共查询到20条相似文献,搜索用时 0 毫秒
1.
The reaction center is a pigment-protein complex that mediates the initial photochemical steps of photosynthesis. The amino-terminal sequences of the L, M, and H subunits and the nucleotide and derived amino acid sequences of the L and M structural genes from Rhodopseudomonas sphaeroides have previously been determined. We report here the sequence of the H subunit, completing the primary structure determination of the reaction center from R. sphaeroides. The nucleotide sequence of the gene encoding the H subunit was determined by the dideoxy method after subcloning fragments into single-stranded M13 phage vectors. This information was used to derive the amino acid sequence of the corresponding polypeptide. The termini of the primary structure of the H subunit were established by means of the amino and carboxy terminal sequences of the polypeptide. The data showed that the H subunit is composed of 260 residues, corresponding to a molecular weight of 28,003. A molecular weight of 100,858 for the reaction center was calculated from the primary structures of the subunits and the cofactors. Examination of the genes encoding the reaction center shows that the codon usage is strongly biased towards codons ending in G and C. Hydropathy analysis of the H subunit sequence reveals one stretch of hydrophobic residues near the amino terminus; the L and M subunits contain five such stretches. From a comparison of the sequences of homologous proteins found in bacterial reaction centers and photosystem II of plants, an evolutionary tree was constructed. The analysis of evolutionary relationships showed that the L and M subunits of reaction centers and the D1 and D2 proteins of photosystem II are descended from a common ancestor, and that the rate of change in these proteins was much higher in the first billion years after the divergence of the reaction center and photosystem II than in the subsequent billion years represented by the divergence of the species containing these proteins. 相似文献
2.
N I Zakharova E A Permiakov M Fabian A A Kononenko S K Chamorovski? 《Molekuliarnaia biologiia》1984,18(3):719-724
Luminescence emitted by tryptophan residues of reaction center (RC) preparations was studied. The RG preparations were isolated from the photosynthetic bacterium Rhodopseudomonas sphaeroides by treatment with lauryl dimethyl amine oxide (LDAO). After excitation at lambda 280 nm the quantum yield of luminescence is 0,02. It is shown that 60% of tryptophanyls are located inside the protein globule in the surrounding of relaxating polar groups and the rest approximately 40% on the outer surface of the globule--predominantly in the positively charged region of the LDAO-RC protein--in the surrounding of protein-bound water molecules. There is a correlation between the pH dependencies of the position of the peak of luminescence from tryptophanyls and effectivity of electron transfer from the primary (quinone) to secondary acceptor. The two parameters are invariant at pH from 7 to 9 and vary at pH less than 7 and pH greater than 9. The phenomena responsible for the observed correlation are discussed on the basis of pH-dependent changes in the RC protein which govern electron transport activity at the reaction center. 相似文献
3.
4.
Characterization of bacterial photosynthetic reaction center crystals from Rhodopseudomonas sphaeroides R-26 by X-ray diffraction 总被引:3,自引:0,他引:3
An orthorhombic crystal form (P2(1)2(1)2(1)) of the reaction center from the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26 has been characterized. The crystals were grown from polyethylene glycol; the unit cell dimensions are a = 142.2 A, b = 139.6 A, and c = 78.7 A; and they contain one reaction center in each crystallographic asymmetric unit. The crystals diffract to at least 3.0 A resolution, and are suitable for detailed structural studies. 相似文献
5.
Nanosecond fluorescence from isolated photosynthetic reaction centers of Rhodopseudomonas sphaeroides 总被引:5,自引:0,他引:5
The time-course of fluorescence from reaction centers isolated from Rhodopseudomonas sphaeroides was measured using single-photon counting techniques. When electron transfer is blocked by the reduction of the electron-accepting quinones, reaction centers exhibit a relatively long-lived (delayed) fluorescence due to back reactions that regenerate the excited state (P*) from the transient radical-pair state, PF. The delayed fluorescence can be resolved into three components, with lifetimes of 0.7, 3.2 and 11 ns at 295 K. The slowest component decays with the same time-constant as the absorbance changes due to PF, and it depends on both temperature and magnetic fields in the same way that the absorbance changes do. The time-constants for the two faster components of delayed fluorescence are essentially independent of temperature and magnetic fields. The fluorescence also includes a very fast (prompt) component that is similar in amplitude to that obtained from unreduced reaction centers. The prompt fluorescence presumably is emitted mainly during the period before the initial charge-transfer reaction creates PF from P*. From the amplitudes of the prompt and delayed fluorescence, we calculate an initial standard free-energy difference between P* and PF of about 0.16 eV at 295 K, and 0.05 eV at 80 K, depending somewhat on the properties of the solvent. The multiphasic decay of the delayed fluorescence is interpreted in terms of relaxations in the free energy of PF with time, totalling about 0.05 eV at 295 K, possibly resulting from nuclear movements in the electron-carriers or the protein. 相似文献
6.
Structure of Rhodopseudomonas sphaeroides R-26 reaction center 总被引:30,自引:0,他引:30
The molecular replacement method has been successfully used to provide a structure for the photosynthetic reaction center of Rhodopseudomonas sphaeroides at 3.7 A resolution. Atomic coordinates derived from the R. viridis reaction center were used in the search structure. The crystallographic R-factor is 0.39 for reflections between 8 and 3.7 A. Validity of the resulting model is further suggested by the visualization of amino acid side chains not included in the R. viridis search structure, and by the arrangements of the reaction centers in the unit cell. In the initial calculations quinones or pigments were not included; nevertheless, in the resulting electron density map, electron density for both quinones QA and QB appears along with the bacteriochlorophylls and bacteriopheophytins. Kinetic analysis of the charge recombination shows that the secondary quinone is fully functional in the R. sphaeroides crystal. 相似文献
7.
Kinetic analysis of the thermal stability of the photosynthetic reaction center from Rhodobacter sphaeroides 下载免费PDF全文
The temperature-induced denaturation of the photosynthetic reaction center from Rhodobacter sphaeroides has been studied through the changes that occur in the absorption spectrum of the bound chromophores on heating. At elevated temperatures, the characteristic absorbance bands of the bacteriochlorins bound to the polypeptides within the reaction center are lost, and are replaced by features typical of unbound bacteriochlorophyll and bacteriopheophytin. The kinetics of the spectral changes cannot be explained by a direct conversion from the functional to the denatured form of the protein, and require the presence of at least one intermediate. Possible mechanisms for the transformation via an intermediate are examined using a global analysis of the kinetic data, and the most likely mechanism is shown to involve a reversible transformation between the native state and an off-pathway intermediate, coupled to an irreversible transformation to the denatured state. The activation energies for the transformations between the three components are calculated from the effect of temperature on the individual rate constants, and the likely structural changes of the protein during the temperature-induced transformation are discussed. 相似文献
8.
Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides 总被引:11,自引:0,他引:11
The structure of the photosynthetic reaction center (RC) from Rhodobacter sphaeroides was determined at 3.1-A resolution by the molecular replacement method, using the Rhodopseudomonas viridis RC as the search structure. Atomic coordinates were refined with the difference Fourier method and restrained least-squares refinement techniques to a current R factor of 22%. The tertiary structure of the RC complex is stabilized by hydrophobic interactions between the L and M chains, by interactions of the pigments with each other and with the L and M chains, by residues from the L and M chains that coordinate to the Fe2+, by salt bridges that are formed between the L and M chains and the H chain, and possibly by electrostatic forces between the ends of helices. The conserved residues at the N-termini of the L and M chains were identified as recognition sites for the H chain. 相似文献
9.
The three-dimensional structure of the photosynthetic reaction center fromRhodobacter sphaeroides is described. The reaction center is a transmembrane protein that converts light into chemical energy. The protein has three subunits: L, M, and H. The mostly helical L and M subunits provide the scaffolding and the finely tuned environment in which the chromophores carry out electron transfer. The details of the protein-chromophore interactions are from studies of a trigonal crystal form that diffracted to 2.65-Å resolution. Functional studies of the multi-subunit complex by site-specific replacement of key amino acid residues are summarized in the context of the molecular structure.This work was supported in part by the U.S. Department of Energy, Office of Health and Environmental Research, under Contract No. W-31-109-ENG-38 and by Public Health Service Grant GM36598. 相似文献
10.
Isolation and composition of a photosynthetic reaction center complex from Rhodopseudomonas spheroides 总被引:6,自引:0,他引:6
D W Reed 《The Journal of biological chemistry》1969,244(18):4936-4941
11.
57Fe Mössbauer spectroscopy measurements on reaction centers differing in ubiquinone content, detergent, oxidation state, or the presence of o-phenanthroline all show a single quadrupole doublet of similar splitting (ΔEQ), center shift (δ) and temperature dependence. The results are indicative of high-spin Fe2+ with an approximately invariant first coordination sphere. A crystal field model with strong electron delocalization can account for the temperature dependence of ΔEQ, but further data are needed to achieve a unique parameterization. 相似文献
12.
13.
A rapid procedure for the isolation and purification of photosynthetic reaction centers from Rhodopseudomonas sphaeroides R-26 总被引:3,自引:0,他引:3
A rapid purification procedure has been developed for the isolation of reaction centers From Rhodopseudomonas sphaeroides strain R-26. The procedure takes about 7 h and results in yields of 60–75%. The ratio of the optical absorbances at 280 and 800 nm is between 1.4 and 1.5, and preparations can be made with either one or two quinones per reaction center. EPR spectra show a sharp g 1.83 signal for the ubisemiquinone. The substitution of lauryl maltoside for lauryldimethylamine oxide suppresses reaction-center degradation in solution. 相似文献
14.
Plasmid rearrangements in the photosynthetic bacterium Rhodopseudomonas sphaeroides 总被引:2,自引:14,他引:2 下载免费PDF全文
Mu d1(Ap lac) was introduced into the photosynthetic bacterium Rhodopseudomonas sphaeroides 2.4.1. via the R-plasmid R751 in an attempt to isolate fusion derivatives involving photosynthetic operons. The selection system is potentially very powerful since R. sphaeroides is normally Lac negative. Among the exconjugants, photosynthesis-deficient mutants were recovered, some of which had elevated beta-galactosidase levels. Among the mutants examined, beta-galactosidase expression was linked exclusively to R751 . Many of the photosynthesis-deficient mutants were found to have alterations in their indigenous plasmids which apparently involved the exchange of DNA from one plasmid to another. Southern blot analysis revealed that there are extensive DNA sequences which are shared by the two plasmids that are involved in the rearrangements and that no exogenous DNA sequences appear to be involved. It was further discovered that plasmid rearrangement is a general phenomenon which can occur spontaneously in R. sphaeroides 2.4.1 and shows a high correlation with a photosynthesis minus phenotype. 相似文献
15.
Purple bacterial photosynthetic reaction center (RC) H proteins comprise three cellular domains: an 11 amino acid N-terminal sequence on the periplasmic side of the inner membrane; a single transmembrane alpha-helix; and a large C-terminal, globular cytoplasmic domain. We studied the roles of these domains in Rhodobacter sphaeroides RC function and assembly, using a mutagenesis approach that included domain swapping with Blastochloris viridis RC H segments and a periplasmic domain deletion. All mutations that affected photosynthesis reduced the amount of the RC complex. The RC H periplasmic domain is shown to be involved in the accumulation of the RC H protein in the cell membrane, while the transmembrane domain has an additional role in RC complex assembly, perhaps through interactions with RC M. The RC H cytoplasmic domain also functions in RC complex assembly. There is a correlation between the amounts of membrane-associated RC H and RC L, whereas RC M is found in the cell membrane independently of RC H and RC L. Furthermore, substantial amounts of RC M and RC L are found in the soluble fraction of cells only when RC H is present in the membrane. We suggest that RC M provides a nucleus for RC complex assembly, and that a RC H/M/L assemblage results in a cytoplasmic pool of soluble RC M and RC L proteins to provide precursors for maximal production of the RC complex. 相似文献
16.
Lipid-protein interactions were examined in chromatophores isolated from the photosynthetic bacterium Rhodopseudomonas sphaeroides using lipid spin-labels. The chromatophores contain fluid bilayer and a significant amount of lipid immobilized by membrane proteins. For a typical preparation of cells grown under 600 ft-c illumination, 59% of the spin-labeled fatty acids were bound. Essentially the entire length of the 18-carbon fatty acid chain was immobilized, judging from results obtained with the spin-label at the 7, 12, and 16 positions. The amount immobilized varies directly with the bacteriochlorophyll content of the chromatophore material, suggesting that a significant fraction of the lipid spin-labels is immoblized on the hydrophobic surfaces of the chlorophyll-binding proteins. Changing the lipid spin-label head group from a negatively charged carboxyl group to a positively charged quarternary amine greatly decreased the amount of immobilized lipid. The changes in immobilized lipid with light level and polar head group suggest that the anntenna bacteriochlorophyll-binding proteins preferentially associate with negatively charged lipids. 相似文献
17.
18.
《BBA》1987,892(3):275-283
Electron-transfer reactions and triplet decay rates have been studied at pressures up to 300 MPa. In reaction centers from Rhodobacter sphaeroides R-26, high pressure hastened the electron transfers from both the primary and secondary quinones (QA and QB) to the primary electron donor bacteriochlorophyll, P. Motion of QA between two sites, one nearer to P and the other nearer to QB, could account for these pressure effects. In reaction centers from Rhodopseudomonas viridis, charge recombination was slowed by high pressure. Decay rates were also studied for the triplet state, PR. In Rb. sphaeroides R-26 with QA reduced with Na2S2O4, the decay was hastened by pressure. This could be explained if PR decays through a charge-transfer triplet state, or if the decay kinetics of PR are sensitive to the distance between P and QA−. In Rps. viridis reaction centers, and in Rb. sphaeroides reaction centers that were depleted of QA, the lifetime of PR was not altered by pressure. 相似文献
19.
Microaerophilic growth and induction of the photosynthetic reaction center in Rhodopseudomonas viridis. 总被引:1,自引:3,他引:1 下载免费PDF全文
Rhodopseudomonas viridis was grown in liquid culture at 30 degrees C anaerobically in light (generation time, 13 h) and under microaerophilic growth conditions in the dark (generation time, 24 h). The bacterium could be cloned at the same temperature anaerobically in light (1 week) and aerobically in the dark (3 to 4 weeks) if oxygen was limited to 0.1%. Oxygen could not be replaced by dimethyl sulfoxide, potassium nitrate, or sodium nitrite as a terminal electron acceptor. No growth was observed anaerobically in darkness or in the light when air was present. A variety of additional carbon sources were used to supplement the standard succinate medium, but enhanced stationary-phase cell density was observed only with glucose. Conditions for induction of the photosynthetic reaction center upon the change from microaerophilic to phototrophic growth conditions were investigated and optimized for a mutant functionally defective in phototrophic growth. R. viridis consumed about 20-fold its cell volume of oxygen per hour during respiration. The MICs of ampicillin, kanamycin, streptomycin, tetracycline, 1-methyl-3-nitro-1-nitrosoguanidine, and terbutryn were determined. 相似文献
20.
Redox titration of horse heart cytochrome c (cyt c), in the presence of varying concentrations of detergent-solubilized photosynthetic reaction center (RC) from Rhodobacter sphaeroides, revealed an RC concentration-dependent decrease in the measured cyt c midpoint potential that is indicative of a 3.6 +/- 0.2-fold stronger binding affinity of oxidized cytochrome to a single binding site. This effect was correlated with preferential binding in the functional complex by redox titration of the fraction of RCs exhibiting microsecond, first-order, special pair reduction by cytochrome. A binding affinity ratio of 3.1 +/- 0.4 was determined by this second technique, confirming the result. Redox titration of flash-induced intracomplex electron transfer also showed the association in the electron transfer-active complex to be strong, with a dissociation constant of 0.17 +/- 0.03 microM. The tight binding is associated with a slow off-rate which, in the case of the oxidized form, can influence the kinetics of P(+) reduction. The pitfalls of the common use of xenon flashlamps to photoexcite fast electron-transfer reactions are discussed with relation to the first electron transfer from primary to secondary RC quinone acceptors. The results shed some light on the diversity of kinetic behavior reported for the cytochrome to RC electron-transfer reaction. 相似文献