首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
Nuclear factor kappaB (NF-kappaB) plays a key role in suppression of tumor necrosis factor (TNF)-mediated apoptosis by inducing a variety of anti-apoptotic genes. Expression of c-Myc has been shown to sensitize cells to TNF-mediated apoptosis by inhibiting NF-kappaB activation. However, the precise step in the NF-kappaB signaling pathway and apoptosis modified by c-Myc has not been identified. Using the inducible c-MycER system and c-Myc null fibroblasts, we found that expression of c-Myc inhibited NF-kappaB activation by interfering with RelA/p65 transactivation but not nuclear translocation of NF-kappaB. Activation of c-Myc promoted TNF-induced release of cytochrome c from mitochondria to the cytosol because of the inhibition of NF-kappaB. Furthermore, we found that NF-kappaB-inducible gene A1 was attenuated by expression of c-Myc and that the restoration of A1 expression suppressed c-Myc-induced TNF sensitization. Our results elucidate the molecular mechanisms by which c-Myc increases cell susceptibility to TNF-mediated apoptosis, indicating that c-Myc may exhibit its pro-apoptotic activities by repression of cell survival genes.  相似文献   

4.
5.
6.
7.
8.
One of the mechanisms by which activated T cells die is activation-induced cell death (AICD). This pathway requires persistent stimulation via the TCR and engagement of death receptors. We found that TCR stimulation led to transient nuclear accumulation of the NF-kappaB component p65/RelA. In contrast, nuclear c-Rel levels remained high even after extended periods of activation. Loss of nuclear p65/RelA correlated with the onset of AICD, suggesting that p65/RelA target genes may maintain cell viability. Quantitative RNA analyses showed that three of several putative NF-kappaB-dependent antiapoptotic genes were expressed with kinetics that paralleled nuclear expression of p65/RelA. Of these three, ectopic expression only of Gadd45beta protected significantly against AICD, whereas IEX-1 and Bcl-x(L) were much less effective. We propose that the timing of AICD, and thus the length of the effector phase, are regulated by transient expression of a subset of p65/RelA-dependent antiapoptotic genes.  相似文献   

9.
Transcriptional cross talk between NF-kappaB and p53   总被引:11,自引:0,他引:11       下载免费PDF全文
  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
The work of Reddy et al. (S. A. Reddy, J. A. Huang, and W. S. Liao, J. Biol. Chem. 272:29167-29173, 1997) reveals that phosphatidylinositol 3-kinase (PI3K) plays a role in transducing a signal from the occupied interleukin-1 (IL-1) receptor to nuclear factor kappaB (NF-kappaB), but the underlying mechanism remains to be determined. We have found that IL-1 stimulates interaction of the IL-1 receptor accessory protein with the p85 regulatory subunit of PI3K, leading to the activation of the p110 catalytic subunit. Specific PI3K inhibitors strongly inhibit both PI3K activation and NF-kappaB-dependent gene expression but have no effect on the IL-1-stimulated degradation of IkappaBalpha, the nuclear translocation of NF-kappaB, or the ability of NF-kappaB to bind to DNA. In contrast, PI3K inhibitors block the IL-1-stimulated phosphorylation of NF-kappaB itself, especially the p65/RelA subunit. Furthermore, by using a fusion protein containing the p65/RelA transactivation domain, we found that overexpression of the p110 catalytic subunit of PI3K induces p65/RelA-mediated transactivation and that the specific PI3K inhibitor LY294,002 represses this process. Additionally, the expression of a constitutively activated form of either p110 or the PI3K-activated protein kinase Akt also induces p65/RelA-mediated transactivation. Therefore, IL-1 stimulates the PI3K-dependent phosphorylation and transactivation of NF-kappaB, a process quite distinct from the liberation of NF-kappaB from its cytoplasmic inhibitor IkappaB.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号