首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously demonstrated that platelet-activating factor (PAF)-induced increases in microvessel permeability were associated with endothelial gap formation and that the magnitude of peak endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) and nitric oxide (NO) production at the single vessel level determines the degree of the permeability increase. This study aimed to examine whether the magnitudes of PAF-induced peak endothelial [Ca(2+)](i), NO production, and gap formation are correlated at the individual endothelial cell level in intact rat mesenteric venules. Endothelial gaps were quantified by the accumulation of fluorescent microspheres at endothelial clefts using confocal imaging. Endothelial [Ca(2+)](i) was measured on fura-2- or fluo-4-loaded vessels, and 4,5-diaminofluorescein (DAF-2) was used for NO measurements. The results showed that increases in endothelial [Ca(2+)](i), NO production, and gap formation occurred in all endothelial cells when vessels were exposed to PAF but manifested a spatial heterogeneity in magnitudes among cells in each vessel. PAF-induced peak endothelial [Ca(2+)](i) preceded the peak NO production by 0.6 min at the cellular level, and the magnitudes of NO production and gap formation linearly correlated with that of the peak endothelial [Ca(2+)](i) in each cell, suggesting that the initial levels of endothelial [Ca(2+)](i) determine downstream NO production and gap formation. These results provide direct evidence from intact venules that inflammatory mediator-induced increases in microvessel permeability are associated with the generalized formation of endothelial gaps around all endothelial cells. The spatial differences in the molecular signaling that were initiated by the heterogeneous endothelial Ca(2+) response contribute to the heterogeneity in permeability increases along the microvessel wall during inflammation.  相似文献   

2.
Stromal cell-derived factor-1alpha (SDF-1alpha) is a CXC chemokine, which induces tube formation of endothelial cells. Although SDF-1alpha transduces signals via CXC receptor 4 (CXCR4), resulting in activating a panel of downstream signaling molecules, such as phosphoinositide 3-kinase (PI3-kinase), little is known about the SDF-1alpha-mediated signaling pathways leading to tube formation. Here we examined the signal transduction pathway involved in SDF-1alpha-mediated tube formation by primary human umbilical endothelial cells and murine brain capillary endothelial cell line (IBE (immortalized murine brain capillary endothelial) cells). SDF-1alpha stimulated tube formation by IBE cells, which was blocked by LY294002 and pertussis toxin, suggesting that PI3-kinase and G(i) protein were involved in this process. SDF-1 also stimulated tube formation of human umbilical endothelial cells, and the response was LY294002-sensitive. SDF-1alpha activated PI3-kinase in IBE cells. In stable IBE cell lines expressing either the mutant p85 subunit of PI3-kinase (denoted Deltap85-8 cells), which lacks association with the p110 subunit, or kinase-inactive c-Fes (denoted KEFes 5-15 cells), SDF-1alpha failed to activate PI3-kinase and to stimulate tube formation. SDF-1alpha-induced tube formation was inhibited by an antibody against murine vascular endothelial cadherin. The antibody as well as LY294002 attenuated SDF-1alpha-mediated compact cell-cell contact, which proceeded to tube formation. Taken together, SDF-1alpha induces compact cell-cell contact through PI3-kinase, resulting in tube formation of endothelial cells.  相似文献   

3.
D Yang  P Xie  Z Liu 《PloS one》2012,7(7):e42076
Mitogen-activated protein kinase phosphatases (MKPs) are a family of dual-specificity phosphatases. Endothelial cells express multiple MKP family members, such as MKP-3. However, the effects of MKP-3 on endothelial biological processes have not yet been fully elucidated. Here, we address the association between MKP-3 and endothelial Nitric oxide (NO) formation under ischemia/reperfusion (IS/RP) condition. Human umbilical vein endothelial cells (HUVECs) were subjected to IS/RP treatment. The MKP-3 expression and NO formation were examined. IS/RP induced endothelial MKP-3 expression and inhibited eNOS expression and NO formation, accompanied by an increase of endothelial apoptosis. The siRNA experiments showed that MKP-3 was an important mediator in impairing eNOS expression and NO production in endothelial cells. Transfection of HUVECs with constitutively active ERK plasmids suggested that the above mentioned effect of MKP-3 was via inactivation of ERK1/2 pathway. Furthermore, impairment of eNOS expression was restored by treatment of histone deacetylase (HDAC) inhibitor and related to histone deacetylation and recruitment of HDAC1 to the eNOS promoter. Finally, Salvianolic acid A (SalA) markedly attenuated induction of MKP-3 and inhibition of eNOS expression and NO formation under endothelial IS/RP condition. Overall, these results for the first time demonstrated that IS/RP inhibited eNOS expression by inactivation of ERK1/2 and recruitment of HDAC1 to the gene promoter, leading to decreased NO formation through a MKP-3-dependent mechanism in endothelial cells, and SalA has therapeutic significance in protecting endothelial cells from impaired NO formation in response to IS/RP.  相似文献   

4.
Tube formation of endothelial cells is an important step of angiogenesis. However, little is known about the molecular mechanisms underlying growth factor-mediated tube formation by endothelial cells. FGF-2 stimulates tube formation by a murine brain capillary endothelial cell line, IBE cells, when cultured on collagen gels (differentiation-associated culture condition), whereas cells proliferate and migrate without forming tube on fibronectin-coated surface (proliferation/migration-associated condition). To elucidate FGF-2-mediated signal transduction pathways leading to tube formation by endothelial cells, we focused on the contribution of Src family kinases. Src family kinase inhibitor PP2 attenuated FGF-2-induced tube formation. Stable expression of kinase-inactive c-Src in IBE cells demonstrated no dominant negative effect on FGF-2-induced tube formation. In vitro kinase assay revealed that c-Fyn was activated by FGF-2 only in cells cultured on collagen gels. Three independent cell lines, expressing kinase-inactive c-Fyn, all exhibited attenuation of FGF-2-mediated tube formation. However, FGF-2-mediated proliferation or migration was not clearly perturbed in these cells. These results show the first time that c-Fyn plays a pivotal role in tube formation by endothelial cells.  相似文献   

5.
Data providing direct evidence for a causative link between endothelial dysfunction, microvascular disease and diabetic end-organ damage are scarce. Here we show that activated protein C (APC) formation, which is regulated by endothelial thrombomodulin, is reduced in diabetic mice and causally linked to nephropathy. Thrombomodulin-dependent APC formation mediates cytoprotection in diabetic nephropathy by inhibiting glomerular apoptosis. APC prevents glucose-induced apoptosis in endothelial cells and podocytes, the cellular components of the glomerular filtration barrier. APC modulates the mitochondrial apoptosis pathway via the protease-activated receptor PAR-1 and the endothelial protein C receptor EPCR in glucose-stressed cells. These experiments establish a new pathway, in which hyperglycemia impairs endothelial thrombomodulin-dependent APC formation. Loss of thrombomodulin-dependent APC formation interrupts cross-talk between the vascular compartment and podocytes, causing glomerular apoptosis and diabetic nephropathy. Conversely, maintaining high APC levels during long-term diabetes protects against diabetic nephropathy.  相似文献   

6.
为探索星形胶质细胞在血脑屏障内皮细胞紧密连接形成中的重要意义,通过内皮细胞系ECV304与星形胶质细胞体外接触共培养的方法,采用电镜及内皮细胞紧密连接的银染观察星形胶质细胞对内皮细胞系紧密连接的诱导作用。运用Millipore-ERS系统检测紧密连接的功能状况。结果发现,星形胶质细胞可以诱导内皮细胞系形成广泛而连续的紧密连接并产生较高的跨内皮阻抗(transendothelial electrical resistance,TER),于第10d可达321.3Ωcm^2。提示,星形胶质细胞可以诱导ECV304细胞产生紧密连接。同时,ECV304细胞与星形胶质细胞的体外共培养可以作为研究血脑屏障紧密连接结构与功能的一种可靠而简便的体外实验方法。  相似文献   

7.
We have defined a signal responsible for the morphological differentiation of human umbilical vein and human dermal microvascular endothelial cells in vitro. We find that human umbilical vein endothelial cells deprived of growth factors undergo morphological differentiation with tube formation after 6-12 wk, and that human dermal microvascular endothelial cells differentiate after 1 wk of growth factor deprivation. Here, we report that morphological differentiation of both types of endothelial cells is markedly accelerated by culture on a reconstituted gel composed of basement membrane proteins. Under these conditions, tube formation begins in 1-2 h and is complete by 24 h. The tubes are maintained for greater than 2 wk. Little or no proliferation occurs under these conditions, although the cells, when trypsinized and replated on fibronectin-coated tissue culture dishes, resume division. Ultrastructurally, the tubes possess a lumen surrounded by endothelial cells attached to one another by junctional complexes. The cells possess Weibel-Palade bodies and factor VIII-related antigens, and take up acetylated low density lipoproteins. Tubule formation does not occur on tissue culture plastic coated with laminin or collagen IV, either alone or in combination, or on an agarose or a collagen I gel. However, endothelial cells cultured on a collagen I gel supplemented with laminin form tubules, while supplementation with collagen IV induces a lesser degree of tubule formation. Preincubation of endothelial cells with antibodies to laminin prevented tubule formation while antibodies to collagen IV were less inhibitory. Preincubation of endothelial cells with synthetic peptides derived from the laminin B1 chain that bind to the laminin cell surface receptor or incorporation of these peptides into the gel matrix blocked tubule formation, whereas control peptides did not. These observations indicate that endothelial cells can rapidly differentiate on a basement membrane-like matrix and that laminin is the principal factor in inducing this change.  相似文献   

8.
9.
Neisseria meningitidis elicits the formation of membrane protrusions on vascular endothelial cells, enabling its internalization and transcytosis. We provide evidence that this process interferes with the transendothelial migration of leukocytes. Bacteria adhering to endothelial cells actively recruit ezrin, moesin, and ezrin binding adhesion molecules. These molecules no longer accumulate at sites of leukocyte-endothelial contact, preventing the formation of the endothelial docking structures required for proper leukocyte diapedesis. Overexpression of exogenous ezrin or moesin is sufficient to rescue the formation of docking structures on and leukocyte migration through infected endothelial monolayers. Inversely, expression of the dominant-negative NH(2)-terminal domain of ezrin markedly inhibits the formation of docking structures and leukocyte diapedesis through noninfected monolayers. Ezrin and moesin thus appear as pivotal endothelial proteins required for leukocyte diapedesis that are titrated away by N. meningitidis. These results highlight a novel strategy developed by a bacterial pathogen to hamper the host inflammatory response by interfering with leukocyte-endothelial cell interaction.  相似文献   

10.
Pro-angiogenic signaling by the endothelial presence of CEACAM1   总被引:6,自引:0,他引:6  
Here, we demonstrate the expression of carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) in angiogenic sprouts but not in large mother blood vessels within tumor tissue. Correspondingly, only human microvascular endothelial cells involved in in vitro tube formation exhibit CEACAM1. CEACAM1-overexpressing versus CEACAM1-silenced human microvascular endothelial cells were used in migration and tube formation assays. CEACAM1-overexpressing microvascular endothelial cells showed prolonged survival and increased tube formation when they were stimulated with vascular endothelial growth factor (VEGF), whereas CEACAM1 silencing via small interfering RNA blocks these effects. Gene array and LightCycler analyses show an up-regulation of angiogenic factors such as VEGF, VEGF receptor 2, angiopoietin-1, angiopoietin-2, tie-2, angiogenin, and interleukin-8 but a down-regulation of collagen XVIII/endostatin and Tie-1 in CEACAM1-overexpressing microvascular endothelial cells. Western blot analyses confirm these results for VEGF and endostatin at the protein level. These results suggest that constitutive expression of CEACAM1 in microvascular endothelial cells switches them to an angiogenic phenotype, whereas CEACAM1 silencing apparently abrogates the VEGF-induced morphogenetic effects during capillary formation. Thus, strategies targeting the endothelial up-regulation of CEACAM1 might be promising for antiangiogenic tumor therapy.  相似文献   

11.
The formation of new blood vessels by sprouting angiogenesis is tightly regulated by contextual cues that affect angiogeneic growth factor signaling. Both constitutive activation and loss of Akt kinase activity in endothelial cells impair angiogenesis, suggesting that Akt dynamics mediates contextual microenvironmental regulation. We explored the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Expression of constitutively active Akt1 strongly inhibited network formation, whereas hemiphosphorylated Akt1 epi-alleles with reduced kinase activity had an intermediate inhibitory effect. Conversely, inhibition of Akt signaling did not affect endothelial cell migration or morphogenesis in vSMC cocultures that generate capillary-like structures. We found that endothelial Akt activity is transiently blocked by proteasomal degradation in the presence of SMCs during the initial phase of capillary-like structure formation. Suppressed Akt activity corresponded to the increased endothelial MAP kinase signaling that was required for angiogenic endothelial morphogenesis. These results reveal a regulatory principle by which cellular context regulates Akt protein dynamics, which determines MAP kinase signaling thresholds necessary drive a morphogenetic program during angiogenesis.  相似文献   

12.
In this study characterization of endothelial cells differentiated from human bone marrow mesenchymal stem cells (hBMCs) was investigated in relation to their capillary network formation potential. Differentiation was performed in presence of vascular endothelial growth factor (VEGF) and insulin like growth factor-1 (IGF-1). A panel of cellular and molecular markers was used for characterization of the endothelial cells. The cells were strongly positive for von Willebrand factor (vWF) and vascular endothelial growth factor receptor 2 (VEGFR2) when measured at protein and mRNA levels. Development of endothelial cells was found to be associated with formation of typical organelles such as Weibel Palade (WP) bodies, Cavealae and pinocytic vesicles. Early vessel growth was also evidenced by showing specific junctions between the cells. The migratory and angiogenic properties of the cells were confirmed by showing capillary network formation in vitro. These results indicate that the capacity of endothelial cells differentiated from hBMSCs in formation of vascular system is consistent with molecular and structural development.  相似文献   

13.
Recent findings have shown that embryonic vascular progenitor cells are capable of differentiating into mural and endothelial cells. However, the molecular mechanisms that regulate their differentiation, proliferation, and endothelial sheet formation remain to be elucidated. Here, we show that members of the transforming growth factor (TGF)-beta superfamily play important roles during differentiation of vascular progenitor cells derived from mouse embryonic stem cells (ESCs) and from 8.5-days postcoitum embryos. TGF-beta and activin inhibited proliferation and sheet formation of endothelial cells. Interestingly, SB-431542, a synthetic molecule that inhibits the kinases of receptors for TGF-beta and activin, facilitated proliferation and sheet formation of ESC-derived endothelial cells. Moreover, SB-431542 up-regulated the expression of claudin-5, an endothelial specific component of tight junctions. These results suggest that endogenous TGF-beta/activin signals play important roles in regulating vascular growth and permeability.  相似文献   

14.
Fibrin II induces endothelial cell capillary tube formation   总被引:11,自引:0,他引:11       下载免费PDF全文
We studied the formation of capillary tubes by endothelial cells which were sandwiched between two fibrin gels under serum-free conditions. After formation of the overlying fibrin gel, the endothelial cell monolayer rearranged into an extensive net of capillary tubes. Tube formation was apparent at 5 h and was fully developed by 24 h. The capillary tubes were vacuolated, and both intracellular and intercellular lumina were present. Maximal tube formation was observed with fibrin II (which lacks both fibrinopeptide A and B), minimal tube formation with fibrin I (which lacks only fibrinopeptide A), and complete absence of tube formation with fibrin 325 (which lacks the NH2- terminal beta 15-42 sequence, in addition to fibrinopeptides A and B). The inability of fibrin 325 to stimulate capillary tube formation supports the idea that beta 15-42 plays an important role in this process, and its importance was confirmed by the finding that exogenous soluble beta 15-42 inhibited fibrin II-induced capillary tube formation. This effect was specific for fibrin, since beta 15-42 did not inhibit tube formation by endothelial cells sandwiched between collagen gels. The interaction of the apical surface of the endothelial cell with the overlying fibrin II gel, as opposed to the underlying fibrin gel upon which the cells were seeded, was necessary for capillary tube formation. These studies suggest that the beta 15-42 sequence of fibrin interacts with a component of the apical cell surface and that this interaction plays a fundamental role in the induction of endothelial capillary tube formation.  相似文献   

15.
The MEKK3/MEK5/ERK5 signaling axis is required for cardiovascular development in vivo. We analyzed the physiological role of ERK5 in cardiac endothelial cells and the consequence of activation of this kinase by the statin class of HMG Co‐A reductase inhibitor drugs. We utilized human cardiac microvascular endothelial cells (HCMECs) and altered ERK5 expression using siRNA mediated gene silencing or overexpression of constitutively active MEK5 and ERK5 to reveal a role for ERK5 in regulating endothelial tight junction formation and cell permeability. Statin treatment of HCMECs stimulated activation of ERK5 and translocation to the plasma membrane resulting in co‐localization with the tight junction protein ZO‐1 and a concomitant reduction in endothelial cell permeability. Statin mediated activation of ERK5 was a consequence of reduced isoprenoid synthesis following HMG Co‐A reductase inhibition. Statin pretreatment could overcome the effect of doxorubicin in reducing endothelial tight junction formation and prevent increased permeability. Our data provide the first evidence for the role of ERK5 in regulating endothelial tight junction formation and endothelial cell permeability. Statin mediated ERK5 activation and the resulting decrease in cardiac endothelial cell permeability may contribute to the cardioprotective effects of statins in reducing doxorubicin‐induced cardiotoxicity.  相似文献   

16.
Lin CI  Chen CN  Huang MT  Lee SJ  Lin CH  Chang CC  Lee H 《Cellular signalling》2008,20(10):1804-1814
Lysophosphatidic acid (LPA) is a lipid bioactive mediator which binds to G-protein-coupled receptors and activates a variety of cellular functions. LPA modulates multiple behaviors in endothelial cells, including cell proliferation and migration, capillary-like tube formation in vitro, activation of proteases, interactions with leukocytes, and expressions of inflammation-related genes, thereby regulating vessel formation. LPA has been reported to modulate the angiogenesis process. However, the role of LPA in the lymphangiogenesis process has not been studied. In this study, we showed that LPA upregulated vascular endothelial growth factor-C (VEGF-C) mRNA expression in human umbilical vein endothelial cells (HUVECs) and subsequent endothelial cell tube formation in vitro and in vivo. These enhancement effects were LPA(1)- and LPA(3)-dependent and required cyclooxygenase-2 (COX-2), endothelial growth factor receptor (EGFR) transactivation and activation of nuclear factor kappaB (NF-kappaB). Moreover, LPA induced the protein expressions of the lymphatic markers, Prox-1, LYVE-1, and podoplanin, in HUVECs, and these enhancement effects were dependent on LPA(1) and LPA(3) activation and EGFR transactivation. Our results demonstrated that LPA might regulate VEGF-C and lymphatic marker expression in endothelial cells, which contributes to endothelial cell tube formation in vitro and in vivo, thus facilitating endothelial cell participation in the lymphangiogenesis process. This study clarifies the signaling mechanism of LPA-regulated VEGF-C expression and lymphatic marker expressions in endothelial cells, which suggest that LPA may be a suitable target for generating therapeutics against lymphangiogenesis and tumor metastasis.  相似文献   

17.
Hepatoma-derived growth factor (HDGF) was previously identified as a developmentally regulated cardiovascular and renal gene that is mitogenic for vascular smooth muscle and aortic endothelial cells. As reciprocal interactions of smooth muscle and endothelial cells are necessary for vascular formation, we examined whether HDGF plays a role in angiogenesis. According to immunohistochemistry, HDGF was highly expressed in endothelial cells of nonmuscularized, forming blood vessels of the fetal lung. HDGF was also expressed in endothelial cells of small (20 microm) mature arteries and veins. By Western immunoblotting, HDGF was highly expressed by human pulmonary microvascular endothelial cells in vitro. Adenoviral overexpression of HDGF was mitogenic for human pulmonary microvascular endothelial cells in serum-free medium, stimulating a 1.75-fold increase in bromodeoxyuridine (BrdU) uptake and a twofold increase in cell migration. With the chick chorioallantoic membrane (CAM), a biologic assay for angiogenesis, exogenous recombinant HDGF significantly stimulated blood vessel formation and a dose-dependent reorganization of cells within the CAM into a more compact, linear alignment reminiscent of tube formation. According to double immunostaining for endothelial cells with a transforming growth factor-betaII receptor antibody and BrdU as a marker of cell proliferation, exogenous HDGF selectively stimulated endothelial cell BrdU uptake. HDGF also activated specific ERK1/2 signaling and did not overlap with VEGF SAPK/JNK, Akt-mediated pathways. We conclude that HDGF is a highly expressed vascular endothelial cell protein in vivo and is a potent endothelial mitogen and regulator of endothelial cell migration by mechanisms distinct from VEGF.  相似文献   

18.
Annexin A2 (AnxA2) is a widely expressed multifunctional protein found in different cellular compartments. In spite of lacking a hydrophobic signal peptide, AnxA2 is found at the cell surface of endothelial cells, indicative of a role in angiogenesis. Increased extracellular levels of AnxA2 in tumours correlate with neoangiogenesis, metastasis and poor prognosis. We hypothesised that extracellular AnxA2 may contribute to angiogenesis by affecting endothelial cell-cell interactions and motility. To address this question, we studied the effect of heterotetrameric and monomeric forms of AnxA2, as well as its two soluble domains on the formation and maintenance of capillary-like structures by using an in vitro co-culture system consisting of endothelial and smooth muscle cells. In particular, addition of purified domains I and IV of AnxA2 potently inhibited the vascular endothelial growth factor (VEGF)-dependent formation of the capillary-like networks in a dose-dependent manner. In addition, these AnxA2 domains disrupted endothelial cell-cell contacts in preformed capillary-like networks, resulting in the internalisation of vascular endothelial (VE)-cadherin and the formation of VE-cadherin-containing filopodia-like structures between the endothelial cells, suggesting increased cell motility. Addition of monoclonal AnxA2 antibodies, in particular against Tyr23 phosphorylated AnxA2, also strongly inhibited network formation in the co-culture system. These results suggest that extracellular AnxA2, most likely in its Tyr phosphorylated form, plays a pivotal role in angiogenesis. The exogenously added AnxA2 domains most likely mediate their effects by competing with endogenous AnxA2 for extracellular factors necessary for the initiation and maintenance of angiogenesis, such as those involved in the formation/integrity of cell-cell contacts.  相似文献   

19.
Dysregulated angiogenesis contributes to the pathogenesis of chronic inflammatory diseases. Modulation of the extracellular matrix by immune-derived proteases can alter endothelial cell–matrix interactions as well as endothelial cell sprouting, migration and capillary formation. Granzyme B is a serine protease that is expressed by a variety of immune cells, and accumulates in the extracellular milieu in many chronic inflammatory disorders that are associated with dysregulated angiogenesis. Although granzyme B is known to cleave fibronectin, an essential glycoprotein in vascular morphogenesis, the role of granzyme B in modulating angiogenesis is unknown. In the present study, granzyme B cleaved both plasma fibronectin and cell-derived fibronectin, resulting in the release of multiple fibronectin fragments. Granzyme B cleavage of fibronectin resulted in a dose-dependent reduction in endothelial cell adhesion to fibronectin as well as reduced endothelial cell migration and tubular formation. These events were prevented when granzyme B activity was inhibited by a small molecule inhibitor. In summary, granzyme B-mediated cleavage of fibronectin contributes to attenuated angiogenesis through the disruption of endothelial cell — fibronectin interaction resulting in impaired endothelial cell migration and tubular formation.  相似文献   

20.
Coordinated regulation of endothelial cell migration is an integral process during angiogenesis. However, molecular mechanisms regulating endothelial cell migration remain largely unknown. Increased expression of cell adhesion molecules has been implicated during angiogenesis, yet the precise role of these molecules is unclear. Here, we examined the hypothesis that intercellular adhesion molecule-1 (ICAM-1) is important for endothelial cell migration. Total cell displacement and directional migration were significantly attenuated in ICAM-1-deficient endothelium. Closer examination of ICAM-1-deficient cells revealed decreased Akt Thr(308) and endothelial nitric-oxide synthase Ser(1177) phosphorylation and NO bioavailability, increased actin stress fiber formation, and a lack of distinct cell polarity compared with wild-type endothelium. Supplementation of ICAM-1 mutant cells with the NO donor DETA NONOate (0.1 microM) corrected the migration defect, diminished stress fiber formation, and enhanced pseudopod and uropod formation. These data demonstrate that ICAM-1 facilitates the development of cell polarity and modulates endothelial cell migration through a pathway regulating endothelial nitric-oxide synthase activation and organization of the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号