首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Successful microbial-mediated remediation requires transformationpathways that maximize metabolism and minimize the accumulation of toxic products. Pseudomonas aeruginosa strain MX, isolated from munitions-contaminated soil, degraded 100 mg TNT L-1 in culture medium within 10 h under aerobic conditions. The major TNT products were 2-amino-4,6-dinitrotoluene (2ADNT, primarily in the supernatant) and 2,2'-azoxytoluene (2,2'AZT, primarily in the cell fraction), which accumulated as major products via the intermediate2-hydroxylamino-4,6-dinitrotoluene (2HADNT). The 2HADNT and2,2'AZT were relatively less toxic to the strain than TNT and 2ADNT. Aminodinitrotoluene (ADNT) production increased when yeast extract was added to the medium. While TNT transformation rate was not affected by pH, more HADNTs accumulated at pH 5.0 than at pH 8.0 and AZTs did not accumulate at the lower pH. The appearance of 2,6-diamino-4-nitrotoluene (2,6DANT) and 2,4-diamino-6-nitrotoluene (2,4DANT); dinitrotoluene (DNT) and nitrotoluene (NT); and 3,5-dinitroaniline (3,5DNA) indicated various routes of TNT metabolism and detoxification by P. aeruginosa strain MX.  相似文献   

2.
The biotransformation of 2,4,6-trinitrotoluene (TNT) (175 microM) by Phanerochaete chrysosporium with molasses and citric acid at pH 4.5 was studied. In less than 2 weeks, TNT disappeared completely, but mineralization (liberated 14CO2) did not exceed 1%. A time study revealed the presence of several intermediates, marked by the initial formation of two monohydroxylaminodinitrotoluenes (2- and 4-HADNT) followed by their successive transformation to several other products, including monoaminodinitrotoluenes (ADNT). A group of nine acylated intermediates were also detected. They included 2-N-acetylamido-4,6-dinitrotoluene and its p isomer, 2-formylamido-4, 6-dinitrotoluene and its p isomer (as acylated ADNT), 4-N-acetylamino-2-amino-6-nitrotoluene and 4-N-formylamido-2-amino-6-nitrotoluene (as acetylated DANT), 4-N-acetylhydroxy-2,6-dinitrotoluene and 4-N-acetoxy-2, 6-dinitrotoluene (as acetylated HADNT), and finally 4-N-acetylamido-2-hydroxylamino-6-nitrotoluene. Furthermore, a fraction of HADNTs were found to rearrange to their corresponding phenolamines (Bamberger rearrangement), while another group dimerized to azoxytoluenes which in turn transformed to azo compounds and eventually to the corresponding hydrazo derivatives. After 30 days, all of these metabolites, except traces of 4-ADNT and the hydrazo derivatives, disappeared, but mineralization did not exceed 10% even after the incubation period was increased to 120 days. The biotransformation of TNT was accompanied by the appearance of manganese peroxidase (MnP) and lignin-dependent peroxidase (LiP) activities. MnP activity was observed almost immediately after TNT disappearance, which was the period marked by the appearance of the initial metabolites (HADNT and ADNT), whereas the LiP activity was observed after 8 days of incubation, corresponding to the appearance of the acyl derivatives. Both MnP and LiP activities reached their maximum levels (100 and 10 U/liter, respectively) within 10 to 15 days after inoculation.  相似文献   

3.
White-rot fungi are known to degrade a wide range of xenobiotic environmental pollutants, including the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT). TNT is first reduced by the fungal mycelium to aminodinitrotoluenes and diaminonitrotoluenes. In a second phase, reduced TNT metabolites are oxidatively transformed and mineralized. The extracellular oxidative enzyme of the ligninolytic system of these fungi includes the lignin peroxidases (LiP) and the manganese-dependent peroxidases (MnP). In the present study, we have shown that a cell-free enzymatic system containing fast protein liquid chromatography (FPLC)-purified LiP (H8) from the white-rot fungus Phanerochaete chrysosporium was able to completely transform 50 mg/L of 2,4-diamino-6-nitrotoluene (2,4-DA-6-NT) and 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT) in 1 and 48 h, respectively. Veratryl alcohol (VA), often described as a mediator in the LiP-catalyzed oxidative depolymerization of lignin, was not required for the enzymatic transformation of 2,4-DA-6-NT or 2-A-4,6-DNT. 2,4-DA-6-NT was also shown to be a competitive inhibitor of the LiP activity measured through the oxidation of VA. Experiments using 14C-U-ring labeled compounds showed that 2-A-4,6-DNT was converted to 2,2'-azoxy-4,4' ,6,6'-tetranitrotoluene. No significant mineralization, measured by the release of 14CO2, was observed over 5 d.  相似文献   

4.
The biotransformation of 2,4,6-trinitrotoluene (TNT) (175 μM) by Phanerochaete chrysosporium with molasses and citric acid at pH 4.5 was studied. In less than 2 weeks, TNT disappeared completely, but mineralization (liberated 14CO2) did not exceed 1%. A time study revealed the presence of several intermediates, marked by the initial formation of two monohydroxylaminodinitrotoluenes (2- and 4-HADNT) followed by their successive transformation to several other products, including monoaminodinitrotoluenes (ADNT). A group of nine acylated intermediates were also detected. They included 2-N-acetylamido-4,6-dinitrotoluene and its p isomer, 2-formylamido-4,6-dinitrotoluene and its p isomer (as acylated ADNT), 4-N-acetylamino-2-amino-6-nitrotoluene and 4-N-formylamido-2-amino-6-nitrotoluene (as acetylated DANT), 4-N-acetylhydroxy-2,6-dinitrotoluene and 4-N-acetoxy-2,6-dinitrotoluene (as acetylated HADNT), and finally 4-N-acetylamido-2-hydroxylamino-6-nitrotoluene. Furthermore, a fraction of HADNTs were found to rearrange to their corresponding phenolamines (Bamberger rearrangement), while another group dimerized to azoxytoluenes which in turn transformed to azo compounds and eventually to the corresponding hydrazo derivatives. After 30 days, all of these metabolites, except traces of 4-ADNT and the hydrazo derivatives, disappeared, but mineralization did not exceed 10% even after the incubation period was increased to 120 days. The biotransformation of TNT was accompanied by the appearance of manganese peroxidase (MnP) and lignin-dependent peroxidase (LiP) activities. MnP activity was observed almost immediately after TNT disappearance, which was the period marked by the appearance of the initial metabolites (HADNT and ADNT), whereas the LiP activity was observed after 8 days of incubation, corresponding to the appearance of the acyl derivatives. Both MnP and LiP activities reached their maximum levels (100 and 10 U/liter, respectively) within 10 to 15 days after inoculation.  相似文献   

5.
2,4,6-Trinitrotoluene (TNT) is an important occupational and environmental pollutant. In TNT-exposed humans, notable toxic manifestations have included aplastic anaemia, toxic hepatitis, cataracts, hepatomegaly, and liver cancer. Therefore, methods were developed to biomonitor workers exposed to TNT. The workers were employed in a typical ammunition factory in China. The external dose (air levels and skin exposure), the internal dose (urinary metabolites), the biologically effective dose (haemoglobin adducts, urinary mutagenicity), biological effects (chromosomal aberrations and health effects), and individual susceptibility (genotypes of xenobiotic-metabolizing enzymes) were determined. Haemoglobin-adducts of TNT, 4-amino-2,6-dinitrotoluene (4ADNT) and 2-amino-4,6-dinitrotoluene (2ADNT), and the urinary metabolites of TNT, 4ADNT and 2ADNT, were found in all workers and in some controls. The levels of the haemoglobin-adducts or the urinary metabolites correlated weakly with the skin or air levels of TNT. The urinary mutagenicity determined in a subset of workers correlated strongly with the levels of 4ADNT and 2ADNT in urine. The haemoglobin-adducts correlated moderately with the urinary metabolites and with the urinary mutagenicity. The genotypes of glutathione S-transferases (GSTM1, GSTT1, GSTP1) and N-acetyltransferases (NAT1, NAT2) were determined. In general, the genotypes did not significantly influence the haemoglobin-adduct levels and the urine metabolite levels. However, TNT-exposed workers who carried the NAT1 rapid acetylator genotype showed an increase in urinary mutagenicity and chromosomal aberrations as compared with slow acetylators. The haemoglobin adduct 4ADNT was significantly associated with a risk of hepatomegaly, splenomegaly and cataract; urine metabolites and genotypes were not associated with health effects. These results indicate that a set of well-selected biomarkers may be more informative regarding exposure and effect than routinely performed chemical measurements of pollutants in the air or on the skin.  相似文献   

6.
The explosive 2,4,6-trinitrotoluene (TNT) is widely used and results in widespread soil contamination. The white-rot fungus Phanerochaete chrysosporium has been shown to degrade TNT, using the peroxidase enzyme. In this study, we report peroxidase-independent degradation of TNT by non-ligninolytic P. chrysosporium. Significant disappearance of TNT from highly contaminated soil using P. chrysosporium has been observed. Soil highly contaminated with TNT (2270 ppm [10 mM]) was diluted to 100 ppm (0.44 mM) with malt extract medium. Pregrown (48 hours) mycelial pellets of P. chrysosporium were added in 100 mL malt extract medium and incubated in Gledhill flasks. Analysis by high-performance liquid chromatography (HPLC) was conducted on soil extracts at specific time points to estimate the disappearance of TNT from contaminated soil incubated with P. chrysosporium. When the pregrown mycelial pellets were added, TNT disappeared within 48 hours. The dissolved concentration of 2-amino-4,6-dinitrotoluene (2Am-DNT) increased up to the third day, then declined before its final disappearance by day 10. Results show that the pregrown mycelial pellets of P. chrysosporium mineralized up to 17.3±6.3% [14C]-TNT within 30 days.  相似文献   

7.
2,4,6-Trinitrotoluene (TNT) is an important occupational and environmental pollutant. TNT can be taken up through the skin and by inhalation. It is therefore essential to have fast and reliable methods to monitor human exposure. In rat experiments, it has been shown that TNT binds covalently to blood proteins and to tissue proteins. Hemoglobin (Hb) adducts of TNT are markers for the internal dose and possibly for the toxic effects of TNT, e.g. cataracts. In the present paper we introduce a new efficient method to quantify Hb adducts of TNT. Precipitated Hb was hydrolyzed with base in the presence of the surrogate internal standard 3,5-dinitroaniline (35DNA). The released 2-amino-4,6-dinitrotoluene (2ADNT) and 4-amino-2,6-dinitrotoluene (4ADNT) were quantified against 35DNA by gas chromatography-mass spectrometry with negative-ion chemical ionization. Hb of 50 workers and controls from a Chinese munition factory were investigated. The Hb adduct levels ranged from 3.7 to 522 ng for 4ADNT and from 0 to 14.7 ng for 2ADNT per gram of Hb. However, in control samples from Germany no Hb adducts of 4ADNT or 2ADNT could be found.  相似文献   

8.
Degradation of 2,4,6-trinitrotoluene by Serratia marcescens   总被引:1,自引:0,他引:1  
A strain of Serratia marcescens, isolated from the soil of a contaminated site, degraded 2,4,6-trinitrotoluene (TNT) as the sole source of carbon and energy. At an initial concentration of 50mg , TNT was totally degraded in 48h under aerobic conditions in a minimal salt medium. Reduction intermediates (4-amino-2,6-dinitrotoluene and 2-amino-4,6-dinitrotoluene) were observed. The presence of a surfactant (Tween 80) is essential to facilitate rapid degradation.  相似文献   

9.
Microorganisms indigenous to surface soils and aquifer materials collected at a munitions-contaminated site transformed 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), and 2,6-dinitrotoluene (2,6-DNT) to amino-nitro intermediates within 20 to 70 days. Carbon mineralization studies with both unlabeled (TNT, 2,4-DNT, and 2,6-DNT) and radiolabeled ([14C]TNT) substrates indicated that a significant fraction of these source compounds was degraded to CO2.  相似文献   

10.
Metabolites formed during 2,4,6-trinitrotoluene (TNT) removal by a mixed bacterial culture (acclimated and maintained on crude oil-containing medium and capable of high rates of TNT removal) were characterized. In resting cell experiments in the absence of glucose, 46.2 mg/l TNT were removed in 171 h (87.5% removal), with a combined total formation of 7.7 mg/l amino-4,6-dinitrotoluene (ADNT) and 0.3 mg/l 4,4-azoxytetranitrotoluene and 2,4-azoxytetranitrotoluene, leaving 70% of the initial TNT unaccounted for. In the presence of glucose, resting cells removed 45.4 mg/l TNT in 49 h (95.5% removal), with 9.1 mg/l ADNT and 2.4 mg/l azoxy compounds being produced, leaving 70.3% of the TNT unaccounted for. Growing cells (glucose present) were capable of removing 44.2 mg/l TNT within 21 h (97.9% removal), with the concomitant formation of 1.8 mg/l ADNTs and 2.2 mg/l azoxy compounds. Denitrated TNT in the form of 2,6-dinitrotoluene was also produced in growing cells with a maximum amount of 1.31 mg/l after 28 h, followed by a slight decrease with time, leaving 88.5% of the initial TNT unaccounted for after 171 h. Radiolabeled 14C-TNT studies revealed 4.14% mineralization after an incubation period of 163 days with growing cells.  相似文献   

11.
The fungus Fusarium oxysporum was isolated and identified from the aquatic plant M. aquaticum. The capability of this fungus to transform 2,4,6-trinitrotoluene (TNT) in liquid cultures was investigated TNT was added to shake flask cultures and transformed into 2-amino-4,6-dinitrotoluene (2-A-DNT), 4-amino-2,6-dinitrotoluene (4-A-DNT), and 2,4-diamino-6-nitrotoluene (2,4-DAT) via 2- and 4-hydroxylamino-dinitrotoluene derivatives, which could be detected as intermediate metabolites. Transformation of TNT, 2-A-DNT, and 4-A-DNT was observed by whole cultures and with isolated mycelium. Cell-free protein extracts from the extracellular, soluble, and membrane-bound fractions were prepared from this fungus and tested for TNT-reducing activity. The concentrated extracellular culture medium was unable to transform TNT; however, low levels of TNT transformation were observed by the membrane fraction in the presence of nicotinamide adenine dinucleotide phosphate in an argon atmosphere. A concentrated extract of soluble enzymes also transformed TNT, but to a lesser extent. When TNT toxicity was studied with this fungus, a 50% decrease in the growth of F. oxysporum mycelium was observed when exposed to 20 mg/L TNT.  相似文献   

12.
2,4,6-Trinitrotoluene (TNT) is an important occupational and environmental pollutant. In TNT-exposed humans, notable toxic manifestations have included aplastic anaemia, toxic hepatitis, cataracts, hepatomegaly, and liver cancer. Therefore, methods were developed to biomonitor workers exposed to TNT. The workers were employed in a typical ammunition factory in China. The external dose (air levels and skin exposure), the internal dose (urinary metabolites), the biologically effective dose (haemoglobin adducts, urinary mutagenicity), biological effects (chromosomal aberrations and health effects), and individual susceptibility (genotypes of xenobiotic-metabolizing enzymes) were determined. Haemoglobin-adducts of TNT, 4-amino-2,6-dinitrotoluene (4ADNT) and 2-amino-4,6-dinitrotoluene (2ADNT), and the urinary metabolites of TNT, 4ADNT and 2ADNT, were found in all workers and in some controls. The levels of the haemoglobin-adducts or the urinary metabolites correlated weakly with the skin or air levels of TNT. The urinary mutagenicity determined in a subset of workers correlated strongly with the levels of 4ADNT and 2ADNT in urine. The haemoglobin-adducts correlated moderately with the urinary metabolites and with the urinary mutagenicity. The genotypes of glutathione S-transferases (GSTM1, GSTT1, GSTP1) and N-acetyltransferases (NAT1, NAT2) were determined. In general, the genotypes did not significantly influence the haemoglobin-adduct levels and the urine metabolite levels. However, TNT-exposed workers who carried the NAT1 rapid acetylator genotype showed an increase in urinary mutagenicity and chromosomal aberrations as compared with slow acetylators. The haemoglobin adduct 4ADNT was significantly associated with a risk of hepatomegaly, splenomegaly and cataract; urine metabolites and genotypes were not associated with health effects. These results indicate that a set of well-selected biomarkers may be more informative regarding exposure and effect than routinely performed chemical measurements of pollutants in the air or on the skin.  相似文献   

13.
The biological removal of 2,4,6-trinitrotoluene (TNT) was studied in a bench-scale bioreactor using a bacterial culture of strain OK-5 originally isolated from soil samples contaminated with TNT. The TNT was completely removed within 4 days of incubation in a 2.5 L benchscale bioreactor containing a newly developed medium. The TNT was catabolized in the presence of different supplemented carbons. Only minimal growth was observed in the killed controls and cultures that only received TNT during the incubation period. This catabolism was affected by the concentration ratio of the substrate to the biomass. The addition of various nitrogen sources produced a delayed effect for the TNT degradation. Tween 80 enhanced the degradation of TNT under these conditions. Two metabolic intermediates were detected and identified as 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene based on HPLC and GC-MS analyses, respectively. Strain OK-5 was characterized using the BIOLOG system and fatty acid profile produced by a microbial identification system equipped with a Hewlett packard HP 5890 II gas chromatograph. As such, the bacterium was identified as aStenotrophomonas species and designated asStenotrophomonas sp. OK-5.  相似文献   

14.
2,4,6-Trinitrotoluene (TNT) is an important occupational and environmental pollutant. In TNT-exposed humans, notable toxic manifestations have included aplastic anaemia, toxic hepatitis, cataracts, hepatomegaly and liver cancer. Therefore, it is important to develop protection measures and to monitor workers involved in the clean-up of ammunition sites. Haemoglobin (Hb) adducts of TNT, 4-amino-2,6-dinitrotoluene (4ADNT) and 2-amino-4,6-dinitrotoluene (2ADNT), and the urine metabolites of TNT, 4ADNT and 2ADNT were found in 22–50% of the exposed workers, but not in the control group. The exposed workers were wearing protective equipment. The levels of erythrocytes, haemoglobin, creatinine, serum glutamic pyruvic transaminase and lymphocyte levels were significantly lower in the exposed workers than in the non-exposed workers. The levels of blood urea and reticulocytes were significantly higher in the exposed workers than in the non-exposed workers. Headache (26%), mucous membrane irritation (16%), sick leave (18%), lassitude (8%), anxiety (6%), shortness of breath (3%), nausea (5%) and allergic reactions (8%) were reported by the exposed workers. In a further analysis the U-4ADNT levels and the Hb-adduct levels were compared to the blood parameter and the health effects. The blood parameters were not significantly different between the U-4ADNT positive and U-4ADNT-negative group. Headache, mucous membrane irritation, sick leave, lassitude, anxiety, shortness of breath and allergic reactions were statistically not different between the two groups. Also in the workers with Hb-4ADNT adducts no significant negative changes were seen in regards to the changes of the blood parameters or the health effects. According to the results of the present study, it appears that the blood parameter changes and the health effects are more influenced by other factors than by the internal exposure to TNT.  相似文献   

15.
Pseudomonas pseudoalcaligenes JS52 grows on nitrobenzene via partial reduction of the nitro group and enzymatic rearrangement of the resultant hydroxylamine. Cells and cell extracts of nitrobenzene-grown JS52 catalyzed the transient formation of 4-hydroxylamino-2,6-dinitrotoluene (4HADNT), 4-amino-2,6-dinitrotoluene (4ADNT), and four previously unidentified metabolites from 2,4,6-trinitrotoluene (TNT). Two of the novel metabolites were identified by liquid chromatography/mass spectrometry and (sup1)H-nuclear magnetic resonance spectroscopy as 2,4-dihydroxylamino-6-nitrotoluene (DHANT) and 2-hydroxylamino-4-amino-6-nitrotoluene (2HA4ANT). A polar yellow metabolite also accumulated during transformation of TNT by cells and cell extracts. Under anaerobic conditions, extracts of strain JS52 did not catalyze the production of the yellow metabolite or release nitrite from TNT; moreover, DHANT and 2HA4ANT accumulated under anaerobic conditions, which indicated that their further metabolism was oxygen dependent. Small amounts of nitrite were released during transformation of TNT by strain JS52. Sustained transformation of TNT by cells required nitrobenzene, which indicated that TNT transformation does not provide energy. Transformation of TNT catalyzed by enzymes in cell extracts required NADPH. Transformation experiments with (sup14)C-TNT indicated that TNT was not mineralized; however, carbon derived from TNT became associated with cells. Nitrobenzene nitroreductase purified from strain JS52 transformed TNT to DHANT via 4HADNT, which indicated that the nitroreductase could catalyze the first two steps in the transformation of TNT. The unusual ability of the nitrobenzene nitroreductase to catalyze the stoichiometric reduction of aromatic nitro compounds to the corresponding hydroxylamine provides the basis for the novel pathway for metabolism of TNT.  相似文献   

16.
An aerobic bacterial consortium was shown to degrade 2,4,6-trinitrotoluene (TNT). At an initial concentration of 100 ppm, 100% of the TNT was transformed to intermediates in 108 h. Radiolabeling studies indicated that 8% of [14C]TNT was used as biomass and 3.1% of [14C]TNT was mineralized. The first intermediates observed were 4-amino-2,6-dinitrotoluene and its isomer 2-amino-4,6-dinitrotoluene. Prolonged incubation revealed signs of ring cleavage. Succinate or another substrate—e.g., malic acid, acetate, citrate, molasses, sucrose, or glucose—must be added to the culture medium for the degradation of TNT. The bacterial consortium was composed of variousPseudomonas spp. The results suggest that the degradation of TNT is accomplished by co-metabolism and that succinate serves as the carbon and energy source for the growth of the consortium. The results also suggest that this soil bacterial consortium may be useful for the decontamination of environmental sites contaminated with TNT.  相似文献   

17.
2,4,6-Trinitrotoluene (TNT) is an important occupational and environmental pollutant. In TNT-exposed humans, notable toxic manifestations have included aplastic anaemia, toxic hepatitis, cataracts, hepatomegaly and liver cancer. Therefore, it is important to develop protection measures and to monitor workers involved in the clean-up of ammunition sites. Haemoglobin (Hb) adducts of TNT, 4-amino-2,6-dinitrotoluene (4ADNT) and 2-amino-4,6-dinitrotoluene (2ADNT), and the urine metabolites of TNT, 4ADNT and 2ADNT were found in 22-50% of the exposed workers, but not in the control group. The exposed workers were wearing protective equipment. The levels of erythrocytes, haemoglobin, creatinine, serum glutamic pyruvic transaminase and lymphocyte levels were significantly lower in the exposed workers than in the non-exposed workers. The levels of blood urea and reticulocytes were significantly higher in the exposed workers than in the non-exposed workers. Headache (26%), mucous membrane irritation (16%), sick leave (18%), lassitude (8%), anxiety (6%), shortness of breath (3%), nausea (5%) and allergic reactions (8%) were reported by the exposed workers. In a further analysis the U-4ADNT levels and the Hb-adduct levels were compared to the blood parameter and the health effects. The blood parameters were not significantly different between the U-4ADNT positive and U-4ADNT-negative group. Headache, mucous membrane irritation, sick leave, lassitude, anxiety, shortness of breath and allergic reactions were statistically not different between the two groups. Also in the workers with Hb-4ADNT adducts no significant negative changes were seen in regards to the changes of the blood parameters or the health effects. According to the results of the present study, it appears that the blood parameter changes and the health effects are more influenced by other factors than by the internal exposure to TNT.  相似文献   

18.
19.
Our recent study highlights the role of 2 glutathione transferases (GSTs) in the detoxification of the environmental pollutant, 2,4,6-trinitrotoluene (TNT) in Arabidopsis thaliana. TNT is toxic and highly resistant to biodegradation in the environment, raising both health and environmental concerns. Two GSTs, GST-U24 and GST-U25, are upregulated in response to TNT treatment, and expressed predominantly in the root tissues; the site of TNT location following uptake. Plants overexpressing GST-U24 and GST-U25 exhibited significantly enhanced ability to withstand and detoxify TNT, and remove TNT from contaminated soil. Analysis of the catalytic activities of these 2 enzymes revealed that they form 3 TNT-glutathionyl products. Of particular interest is 2-glutathionyl-4,6-dinitrotoluene as this represents a potentially favorable step toward subsequent degradation and mineralization of TNT. We demonstrate how GSTs fit into what is already known about pathways for TNT detoxification, and discuss the short and longer-term fate of TNT conjugates in planta.  相似文献   

20.
Microplantlets of the marine red macroalga Portieria hornemannii efficiently removed the explosive compound 2,4,6-trinitrotoluene (TNT) from seawater. Photosynthetic, axenic microplantlets (1.2 g FW/L) were challenged with enriched seawater medium containing dissolved TNT at concentrations of 1.0, 10, and 50 mg/L. At 22 degrees C and initial TNT concentrations of 10 mg/L or less, TNT removal from seawater was 100% within 72 h, and the first-order rate constant for TNT removal ranged from 0.025 to 0.037 L/gFW h under both illuminated conditions (153 microE/m(2)s, 14:10 LD photoperiod) and dark conditions. Two immediate products of TNT biotransformation, 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dintrotoluene, were identified in the liquid culture medium, with a maximum material balance recovery of 29 mole%. Only trace levels of these products and residual TNT were found within the fresh cell biomass. Removal of TNT by P. hornemannii microplantlets at initial concentrations of 1.0 or 10 mg/L did not affect the respiration rate. At an initial TNT concentration of 10 mg/L, net photosynthesis decreased towards zero, commensurate with the removal of dissolved TNT from seawater, whereas at an initial TNT concentration of 1.0 mg/L, the net photosynthesis rate was not affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号