首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Infection of mice with lymphocytic choriomeningitis virus (LCMV) is frequently used to study the underlying principles of viral infections and immune responses. We fit a mathematical model to recently published data characterizing Ag-specific CD8+ T cell responses during acute (Armstrong) and chronic (clone 13) LCMV infection. This allows us to analyze the differences in the dynamics of CD8+ T cell responses against different types of LCMV infections. For the four CD8+ T cell responses studied, we find that, compared with the responses against acute infection, responses against chronic infection are generally characterized by an earlier peak and a faster contraction phase thereafter. Furthermore, the model allows us to give a new interpretation of the effect of thymectomy on the dynamics of CD8+ T cell responses during chronic LCMV infection: a smaller number of naive precursor cells is sufficient to account for the observed differences in the responses in thymectomized mice. Finally, we compare data characterizing LCMV-specific CD8+ T cell responses from different laboratories. Although the data were derived from the same experimental model, we find quantitative differences that can be solved by introducing a scaling factor. Also, we find kinetic differences that are at least partly due to the infrequent measurements of CD8+ T cells in the different laboratories.  相似文献   

2.
Despite the well-recognized importance of CD4 T-cell help in the induction of antibody production and cytotoxic-T-lymphocyte responses, the regulation of CD4 T-cell responses is not well understood. Using mice deficient for TNF receptor I (TNFR I) and/or TNFR II, we show that TNFR I and TNFR II play redundant roles in down regulating the expansion of CD4 T cells during an acute infection of mice with lymphocytic choriomeningitis virus (LCMV). Adoptive transfer experiments using T-cell-receptor transgenic CD4 T cells and studies with mixed bone marrow chimeras indicated that indirect effects and not direct effects on T cells mediated the suppressive function of TNF on CD4 T-cell expansion during the primary response. Further studies to characterize the indirect effects of TNF suggested a role for TNFRs in LCMV-induced deletion of CD11c(hi) dendritic cells in the spleen, which might be a mechanism to limit the duration of antigenic stimulation and CD4 T-cell expansion. Consequent to enhanced primary expansion, there was a substantial increase in the number of LCMV-specific memory CD4 T cells in the spleens of mice deficient for both TNFR I and TNFR II. In summary, our findings suggest that TNFRs down regulate CD4 T-cell responses during an acute LCMV infection by a non-T-cell autonomous mechanism.  相似文献   

3.
Apoptosis is critical for the development and maintenance of the immune system. The proapoptotic Bcl-2 family member Bim is important for normal immune system homeostasis. Although previous experiments have shown that Bim is critical for the apoptosis of antigen-specific CD8(+) T cells during acute viral infection, the role of Bim during chronic viral infection is unclear. Using lymphocytic choriomeningitis virus clone 13 infection of mice, we demonstrate a role for Bim in CD8(+) T-cell apoptosis during chronic viral infection. Enumeration of antigen-specific CD8(+) T cells by major histocompatibility complex class I tetramer staining revealed that CD8(+) D(b)NP396-404(+) T cells, which undergo extensive deletion in wild-type mice, exhibited almost no decrease in Bim mutant mice. This contrasts with CD8(+) D(b)GP33-41(+) and CD8(+) D(b)GP276-286(+) T cells that underwent similar decreases in numbers in both Bim mutant and wild-type mice. Increased numbers of CD8(+) D(b)NP396-404(+) T cells in Bim mutant mice were due to lack of apoptosis and could not be explained by altered proliferation, differential homing to tissues, or increased help from CD4(+) T cells. When viral titers were examined, high levels were initially observed in both groups, but in Bim mutant mice, clearance from the spleen and sera was slightly accelerated. These experiments demonstrate the critical role of Bim during chronic viral infection to down-regulate CD8(+) T-cell responses and have implications for designing strategies for optimizing immunotherapies during situations where antigen persists, such as chronic infection, autoimmune syndromes, and cancer.  相似文献   

4.
We fit a mathematical model to data characterizing the primary cellular immune response to lymphocytic choriomeningitis virus. The data enumerate the specific CD8(+) T cell response to six MHC class I-restricted epitopes and the specific CD4(+) T cell responses to two MHC class II-restricted epitopes. The peak of the response occurs around day 8 for CD8(+) T cells and around day 9 for CD4(+) T cells. By fitting a model to the data, we characterize the kinetic differences between CD4(+) and CD8(+) T cell responses and among the immunodominant and subdominant responses to the various epitopes. CD8(+) T cell responses have faster kinetics in almost every aspect of the response. For CD8(+) and CD4(+) T cells, the doubling time during the initial expansion phase is 8 and 11 h, respectively. The half-life during the contraction phase following the peak of the response is 41 h and 3 days, respectively. CD4(+) responses are even slower because their contraction phase appears to be biphasic, approaching a 35-day half-life 8 days after the peak of the response. The half-life during the memory phase is 500 days for the CD4(+) T cell responses and appears to be lifelong for the six CD8(+) T cell responses. Comparing the responses between the various epitopes, we find that immunodominant responses have an earlier and/or larger recruitment of precursors cells before the expansion phase and/or have a faster proliferation rate during the expansion phase.  相似文献   

5.
The effector function of CD8 T cells is mediated via cell-mediated cytotoxicity and production of cytokines like gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha). While the roles of perforin-dependent cytotoxicity, IFN-gamma, and TNF-alpha in controlling acute viral infections are well studied, their relative importance in defense against chronic viral infections is not well understood. Using mice deficient for TNF receptor (TNFR) I and/or II, we show that TNF-TNFR interactions have a dual role in mediating viral clearance and downregulating CD8 and CD4 T-cell responses during a chronic lymphocytic choriomeningitis virus (LCMV) infection. While wild-type (+/+) and TNFR II-deficient (p75(-/-)) mice cleared LCMV from the liver and lung, mice deficient in TNFR I (p55(-/-)) or both TNFR I and TNFR II (double knockout [DKO]) exhibited impaired viral clearance. The inability of p55(-/-) and DKO mice to clear LCMV was not a sequel to either suboptimal activation of virus-specific CD8 or CD4 T cells or impairment in trafficking of LCMV-specific CD8 T cells to the liver and lung. In fact, the expansion of LCMV-specific CD8 and CD4 T cells was significantly higher in DKO mice compared to that in +/+, p55(-/-), and p75(-/-) mice. TNFR deficiency did not preclude the physical deletion of CD8 T cells specific for nucleoprotein 396 to 404 but delayed the contraction of CD8 T-cell responses to the epitopes GP33-41 and GP276-285 in the viral glycoprotein. The antibody response to LCMV was not significantly altered by TNFR deficiency. Taken together, these findings have implications in development of immunotherapy in chronic viral infections of humans.  相似文献   

6.
Activation of CD4+ T cells helps establish and sustain other immune responses. We have previously shown that responses against a broad set of nine CD4+ T-cell epitopes were present in the setting of lymphocytic choriomeningitis virus (LCMV) Armstrong infection in the context of H-2d. This is quite disparate to the H-2b setting, where only two epitopes have been identified. We were interested in determining whether a broad set of responses was unique to H-2d or whether additional CD4+ T-cell epitopes could be identified in the setting of the H-2b background. To pursue this question, we infected C57BL/6 mice with LCMV Armstrong and determined the repertoire of CD4+ T-cell responses using overlapping 15-mer peptides corresponding to the LCMV Armstrong sequence. We confirmed positive responses by intracellular cytokine staining and major histocompatibility complex (MHC)-peptide binding assays. A broad repertoire of responses was identified, consisting of six epitopes. These epitopes originate from the nucleoprotein (NP) and glycoprotein (GP). Out of the six newly identified CD4+ epitopes, four of them also stimulate CD8+ T cells in a statistically significant manner. Furthermore, we assessed these CD4+ T-cell responses during the memory phase of LCMV Armstrong infection and after infection with a chronic strain of LCMV and determined that a subset of the responses could be detected under these different conditions. This is the first example of a broad repertoire of shared epitopes between CD4+ and CD8+ T cells in the context of viral infection. These findings demonstrate that immunodominance is a complex phenomenon in the context of helper responses.  相似文献   

7.
Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at approximately 6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.  相似文献   

8.
T cell costimulation is important for T cell activation. The CD27/CD70 pathway contributes to effector and memory T cell development and is involved in T cell and B cell activation. CD27/CD70 is known for having opposing roles during different models of antigenic challenges. During primary T cell responses to influenza virus infection or during tumor challenges, CD27/CD70 costimulation has a positive role on T cell responses. However, during some chronic infections, constitutive triggering of this signaling pathway has a negative role on T cell responses. It is currently unclear what specific characteristic of an antigen determines the outcome of CD27/CD70 costimulation. We investigated the effect of a transient CD70 blockade during an acute or a chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. Blockade of this pathway during acute LCMV infection (Armstrong strain) resulted in delayed T cell responses and decreased CD127 (interleukin-7 receptor α [IL-7Rα] chain) conversion. Upregulation of CD127 is an important event in T cell differentiation that heralds the passage of an effector T cell to a long-lived memory T cell. In contrast to the reduced CD8 T cell responses after CD70 blockade during acute infection, CD70 blockade during chronic LCMV infection resulted in increased CD8 T cell responses. Our data show the dual roles of this costimulatory pathway in acute versus persistent antigen challenge. Our findings suggest that antigen persistence may determine the effect of CD27/CD70 signaling on CD8 T cell responses. Tailored triggering or blockade of this costimulatory pathway may be important in vaccination regimens against acute or chronic pathogens.  相似文献   

9.
During acute lymphocytic choriomeningitis virus (LCMV) infection, CD8 T cells rapidly expand and differentiate into effectors that are required for viral clearance. The accumulation of activated T cells is greatly reduced in mice lacking the adaptor molecule MyD88. Although MyD88 has generally been considered to indirectly regulate adaptive immune responses by controlling inflammatory cytokine production and Ag presentation in innate immune cells, in this study, we identify an unappreciated cell-intrinsic role for MyD88 in LCMV-specific CD8 T cells. Using reciprocal adoptive transfer models and bone marrow chimeras, we show that Myd88(-/-) CD8 T cells are defective in their clonal expansion in response to LCMV infection, independent of their environment. Furthermore, we show that while MyD88 is dispensable for initial activation and division of LCMV-specific CD8 T cells during the early stages of viral infection, MyD88-dependent signals are critical for supporting their survival and sustained accumulation.  相似文献   

10.
11.
During viral infection, constitutive proteasomes are largely replaced by immunoproteasomes, which display distinct cleavage specificities, resulting in different populations of potential CD8(+) T cell epitope peptides. Immunoproteasomes are believed to be important for the generation of many viral CD8(+) T cell epitopes and have been implicated in shaping the immunodominance hierarchies of CD8(+) T cell responses to influenza virus infection. However, it remains unclear whether these conclusions are generally applicable. In this study we investigated the CD8(+) T cell responses to lymphocytic choriomeningitis virus infection and DNA immunization in wild-type mice and in mice lacking the immunoproteasome subunits LMP2 or LMP7. Although the total number of virus-specific cells was lower in LMP2 knockout mice, consistent with their having lower numbers of naive cells before infection, the kinetics of virus clearance were similar in all three mouse strains, and LMP-deficient mice mounted strong primary and secondary lymphocytic choriomeningitis virus-specific CD8(+) T cell responses. Furthermore, the immunodominance hierarchy of the four investigated epitopes (nuclear protein 396 (NP(396)) > gp33 > gp276 > NP(205)) was well maintained. We observed a slight reduction in the NP(205)-specific response in LMP2-deficient mice, but this had no demonstrable biological consequence. DNA vaccination of LMP2- and LMP7-deficient mice induced CD8(+) T cell responses that were slightly lower than, although not significantly different from, those induced in wild-type mice. Taken together, our results challenge the notion that immunoproteasomes are generally needed for effective antiviral CD8(+) T cell responses and for the shaping of immunodominance hierarchies. We conclude that the immunoproteasome may affect T cell responses to only a limited number of viral epitopes, and we propose that its main biological function may lie elsewhere.  相似文献   

12.
The specific CD8(+) T-cell response during acute lymphocytic choriomeningitis virus (LCMV) infection of mice is characterized by a rapid proliferation phase, followed by a rapid death phase and long-term memory. In BALB/c mice the immunodominant and subdominant CD8(+) responses are directed against the NP118 and GP283 epitopes. These responses differ mainly in the magnitude of the epitope-specific CD8(+) T-cell expansion. Using mathematical models together with a nonlinear parameter estimation procedure, we estimate the parameters describing the rates of change during the three phases and thereby establish the differences between the responses to the two epitopes. We find that CD8(+) cell proliferation begins 1 to 2 days after infection and occurs at an average rate of 3 day(-1), reaching the maximum population size between days 5 and 6 after immunization. The 10-fold difference in expansion to the NP118 and GP283 epitopes can be accounted for in our model by a 3.5-fold difference in the antigen concentration of these epitopes at which T-cell stimulation is half-maximal. As a consequence of this 3.5-fold difference in the epitope concentration needed for T-cell stimulation, the rates of activation and proliferation of T cells specific for the two epitopes differ during the response and in combination can account for the large difference in the magnitude of the response. After the peak, during the death phase, the population declines at a rate of 0.5 day(-1), i.e., cells have an average life time of 2 days. The model accounts for a memory cell population of 5% of the peak population size by a reversal to memory of 1 to 2% of the activated cells per day during the death phase.  相似文献   

13.
14.
15.
Multispecific CD8(+) T-cell responses are thought to be important for the control of acute hepatitis C virus (HCV) infection, but to date little information is actually available on the breadth of responses at early time points. Additionally, the influence of early therapy on these responses and their relationships to outcome are controversial. To investigate this issue, we performed comprehensive analysis of the breadth and frequencies of virus-specific CD8(+) T-cell responses on the single epitope level in eight acutely infected individuals who were all started on early therapy. During the acute phase, responses against up to five peptides were identified. During therapy, CD8(+) T-cell responses decreased rather than increased as virus was controlled, and no new specificities emerged. A sustained virological response following completion of treatment was independent of CD8(+) T-cell responses, as well as CD4(+) T-cell responses. Rapid recrudescence also occurred despite broad CD8(+) T-cell responses. Importantly, in vivo suppression of CD3(+) T cells using OKT3 in one subject did not result in recurrence of viremia. These data suggest that broad CD8(+) T-cell responses alone may be insufficient to contain HCV replication, and also that early therapy is effective independent of such responses.  相似文献   

16.
The murine immune response to lymphocytic choriomeningitis virus (LCMV) infection involves the activation of CD8+, class I MHC-restricted and virus-specific CTL. At times coinciding with CTL activation, high levels of IL-2 gene expression and production occur, the IL-2R is expressed, and T cell blastogenesis and proliferation are induced. We have previously found that, although both CD4+ and CD8+ T cell subsets transcribe IL-2, the CD4+ subset appears to be the major producer of IL-2 whereas the CD8+ subset appears to be the major proliferating population when the subsets are separated after activation in vivo. The studies presented here were undertaken to examine the contribution made by the CD4+ subset to lymphocyte proliferation in vivo. Responses to LCMV infection were examined in intact mice and in mice depleted of CD4+ or CD8+ subsets by antibody treatments in vivo. Protocols were such that in vivo treatments with anti-CD4 or anti-CD8 depleted the respective subset by greater than 90%. In situ hybridizations demonstrated that the IL-2 gene was expressed in non-B lymphocytes isolated from either CD4+ cell-depleted or CD8+ cell-depleted mice on day 7 post-infection with LCMV. When placed in culture, however, cells from CD8+ cell-depleted mice produced significantly higher levels of detectable IL-2 than did cells isolated from CD4+ cell-depleted mice on day 7 post-infection. IL-2 was apparently produced in vivo in mice depleted of either CD4+ or CD8+ cells, as expression of the gene for the p55 chain of the IL-2R, IL-2 responsiveness, and lymphocyte proliferation were observed with cells isolated from both sets of mice. Lymphocyte proliferation was shown to be sustained in mice depleted of CD4+ cells in vivo by three criteria: 1) non-B lymphocytes isolated from infected mice depleted of CD4+ cells underwent more DNA synthesis than did those isolated from uninfected mice or from infected mice depleted of CD8+ cells; 2) leukocyte yields were expanded during infection of CD4+ cell-depleted mice; and 3) CD8+ cell numbers were increased during infection of CD4+ cell-depleted mice. The majority of non-B lymphocytes having the characteristics of blast lymphocytes was recovered in the CD8+ populations isolated from infected CD4+ cell-depleted mice. These findings suggest that the requirement for the CD4+ subset to sustain CD8+ lymphocyte proliferation in vivo is limited, and that CD4+ and CD8+ cell types can function independently in many aspects of their responses to viral infections.  相似文献   

17.
Decay-accelerating factor (DAF, CD55) is a GPI-anchored membrane protein that regulates complement activation on autologous cells. In addition to protecting host tissues from complement attack, DAF has been shown to inhibit CD4+ T cell immunity in the setting of model Ag immunization. However, whether DAF regulates natural T cell immune response during pathogenic infection is not known. We describe in this study a striking regulatory effect of DAF on the CD8+ T cell response to lymphocytic choriomeningitis virus (LCMV) infection. Compared with wild-type mice, DAF knockout (Daf-1(-/-)) mice had markedly increased expansion in the spleen of total and viral Ag-specific CD8+ T cells after acute or chronic LCMV infection. Splenocytes from LCMV-infected Daf-1(-/-) mice also displayed significantly higher killing activity than cells from wild-type mice toward viral Ag-loaded target cells, and Daf-1(-/-) mice cleared LCMV more efficiently. Importantly, deletion of the complement protein C3 or the receptor for the anaphylatoxin C5a (C5aR) from Daf-1(-/-) mice reversed the enhanced CD8+ T cell immunity phenotype. These results demonstrate that DAF is an important regulator of CD8+ T cell immunity in viral infection and that it fulfills this role by acting as a complement inhibitor to prevent virus-triggered complement activation and C5aR signaling. This mode of action of DAF contrasts with that of CD59 in viral infection and suggests that GPI-anchored membrane complement inhibitors can regulate T cell immunity to viral infection via either a complement-dependent or -independent mechanism.  相似文献   

18.
19.
TNF-alpha is known to play an important role in inflammatory bowel disease (IBD); however, the pathophysiological role of its receptors is still under study. Acute colitis was induced in rats by intracolonic administration of trinitrobenzene sulfonic acid (TNBS). Control rats received the ethanol vehicle. Rats were sacrificed 72 h later and samples of tissue and fluids were collected. There was a significant increase in the protein levels of sTNF-alpha, sTNFRI, and sTNFRII in the peritoneal fluid (PF) of experimental rats. TNF-alpha, TNFRI, and TNFRII mRNA expression was increased significantly in the colon of experimental animals compared to controls. TRAF3 and TRAF5 expression was also significantly higher, as was that of the adhesion molecules ICAM-1 and E-selectin. The increased expression of TNF-alpha, TNFRs, and the associated signaling factors in the colon of this rat model of IBD provides further evidence for their involvement in the promotion of inflammation and tissue damage. In addition, increased levels of sTNFRs in the PF of experimental rats--particularly sTNFRII--may be involved in the development of colitis by serving as a reservoir of TNF-alpha, and thus provide a novel therapeutic target for IBD.  相似文献   

20.
We previously reported that the lack of serglycin proteoglycan affects secretory granule morphology and granzyme B (GrB) storage in in vitro generated CTLs. In this study, the role of serglycin during viral infection was studied by infecting wild-type (wt) mice and serglycin-deficient (SG(-/-)) mice with lymphocytic choriomeningitis virus (LCMV). Wt and SG(-/-) mice cleared 10(3) PFU of highly invasive LCMV with the same kinetics, and the CD8(+) T lymphocytes from wt and SG(-/-) animals did not differ in GrB, perforin, IFN-gamma, or TNF-alpha content. However, when a less invasive LCMV strain was used, SG(-/-) GrB(+) CD8(+) T cells contained approximately 30% less GrB than wt GrB(+) CD8(+) T cells. Interestingly, the contraction of the antiviral CD8(+) T cell response to highly invasive LCMV was markedly delayed in SG(-/-) mice, and a delayed contraction of the virus-specific CD8(+) T cell response was also seen after infection with vesicular stomatitis virus. BrdU labeling of cells in vivo revealed that the delayed contraction was associated with sustained proliferation of Ag-specific CD8(+) T cells in SG(-/-) mice. Moreover, wt LCMV-specific CD8(+) T cells from TCR318 transgenic mice expanded much more extensively in virus-infected SG(-/-) mice than in matched wt mice, indicating that the delayed contraction represents a T cell extrinsic phenomenon. In summary, the present report points to a novel, previously unrecognized role for serglycin proteoglycan in regulating the kinetics of antiviral CD8(+) T cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号