共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous studies, we have shown that cerebral hypoxia results in increased activity of caspase-9, the initiator caspase,
and caspase-3, the executioner of programmed cell death. We have also shown that cerebral hypoxia results in high affinity
Ca2+–ATPase-dependent increase in nuclear Ca2+-influx in the cerebral cortex of newborn piglets. The present study tests the hypothesis that inhibiting nuclear Ca2+-influx by pretreatment with clonidine, an inhibitor of high affinity Ca2+–ATPase, will prevent the hypoxia-induced increase in caspase-9 and caspase-3 activity in the cerebral cortex of newborn piglets.
Thirteen newborn piglets were divided into three groups, normoxic (Nx, n = 4), hypoxic (Hx, n = 4), and hypoxic treated with clonidine (100 mg/kg) (Hx–Cl, n = 5). Anesthetized, ventilated animals were exposed to an FiO2 of 0.21 (Nx) or 0.07 (Hx) for 60 min. Cerebral tissue hypoxia was documented biochemically by determining levels of ATP and
phosphocreatine (PCr). Caspase-9 and -3 activity were determined spectrofluoro-metrically using specific fluorogenic synthetic
substrates. ATP (μmoles/g brain) was 4.6 ± 0.3 in Nx, 1.7±0.4 in Hx (P < 0.05 vs. Nx), and 1.5 ± 0.2 in Hx–Cl (P < 0.05 vs. Nx). PCr (μmoles/g brain) was 3.6 ± 0.4 in Nx, 1.1 ± 0.3 in Hx (P < 0.05 vs. Nx), and 1.0 ± 0.2 in Hx–Cl (P < 0.05 vs. Nx). Caspase-9 activity (nmoles/mg protein/h) was 0.548 ± 0.0642 in Nx and increased to 0.808 ± 0.080 (P < 0.05 vs. Nx and Hx–Cl) in the Hx and 0.562 ± 0.050 in the Hx–Cl group (p = NS vs. Nx). Caspase-3 activity (nmoles/mg protein/h)
was 22.0 ± 1.3 in Nx and 32 ± 6.3 in Hx (P < 0.05 vs. Nx) and 18.8 ± 3.2 in the Hx–Cl group (P < 0.05 vs. Hx). The data demonstrate that clonidine administration prior to hypoxia prevents the hypoxia-induced increase
in the activity of caspase-9 and caspase-3. We conclude that the high afinity Ca2+–ATPase-dependent increased nuclear Ca2+ during hypoxia results in increased caspase-9 and caspase-3 activity. 相似文献
2.
Mishra OP Zubrow AB Ashraf QM Delivoria-Papadopoulos M 《Neurochemical research》2006,31(12):1463-1471
3.
The present study investigates the correlation between the hypoxia-induced phosphorylation of cyclic AMP response element
binding protein and the expression of apoptotic proteins (proapoptotic proteins Bax and Bad and antiapoptotic proteins Bcl-2
and Bcl-xl) during hypoxia in the cerebral cortex of newborn piglets. Piglets were divided into normoxic (Nx) and hypoxic
(Hx, FiO2 = 0.06 for 1 h) groups. Cerebral tissue hypoxia was documented by ATP and phosphocreatine (PCr) levels. Ser133 phosphorylation of cyclic AMP response element binding (CREB) protein was determined by Western blot analysis using a specific
anti-phosphorylated Ser133-CREB protein antibody. The expression of apoptotic proteins was determined by using specific anti-Bax, anti-Bad, anti-Bcl-2
and anti-Bcl-xl antibodies. ATP and PCr values (μmoles/g brain) in Hx were significantly different from Nx (ATP: 4.40 ± 0.39
in Nx vs. 1.19 ± 0.44 in Hx, P < 0.05 vs. Nx; PCr: 3.60 ± 0.40 in Nx vs. 0.70 ± 0.31 in Hx, P < 0.05 vs. Nx). Ser133 phosphorylated CREB protein (OD × mm2) was 74.55 ± 4.75 in Nx and 127.13 ± 19.36 in Hx (P < 0.05 vs. Nx). The expression of proapoptotic proteins Bax and Bad increased and strongly correlated with the increase in
CREB protein phosphorylation (correlation coefficient r = 0.82 and r = 0.85, respectively). The expression of antiapoptotic proteins Bcl-2 and Bcl-xl did not show correlation with CREB protein
phosphorylation. We conclude that cerebral hypoxia results in differential regulation of CREB protein-mediated expression
of proapoptotic and antiapoptotic proteins in the cerebral cortex of newborn piglets. We propose that the increased expression
of proapoptotic vs antiapoptotic genes will lead to an increased potential for apoptotic programmed cell death in the Hx newborn
brain. 相似文献
4.
Nadege A. Brutus Sarah Hanley Qazi M. Ashraf Om P. Mishra Maria Delivoria-Papadopoulos 《Neurochemical research》2009,34(7):1219-1225
Previous studies have shown that hyperoxia results in cerebral cortical neuronal apoptosis. Studies have also shown that phosphorylation
of anti-apoptotic proteins Bcl-2 and Bcl-xl results in loss of their anti-apoptotic potential leading to alteration in mitochondrial
membrane permeability and the release of apoptogenic proteins in the neuronal cell of the newborn piglets. The present study
tests the hypothesis that cerebral hyperoxia will result in increased serine phosphorylation of apoptotic proteins Bcl-2,
Bcl-xl, Bax, and Bad in the mitochondrial membranes of the cerebral cortex of newborn piglets. Twelve newborn piglets were
divided into normoxic (Nx, n = 6) exposed to an FiO2 of 0.21 for 1 h and hyperoxic (Hyx, n = 6) exposed to FiO2 of 1.0 for 1 h. In the Hyx group, PaO2 was maintained above 400 mmHg while the Nx group was kept at 80–100 mmHg. Cerebral cortical tissue was harvested and mitochondrial
fractions were isolated. Mitochondrial membrane proteins were separated using 12% SDS-PAGE, and probed with anti-serine phosphorylated
Bcl-2, Bcl-xl, Bax, and Bad antibodies. Protein bands were detected, analyzed by imaging densitometry and density expressed
as absorbance (OD × mm2). Phosphorylated Bcl-2 (p-Bcl-2) protein density (OD × mm2) was 81.81 ± 9.24 in Nx and 158.34 ± 10.66 in Hyx (P < 0.05). Phosphorylated Bcl-xl (p-Bcl-xl) protein density was 52.98 ± 3.59 in Nx and 99.62 ± 18.22 in Hyx (P < 0.05). Phosphorylated Bax (p-Bax) protein was 161.13 ± 6.27 in Nx and 174.21 ± 15.95 in Hyx (P = NS). Phosphorylated Bad (p-Bad) protein was 166.24 ± 9.47 in Nx 155.38 ± 12.32 in Hyx (P = NS). The data show that there is a significant increase in serine phosphorylation of Bcl-2 and Bcl-xl proteins while phosphorylation
of Bad and Bax proteins were not altered during hyperoxia in the mitochondrial fraction of the cerebral cortex of newborn
piglets. We conclude that hyperoxia results in differential post-translational modification of anti-apoptotic proteins Bcl-2
and Bcl-xl as compared to pro-apoptotic proteins Bax and Bad in mitochondria. We speculate that phosphorylation of Bcl-2 and
Bcl-xl will result in loss of their anti-apoptotic potential by preventing their dimerization with Bax leading to activation
of the caspase cascade of neuronal death. 相似文献
5.
Chen ML Chen YC Peng IW Kang RL Wu MP Cheng PW Shih PY Lu LL Yang CC Pan CY 《Journal of biomedical science》2008,15(2):169-181
Summary Calcium binding protein-1 (CaBP1) is a calmodulin like protein shown to modulate Ca2+ channel activities. Here, we explored the functions of long and short spliced CaBP1 variants (L- and S-CaBP1) in modulating
stimulus-secretion coupling in primary cultured bovine chromaffin cells. L- and S-CaBP1 were cloned from rat brain and fused
with yellow fluorescent protein at the C-terminal. When expressed in chromaffin cells, wild-type L- and S-CaBP1s could be
found in the cytosol, plasma membrane and a perinuclear region; in contrast, the myristoylation-deficient mutants were not
found in the membrane. More than 20 and 70% of Na+ and Ca2+ currents, respectively, were inhibited by wild-type isoforms but not myristoylation-deficient mutants. The [Ca2+]
i
response evoked by high K+ buffer and the exocytosis elicited by membrane depolarizations were inhibited only by wild-type isoforms. Neuronal Ca2+ sensor-1 and CaBP5, both are calmodulin-like proteins, did not affect Na+, Ca2+ currents, and exocytosis. When expressed in cultured cortical neurons, the [Ca2+]
i
responses elicited by high-K+ depolarization were inhibited by CaBP1 isoforms. In HEK293T cells cotransfected with N-type Ca2+ channel and L-CaBP1, the current was reduced and activation curve was shifted positively. These results demonstrate the importance
of CaBP1s in modulating the stimulus-secretion coupling in excitable cells.
M.-L. Chen and Y.-C. Chen contributed equally to this study 相似文献
6.
Mironova GD Belosludtsev KN Belosludtseva NV Gritsenko EN Khodorov BI Saris NE 《Journal of bioenergetics and biomembranes》2007,39(2):167-174
Earlier we found that in isolated rat liver mitochondria the reversible opening of the mitochondrial cyclosporin A-insensitive
pore induced by low concentrations of palmitic acid (Pal) plus Ca2+ results in the brief loss of Δψ [Mironova et al., J Bioenerg Biomembr (2004), 36:171–178]. Now we report that Pal and Ca2+, increased to 30 and 70 nmol/mg protein respectively, induce a stable and prolonged (10 min) partial depolarization of the
mitochondrial membrane, the release of Ca2+ and the swelling of mitochondria. Inhibitors of the Ca2+ uniporter, ruthenium red and La3+, as well as EGTA added in 10 min after the Pal/Ca2+-activated pore opening, prevent the release of Ca2+ and repolarize the membrane to initial level. Similar effects can be observed in the absence of exogeneous Pal, upon mitochondria
accumulating high [Sr2+], which leads to the activation of phospholipase A2 and appearance of endogenous fatty acids. The paper proposes a new model of the mitochondrial Ca2+ cycle, in which Ca2+ uptake is mediated by the Ca2+ uniporter and Ca2+ efflux occurs via a short-living Pal/Ca2+-activated pore. 相似文献
7.
8.
P. K. Aley C. C. Bauer M. L. Dallas J. P. Boyle K. E. Porter C. Peers 《The Journal of membrane biology》2009,227(3):151-158
Our understanding of vascular endothelial cell physiology is based on studies of endothelial cells cultured from various vascular
beds of different species for varying periods of time. Systematic analysis of the properties of endothelial cells from different
parts of the vasculature is lacking. Here, we compare Ca2+ homeostasis in primary cultures of endothelial cells from human internal mammary artery and saphenous vein and how this is
modified by hypoxia, an inevitable consequence of bypass grafting (2.5% O2, 24 h). Basal [Ca2+]
i
and store depletion-mediated Ca2+ entry were significantly different between the two cell types, yet agonist (ATP)–mediated mobilization from endoplasmic reticulum
stores was similar. Hypoxia potentiated agonist-evoked responses in arterial, but not venous, cells but augmented store depletion-mediated
Ca2+ entry only in venous cells. Clearly, Ca2+ signaling and its remodeling by hypoxia are strikingly different in arterial vs. venous endothelial cells. Our data have
important implications for the interpretation of data obtained from endothelial cells of varying sources. 相似文献
9.
Körbel S Bittorf T Siegl E Köllner B 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2004,174(2):121-128
In mammals, erythropoietin regulates the development and differentiation of erythrocytes. Although hematopoietic cells of bony fish correspond in their ontogeneic development, morphology, and function to their mammalian counterparts, an erythropoietin (EPO)-like molecule has not been identified. In this study we present evidence for a mitogenic response of blood and head kidney leukocytes of rainbow trout after stimulation by recombinant human EPO (rhu EPO). The modulation of cellular activities is accompanied by the induction of DNA-binding activities in nuclear extracts of these cells. In addition, flow cytometric analysis of intracellular Ca2+ concentrations revealed a long-lasting and rhu EPO dose-dependent increase, which was shown to be abrogated by cross-aggregation of surface IgM using anti-trout-IgM monoclonal antibodies (mabs). In flow cytometric dual-labeling experiments using rhu EPO/anti-EPO antiserum and mabs specific for trout leukocyte subpopulations, it was shown that a subpopulation of trout B-cells binds rhu EPO. Moreover, in a modified Ca2+ activation assay, it was demonstrated that this blood B-cell subpopulation is the rhu EPO responder population. In conclusion, the data suggest the existence of EPO-binding receptors in trout that are able to trigger Ca2+-independent intracellular signaling in hematopoietic cells of head kidney and Ca2+-dependent activation of a subpopulation of B-lymphocytes.Abbreviations
FSC
forward scatter
-
IFN
interferon
-
IL
interleukin
-
mab
monoclonal antibody
-
PBL
peripheral blood leukocytes
-
PHA
phythemagglutitnin
-
rhu EPO
recombinant human erythropoietin
-
SSC
side scatter
-
TNF
tumor necrosis factor
Communicated by G. Heldmaier 相似文献
10.
Mutoh H Yoshino M 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2004,174(1):21-28
The Ca2+-conducting pathway of myocytes isolated from the cricket lateral oviduct was investigated by means of the whole-cell patch clamp technique. In voltage-clamp configuration, two types of whole cell inward currents were identified. One was voltage-dependent, initially activated at –40 mV and reaching a maximum at 10 mV with the use of 140 mM Cs2+-aspartate in the patch pipette and normal saline in the bath solution. Replacement of the external Ca2+ with Ba2+ slowed the current decay. Increasing the external Ca2+ or Ba2+ concentration increased the amplitude of the inward current and the current–voltage (I–V) relationship was shifted as expected from a screening effect on negative surface charges. The inward current could be carried by Na+ in the absence of extracellular Ca2+. Current carried by Na+ (I
Na) was almost completely blocked by the dihydropyridine Ca2+ channel antagonist, nifedipine, suggesting that the I
Na is through voltage-dependent L-type Ca2+ channels. The other inward current is voltage-independent and its I–V relationship was linear between –100 mV to 0 mV with a slight inward rectification at more hyperpolarizing membrane potentials when 140 mM Cs+-aspartate and 140 mM Na+-gluconate were used in the patch pipette and in the bath solution, respectively. A similar current was observed even when the external Na+ was replaced with an equimolar amount of K+ or Cs+, or 50 mM Ca2+ or Ba2+. When the osmolarity of the bath solution was reduced by removing mannitol from the bath solution, the inward current became larger at negative potentials. The I–V relationship for the current evoked by the hypotonic solution also showed a linear relationship between –100 mV to 0 mV. Bath application of Gd3+ (10 M) decreased the inward current activated by membrane hyperpolarization. These results clearly indicate that the majority of current activated by a membrane hyperpolarization is through a stretch-activated Ca2+-permeable nonselective cation channel (NSCC). Here, for the first time, we have identified voltage-dependent L-type Ca2+ channel and stretch-activated Ca2+-permeable NSCCs from enzymatically isolated muscle cells of the cricket using the whole-cell patch clamp recording technique.Abbreviations
I
Ca
Ca2+ current
-
I
Na
Na+ current
-
I–V
current–voltage
-
NSCC
nonselective cation channel
Communicated by G. Heldmaier 相似文献
11.
A kinetic model for the membrane Ca2+-ATPase is considered. The catalytic cycle in the model is extended by enzyme auto-inhibition and by oscillatory calcium influx. It is shown that the conductive enzyme activity can be registered as damped or sustained Ca2+ pulses similar to observed experimentally. It is shown that frequency variations in Ca2+ oscillatory influx induce changes of pulsating enzyme activity. Encoding is observed for the signal frequency into a number of fixed levels of sustained pulses in the enzyme activity. At certain calcium signal frequencies, the calculated Ca2+-ATPase conductivity demonstrates chaotic multi-level pulses, similar to those observed experimentally.__________Translated from Biokhimiya, Vol. 70, No. 4, 2005, pp. 539–544.Original Russian Text Copyright © 2005 by Goldstein, Mayevsky, Zakrjevskaya. 相似文献
12.
Visinin-like protein (VILIP-1) belongs to the neuronal Ca2+ sensor family of EF-hand Ca2+-binding proteins that regulate a variety of Ca2+-dependent signal transduction processes in neurons. It is an interaction partner of α4β2 nicotinic acetylcholine receptor (nAChR) and increases surface expression level and agonist sensitivity of the receptor in oocytes. Nicotine stimulation of nicotinic receptors has been reported to lead to an increase in intracellular Ca2+ concentration by Ca2+-permeable nAChRs, which in turn might lead to activation of VILIP-1, by a mechanism described as the Ca2+-myristoyl switch. It has been postulated that this will lead to co-localization of the proteins at cell membranes, where VILIP-1 can influence functional activity of α4-containing nAChRs. In order to test this hypothesis we have investigated whether a nicotine-induced and reversible Ca2+-myristoyl switch of VILIP-1 exists in primary hippocampal neurons and whether pharmacological agents, such as antagonist specific for distinct nAChRs, can interfere with the Ca2+-dependent membrane localization of VILIP-1. Here we report, that only α7- but not α4-containing nAChRs are able to elicit a Ca2+-dependent and reversible membrane-translocation of VILIP-1 in interneurons as revealed by employing the specific receptor antagonists dihydro-beta-erythroidine and methylallylaconitine. The nAChRs are associated with processes of synaptic plasticity in hippocampal neurons and they have been implicated in the pathology of CNS disorders, including Alzheimer’s disease and schizophrenia. VILIP-1 might provide a novel functional crosstalk between α4- and α7-containing nAChRs. 相似文献
13.
I. V. Shemarova V. P. Nesterov 《Journal of Evolutionary Biochemistry and Physiology》2007,43(2):135-144
The review considers Ca2+-messenger systems in primitive multicellulars (sponges and hydrozoa organisms). Analysis is performed of Ca2+ participation in regulation of early development of the organisms, their mobility, metamorphosis, chemoreception, and some other functions. 相似文献
14.
Thirty-four primary hybridoma clones were prepared which expressed monoclonal antibodies to the Ca2+-binding protein recoverin. Among the resulting monoclonal antibodies, two Ca2+-dependent clones (mAb3 and mAb19) recognizing recoverin were detected by solid-phase immunoenzyme assay. In the presence of Ca2+, antibodies of the mAb3 and mAb19 clones bound to recoverin several times better than in the absence of Ca2+. The mAb3 and mAb19 antibodies recognized epitopes located inside the sequences Pro61-Met91 and Pro57-Tyr64 of the recoverin molecule, respectively. The possible mechanism of the Ca2+-dependent recognition of recoverin by the prepared monoclonal antibodies is discussed.Translated from Biokhimiya, Vol. 69, No. 12, 2004, pp. 1667–1674.Original Russian Text Copyright © 2004 by Tikhomirova, Goncharskaya, Senin. 相似文献
15.
I. V. Shemarova S. V. Kuznetsov I. N. Demina V. P. Nesterov 《Journal of Evolutionary Biochemistry and Physiology》2009,45(3):389-399
Earlier we have shown that regulation of rhythm and strength of the frog heart contractions, mediated by transmitters of the autonomic nervous system, is of the Ca2+-dependent character. In the present work, we studied chronoand inotropic effect of verapamil—an inhibitor of Ca2+-channels of the L-type, of nickel chloride-an inhibitor of Ca2+—channels of the T-type and of Na+,Ca2+exchangers as well as of adrenaline and acetylcholine (ACh) after nickel chloride. It has been found that the intracardially administered NiCh2 at a dose of 0.01 μg/kg produced a sharp fall of amplitude of action potential (AP) and an almost twofold deceleration of heart rate (HR). The intracardiac administration of NiCh2 (0.01 μg/kg) on the background of action of verapamil (6 mg/kg, i/m) led as soon as after 3 min to even more prominent HR deceleration and to further fall of the AP amplitude by more than 50% as compared with norm. An intracardiac administration of adrenaline (0.5 mg/kg) partly restored the cardiac activity. However, preservation of the myocardium electrical activity in such animals was brief and its duration did not exceed several minutes. Administration of Ni2+ on the background of acetylcholine (3.6 mg/kg) led to almost complete cessation of cardiac activity. As soon as 3 min after injection of this agent the HR decreased to 2 contractions/min. On electrograms (EG), the 10-fold fall of the AP amplitude was recorded. To elucidate role of extraand intracellular Ca2+ in regulation of strength of heart contractions, isometric contraction of myocardium preparations was studied in response to action of NiCl2 (10–200 μM), verapamil (70 μM), adrenaline (5 μM), and acetylcholine (0.2 μM) after NiCl2. It has been found that Ni2+ causes a dose-dependent increase of the muscle contraction amplitude. Minimal change of the contraction amplitude (on average, by 14.9% as compared with control) was recorded at a Ni2+ concentration of 100 μM. An increase of Ni2+ in the sample to 200 μM increased the cardiac contraction strength, on average, by 41%. The negative inotropic action of verapamil was essentially reduced by 100 μM Ni2+. Adrenaline added to the sample after Ni2+ produced stimulating effect on the cardiac muscle, with an almost twofold rise of the contraction amplitude. ACh (0.2 μM) decreased the cardiac contraction amplitude, on average, by 56.3%, whereas Ni2+ (200 μM) administered after ACh not only restored, but also stimulated partly the myocardial work. Within several parts of percent there was an increase of such isometric contraction parameters as amplitude of the effort developed by muscle, maximal rate, maximal acceleration, time of semirise and semifall. The obtained experimental results indicate that the functional activity of the frog pacemaker and contractile cardiomyocytes is regulated by Ca2+-dependent mechanisms. Structure of these mechanisms includes the potential-controlled Land T-channels of the plasma membrane as well as Na+,Ca2-exchangers characteristic exclusively of contractile cardiomyocytes. The existence of these differences seems to be due to the cardiomyocyte morphological peculiarities that appeared in evolution at the stage of the functional cell specialization. 相似文献
16.
We studied store-dependent (activated by depletion of the endoplasmic reticulum, ER, store) entry of Ca2+ from the extracellular medium into neurons of the rat spinal ganglia (small- and medium-sized cells; diameter, 18 to 36 μm).
Activation of ryanodine-sensitive receptors of the ER in the studied neurons superfused by Tyrode solutions containing Ca2+ or with no Ca2+ was provided by application of 10 mM caffeine. The decay phase of caffeine-induced calcium transients in a Ca2+-containing solution was significantly longer than that in a Ca2+-free solution. This fact allows us to suppose that such a phenomenon is determined by Ca2+ entry into the neuron from the extracellular medium activated by caffeine-induced depletion of the ER store. Substitution
of Ca2+-free extracellular solution by Ca2+-containing Tyrode solution, after depletion of the ER stores induced by applications of 100 nM ryanodine, 200 μM ATP, or
1 μM thapsigargin, resulted in increases in the concentration of intracellular Ca2+. These observations allow us to postulate that store-dependent Ca2+ entry into the studied neurons is activated after depletion not only of the inositol trisphosphate-sensitive ER store but
also of the ryanodine-sensitive store. This entry also occurs after blocking of ATPases of the ER by thapsigargin. The kinetic
characteristics of the rising phase of store-dependent Ca2+ entry induced by depletion of the ER stores under the influence of various agents are dissimilar; this can be related to
different mechanisms of activation of such signals and/or to a compartmental organization of the ER.
Neirofiziologiya/Neurophysiology, Vol. 37, No. 3, pp. 277–283, May–June, 2005. 相似文献
17.
Storozhevykh TP Sorokina EG Vabnitz AV Senilova YE Tukhbatova GR Pinelis VG 《Biochemistry. Biokhimii?a》2007,72(7):750-759
In the present work, the forward and/or reversed Na+/Ca2+ exchange in cerebellar granular cells was suppressed by substitution of Na+o by Li+ before, during, and after exposure to glutamate for varied time and also using the inhibitor KB-R7943 of the reversed exchange. After glutamate challenge for 1 min, Na+o/Li+ substitution did not influence the recovery of low [Ca2+]i in a calcium-free medium. A 1-h incubation with 100 microM glutamate induced in the neurons a biphasic and irreversible [Ca2+]i rise (delayed calcium deregulation (DCD)), enhancement of [Na+]i, and decrease in the mitochondrial potential. If Na+o had been substituted by Li+ before the application of glutamate, i.e. the exchange reversal was suppressed during the exposure to glutamate, the number of cells with DCD was nearly fourfold lowered. However, addition of the Na+/K+-ATPase inhibitor ouabain (0.5 mM) not preventing the exchange reversal also decreased DCD in the presence of glutamate. Both exposures decreased the glutamate-caused loss of intracellular ATP. Glucose deprivation partially abolished protective effects of the Na+o/Li+ substitution and ouabain. KB-R7943 (10 microM) increased 7.4-fold the number of cells with the [Ca2+]i decreased to the basal level after the exposure to glutamate. Thus, reversal of the Na+/Ca2+ exchange reinforced the glutamate-caused perturbations of calcium homeostasis in the neurons and slowed the recovery of the decreased [Ca2+]i in the post-glutamate period. However, for development of DCD, in addition to the exchange reversal, other factors are required, in particular a decrease in the intracellular concentration of ATP. 相似文献
18.
Makoto Fujisawa Yuko Wada Takahiro Tsuchiya Masahiro Ito 《Archives of microbiology》2009,191(8):649-657
19.
A mathematical modeling of tight junction (TJ) dynamics was elaborated in a previous study (Kassab, F., Marques, R.P., Lacaz-Vieira, F. 2002. Modeling tight junction dynamics and oscillations. J. Gen. Physiol. 120:237–247) to better understand the dynamics of TJ opening and closing, as well as oscillations of TJ permeability that are observed in response to changes of extracellular Ca2+ levels. In this model, TJs were assumed to be specifically controlled by the Ca2+ concentration levels at the extracellular Ca2+ binding sites of zonula adhaerens. Despite the fact that the model predicts all aspects of TJ dynamics, we cannot rule out the likelihood that changes of intracellular Ca2+ concentration (Ca2+ cell), which might result from changes \ of extracellular Ca2+ concentration (Ca2+ extl), contribute to the observed results. In order to address this aspect of TJ regulation, fast Ca2+-switch experiments were performed in which changes of Ca2+ cell were induced using the Ca2+ ionophore A23187 or thapsigargin, a specific inhibitor of the sarco-endoplasmic reticulum Ca2+-ATPase. The results indicate that the ionophore or thapsigargin per se do not affect basal tissue electrical conductance (G), showing that the sealing of TJs is not affected by a rise in Ca2+ cell. When TJs were kept in a dynamic state, as partially open structures or in oscillation, conditions in which the junctions are very sensitive to disturbances that affect their regulation, a rise of Ca2+ cell never led to a decline of G, indicating that a rise of Ca2+ cell does not trigger per se TJ closure. On the contrary, always the first response to a rise of Ca2+ cell is an increase of G that, in most cases, is a transient response. Despite these observations we cannot assure that a rise of Ca2+ cell is without effect on the TJs, since an increase of Ca2+ cell not only causes a transient increase of G but, in addition, during oscillations a rise of Ca2+ cell induced by the Ca2+ ionophore transiently halted the oscillatory pattern of TJs. The main conclusion of this study is that TJ closure that is observed when basolateral Ca2+ concentration (Ca2+ bl) is increased after TJs were opened by Ca2+ bl removal cannot be ascribed to a rise of Ca2+ cell and might be a consequence of Ca2+ binding to extracellular Ca2+ sites. 相似文献
20.
In the last few years, major progress has been made to elucidate the structure, function, and regulation of P-type plasma
membrane H+-and Ca2+-ATPases. Even though a number of regulatory proteins have been identified, many pieces are still lacking in order to understand
the complete regulatory mechanisms of these pumps. In plant plasma membrane H+- and Ca2+-ATPases, autoinhibitory domains are situated in the C- and N-terminal domains, respectively. A model for a common mechanism
of autoinhibition is discussed. 相似文献