene expression as well as viral DNA synthesis, but had no detectable impact on immediate-early gene expression, suggesting that AMPK activity is important at the immediate early to early transition of viral gene expression. Lastly, we find that inhibition of the Ca2+-calmodulin-dependent kinase kinase (CaMKK), a kinase known to activate AMPK, blocks HCMV-mediated AMPK activation. The combined data suggest a model in which HCMV activates AMPK through CaMKK, and depends on their activation for high titer replication, likely through induction of a metabolic environment conducive to viral replication.  相似文献   

16.
Apaf-1 and Nod1 are members of a protein family, each of which contains a caspase recruitment domain (CARD) linked to a nucleotide-binding domain, which regulate apoptosis and/or NF-kappaB activation. Nod2, a third member of the family, was identified. Nod2 is composed of two N-terminal CARDs, a nucleotide-binding domain, and multiple C-terminal leucine-rich repeats. Although Nod1 and Apaf-1 were broadly expressed in tissues, the expression of Nod2 was highly restricted to monocytes. Nod2 induced nuclear factor kappaB (NF-kappaB) activation, which required IKKgamma and was inhibited by dominant negative mutants of IkappaBalpha, IKKalpha, IKKbeta, and IKKgamma. Nod2 interacted with the serine-threonine kinase RICK via a homophilic CARD-CARD interaction. Furthermore, NF-kappaB activity induced by Nod2 correlated with its ability to interact with RICK and was specifically inhibited by a truncated mutant form of RICK containing its CARD. The identification of Nod2 defines a subfamily of Apaf-1-like proteins that function through RICK to activate a NF-kappaB signaling pathway.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号