首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To produce stable mutants from Mankeumbyeo, a japonica rice (Oryza sativa L.) variety, we estimated the mutation efficiency of ethyl methane sulfonate (EMS) and N-methyl-N-nitrosourea (MNU) on fertilized egg cells using doubled haploids (DHs) derived from anther culture of M1 plants. M1 seed production and germination were higher in 1 mM MNU than in 94.2 mM EMS. A total of 68 DHs (35.4%) were regenerated by anther culture of M1 plants. Twenty-one DHs (30.9%) were stable mutants, 14 DHs (20.6%) were unstable mutants, and the remainder (48.5%) were normal. The frequencies of stable mutants following EMS and MNU treatments were 20.7% (three semidwarfs, one early maturation and one glabrous line) and 38.5% (three semidwarfs, two early maturation, four glabrous and one long grain line), respectively. In a field trial of seven stable mutants for yield potential, five mutants did not show a significant difference in yield as compared with the original variety. Among these five, three glabrous mutants (MK-MAC 1, MK-MAC 4 and MK-MAC 26) with a smooth leaf and hull may be considered to be improved mutant lines because of the health benefits (reduced skin damage and generation of less dust compared to the original variety) to farmers handling the plant materials. MK-MAC 26, a glabrous mutant, had also less shattering resistance than that of the original variety. These stable mutants could be used as new breeding materials.Communicated by P.P. Kumar  相似文献   

2.
Li Z  Peng T  Xie Q  Han S  Tian J 《Journal of genetics》2010,89(4):409-415
Effective tiller number is one of the most important traits for wheat (Triticum aestivum L.) yield, but the inheritance of tillering is poorly understood. A set of 168 doubled haploid (DH) lines derivatives of a cross between two winter wheat cultivars (Huapei 3 and Yumai 57), and an immortalized F2 (IF2) population generated by randomly permutated intermating of these DHs were investigated, and QTLs of tillering related to the maximum tillering of pre-winter (MTW), maximum tillering in spring (MTS), and effective tillering in harvest (ETH) were mapped. Phenotypic data were collected for the two populations from two different environments. Using inclusive composite interval mapping (ICIM), a total of 9 and 18 significant QTL were detected across environments for tillering in the DH and IF2 populations, respectively. Four QTLs were common between two populations. A major QTL located on the 5D chromosome with the allele originating from Yumai 57 was detected and increased 1.92 and 3.55 tillers in MTW and MTS, respectively. QTLs (QMts6D, QEth6D) having a neighbouring marker interval at Xswes679.1 and Xcfa2129 on chromosome 6D was detected in MTS and ETH. These results provide a better understanding of the genetic factors for selectively expressing the control of tiller number in different growth stages and facilitate marker-assisted selection strategy in breeding.  相似文献   

3.
The aim of this work was to study the effects of colchicine application on chromosome doubling and androgenic response in anther and microspore culture of different bread wheat genotypes. Colchicine was applied during a mannitol stress pretreatment or during the first 48 h of culture at concentrations of 0, 150 and 300 mg l−1. When colchicine was applied during stress pretreatment, the percentage of doubling depended on genotype and concentration. A significant increase in doubling was observed with 300 mg l−1 in the low androgenic responding cv. Caramba. Colchicine incorporation during the first hours of culture improved percentage of doubling in all genotypes, in both anther and microspore culture. Application of 300 mg l−1 colchicine improved the percentage of doubling in the two low responding genotypes, to 118% of control in DH24033, and 75% in Caramba in microspore and anther culture, respectively. Concerning the androgenic response, the effect of colchicine on embryo formation and percentage of green plants depended on the genotype and on the culture method. In cv. Pavon, a 2- and a 3-fold increase in percentage of embryogenesis and green plants, respectively, were obtained with 300 mg l−1 colchicine in microspore culture. However, no significant differences in these two variables were observed in anther culture. The number of green doubled haploid (DH) plants reflects the index of success of the procedure. Regardless of the culture method, when colchicine was incorporated during the first hours of culture, the number of green DH plants increased significantly in three of four genotypes. These results confirm the usefulness of colchicine application during the first hours of culture in wheat breeding programs.  相似文献   

4.
Anther culturability of rice is significantly different between indica and japonica varieties. A doubled haploid (DH) population was established via anther culture of an indica/japonica hybrid on SK3 medium, which had been shown particularly suitable for anther culture of indica/japonica hybrids. For analyzing the quantitative trait loci (QTLs) responsible for anther culturability, anthers of the DH lines were again cultured with SK3 medium and parameters for four traits representing the anther culturability were surveyed and analyzed with the molecular map constructed from the same DH population. The parameters for four major traits were as follows: callus induction frequency (CI), green plantlet differentiation frequency (GPD), albino plantlet differentiation frequency (APD), and green plantlet yield frequency (GPY). All four traits displayed continuous distributions among the DH lines. The correlation coefficients between these traits were also tested and showed that there was no relationship between callus induction and green plantlet differentiation frequencies, but both showed strong positive correlation with the frequency of green plantlet yield. For callus induction frequency, five QTLs were identified on chromosomes 6, 7, 8, 10 and 12. Two QTLs for green plantlet differentiation frequency were located on chromosomes 1 and 9. There was a major QTL for albino plantlet differentiation frequency on chromosome 9. No independent QTL was found for green plantlet yield frequency. The results may be useful in the selection of parents with high response to anther culture for rice haploid breeding and in the establishment of permanent DH populations for molecular mapping.  相似文献   

5.
Mutation techniques have been used for generating genetic variation and breeding new varieties during the past decades. However, the skepticism has also persisted during the course on the sole mutational origin of genetic variation in mutated populations. We addressed this issue using three unique rice genetic lines in this study. First, we confirmed that gamma rays had significant effect on the growth of M1 plants, leading to significant reduction of fertility, seed set and plant height at doses 200 Gy and above. Second, we proved that out-crossing derived genetic variants existed in M2 population (0.8%) and among selected putative mutants (0–33.3%), in addition to induced mutants. Third, we demonstrated that true induced mutant lines had identical microsatellite haplotypes to their parents. We proposed microsatellite assay as a method to exclude any genetic contaminants from induced mutants, with appropriate numbers for different levels of power based on reported microsatellite mutation rate and microsatellite polymorphic index.  相似文献   

6.
Leaf rust and stripe rust are important foliar diseases of wheat worldwide. Leaf rust and stripe rust resistant introgression lines were developed by induced homoeologous chromosome pairing between wheat chromosome 5D and 5Mg of Aegilops geniculata (UgMg). Characterization of rust resistant BC2F5 and BC3F6 homozygous progenies using genomic in situ hybridization with Aegilops comosa (M) DNA as probe identified three different types of introgressions; two cytologically visible and one invisible (termed cryptic alien introgression). All three types of introgression lines showed similar and complete resistance to the most prevalent pathotypes of leaf rust and stripe rust in Kansas (USA) and Punjab (India). Diagnostic polymorphisms between the alien segment and recipient parent were identified using physically mapped RFLP probes. Molecular mapping revealed that cryptic alien introgression conferring resistance to leaf rust and stripe rust comprised less than 5% of the 5DS arm and was designated T5DL·5DS-5MgS(0.95). Genetic mapping with an F2 population of Wichita × T5DL·5DS-5MgS(0.95) demonstrated the monogenic and dominant inheritance of resistance to both diseases. Two diagnostic RFLP markers, previously mapped on chromosome arm 5DS, co-segregated with the rust resistance in the F2 population. The unique map location of the resistant introgression on chromosome T5DL·5DS-5MgS(0.95) suggested that the leaf rust and stripe rust resistance genes were new and were designated Lr57 and Yr40. This is the first documentation of a successful transfer and characterization of cryptic alien introgression from Ae. geniculata conferring resistance to both leaf rust and stripe rust in wheat.  相似文献   

7.
Following the sequencing of rice genome, the functional analysis of unidentified genes is gaining wide importance. Mutant isolation is one of the effective ways to isolate and clone the target genes and analyze their functions. To find the various mutants in the same genetic background, seeds of Oryza sativa cv. Nipponbare were treated with ethyl methane sulphonate (EMS). A total of 1056 mutants were screened for five categories in M2 generation with the seedling frequency of 26.29‰ at three-leaf stage, but only 264 mutants were verified in M3 generation with a frequency of 6.57‰. Among the mutants verified in M3 generation, the frequency of leaf mutation was the highest (2.22‰), followed by seedling height (1.74‰) and the abiotic stress tolerance mutant (1.47‰). Nineteen characteristic mutations, including a big group of abiotic stress tolerant mutants such as herbicide resistant, salt tolerant and drought tolerant were identified at this stage. By observation of rice growth characteristics at different developmental stages, another 220 mutants have been isolated and verified in the M3 generation with the mutant frequency of 53.9‰ covering about 28 mutant traits. Among those identified, the highest frequencies were obtained for appearance of brown rice mutant with 18.37‰, followed by panicle mutant with 13.47‰, and grain mutants with 9.06‰. All the mutants screened above were suitable for gene function analysis and for utilization in agronomy.  相似文献   

8.
The F 0 and F M level fluorescence from a wild-type barley, a Chl b-less mutant barley, and a maize leaf was determined from 430 to 685 nm at 10 nm intervals using pulse amplitude-modulated (PAM) fluorimetry. Variable wavelengths of the pulsed excitation light were achieved by passing the broadband emission of a Xe flash lamp through a birefringent tunable optical filter. For the three leaf types, spectra of F V/F M (=(F M − F 0)/F M) have been derived: within each of the three spectra of F V/F M, statistically meaningful variations were detected. Also, at distinct wavelength regions, the F V/F M differed significantly between leaf types. From spectra of F V/F M, excitation spectra of PS I and PS II fluorescence were calculated using a model that considers PS I fluorescence to be constant but variable PS II fluorescence. The photosystem spectra suggest that LHC II absorption results in high values of F V/F M between 470 and 490 nm in the two wild-type leaves but the absence of LHC II in the Chl b-less mutant barley leaf decreases the F V/F M at these wavelengths. All three leaves exhibited low values of F V/F M around 520 nm which was tentatively ascribed to light absorption by PS I-associated carotenoids. In the 550–650 nm region, the F V/F M in the maize leaf was lower than in the barley wild-type leaf which is explained with higher light absorption by PS I in maize, which is a NADP-ME C4 species, than in barley, a C3 species. Finally, low values of F V/F M at 685 in maize leaf and in the Chl b-less mutant barley leaf are in agreement with preferential PS I absorption at this wavelength. The potential use of spectra of the F V/F M ratio to derive information on spectral absorption properties of PS I and PS II is discussed.  相似文献   

9.
To improve plant regeneration from oat (Avena sativa L.) anther culture, the effects of induction medium supplements and culture conditions were studied. Significantly better plant regeneration rates were obtained with cultivars Lisbeth (naked type) and Aslak when a medium containing W14 salts and vitamins, supplemented with 2,4-d, BAP, Ethephon, l-cysteine and myo-inositol, was used for induction in the dark compared with a medium containing only 2,4-d and kinetin. Genotypes reacted differently on the light during the induction phase. Use of dim light significantly decreased the green plant regeneration rates in cv. Lisbeth, while in cv. Aslak the difference was not so clear. Up to 30 green plants per 100 anthers were recovered from Aslak × Lisbeth progeny and in total, over 500 oat regenerants were produced. With these numbers, acceptable rates of DH-production for cultivar breeding and genetic study purposes are approached. The agronomic performance of some DH lines was compared with that of the plants derived from commercial seeds of the same cultivars in the field experiment. A few differences were found, but generally DH lines yielded the same or more as the commercial cultivars.  相似文献   

10.
The inheritance of yield-related traits in rapeseed (Brassica napus) is poorly understood, and the investigations on mapping of quantitative trait loci (QTL) for such traits are only few. QTL related to six traits were mapped which include plant height (PH), height of lowest primary effective branch (HPB), length of main inflorescence (LMI), silique length (SL), number of primary branches (FB) and silique density (SD). A set of 258 doubled haploid (DH) lines derivatives of a cross between a canola variety Quantum and a resynthesized B. napus line No.2127-17, and a fixed immortalized F2 (designated as IF2) population generated by randomly permutated intermating of these DHs were investigated. A genetic linkage map was constructed using 208 SSR and 189 SRAP markers for the DH population. Phenotypic data were collected from three environments for the two populations. Using composite interval mapping analyses, 30 and 22 significant QTL were repeatedly detected across environments for the six traits in the DH and IF2 populations, respectively. Twenty-nine QTL were common between the two populations. The directions of parental contribution for all common QTL were the same, showing a great potential for marker-assisted selection in improving these traits. Some chromosomal regions harbor QTL for multiple traits, which were consistent with significant phenotypic correlations observed among traits. The results provided a better understanding of the genetic factors controlling yield-related traits in rapeseed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
A thalium chloride-resistant (TlClr) mutant strain and a sodium chloride-resistant (NaClr) mutant strain of the diazotrophic cyanobacterium Anabaena variabilis have been isolated by spontaneous and chemical mutagenesis by using TlCl, a potassium (K+) analog, and nitrosoguanidine (NTG), respectively. The TlClr mutant strain was found to be defective in K+ transport and showed resistance against 10 μM TlCl. However, it also showed sensitivity against NaCl (LD50, 50 mM). In contrast, neither wild-type A. variabilis nor its NaClr mutant strain could survive in the presence of 10 μM TlCl and died even at 1 μM TlCl. The TlClr mutant strain exhibited almost negligible K+ uptake, indicating the lack of a K+ uptake system. High K+ uptake was, however, observed in the NaClr mutant strain, reflecting the presence of an active K+ uptake system in this strain. DCMU, an inhibitor of PS II, inhibited the K+ uptake in wild-type A. variabilis and its TlClr and NaClr mutant strains, suggesting that K+ uptake in these strains is an energy-dependent process and that energy is derived from photophosphorylation. This contention is further supported by the inhibition of K+ uptake under dark conditions. Furthermore, the inhibition of K+ uptake by KCN, DNP, and NaN3 also suggests the involvement of oxidative phosphorylation in the regulation of an active K+ uptake system. The whole-cell protein profile of wild-type A. variabilis and its TlClr and NaClr mutant strains growing in the presence of 50 mM KCl was made in the presence and absence of NaCl. Lack of transporter proteins in TlClr mutant strain suggests that these proteins are essentially required for the active transport and accumulation of K+ and make this strain NaCl sensitive. In contrast, strong expression of the transporter proteins in NaClr mutant strain and its weak expression in wild-type A. variabilis is responsible for their resistance and sensitivity to NaCl, respectively. Therefore, it appears that the increased salt tolerance of the NaClr mutant strain was owing to increased K+ uptake and accumulation, whereas the salt sensitivity of the TlClr mutant strain was owing to the lack of K+ uptake and accumulation. Received: 7 March 2002 / Accepted: 8 April 2002  相似文献   

12.
In cereals, albinism is a major obstacle to produce doubled haploids (DH) for breeding programs. In order to identify QTLs for green plant percentage in barley anther culture, a specific population was developed. This population, consisting of 100 DH lines, was generated by crossing the model cultivar for anther culture “Igri” with an albino-producing DH line (DH46) selected from Igri × Dobla, in search of a maximum segregation for the trait and minimum for the other anther culture variables. A combination of bulked segregant analysis and AFLP methodology was used to identify markers linked to the trait. A linkage map was constructed using these AFLPs, together with RAPD, STS and SSR markers. This study identified a new QTL for green plant percentage on chromosome 3H and confirmed the previously reported one on chromosome 5H. Up to 65.2% of the phenotypic variance for this trait was explained by the additive effects of these two QTLs. Thirty elite cultivars of barley from different origin, row type, growth habit and end use, were selected to validate these QTLs. Since two of the markers linked to the QTLs were AFLPs, we successfully converted them into simple PCR-based SCAR markers. Only the SSR HVM60, on chromosome 3H, was significantly associated with the trait, explaining near 20% of the phenotypic variance. Among the allelic variants identified for this marker, HVM60-120bp was associated with the highest values of green plant percentage.  相似文献   

13.
Salt tolerance has been analysed in two populations of F7 lines developed from a salt sensitive genotype of Solanum lycopersicum var. cerasiforme, as female parent, and two salt tolerant lines, as male parents, from S. pimpinellifolium, the P population (142 lines), and S. cheesmaniae, the C population (116 lines). Salinity effects on 19 quantitative traits including fruit yield were investigated by correlation, principal component analysis, ANOVA and QTL analysis. A total of 153 and 124 markers were genotyped in the P and C populations, respectively. Some flowering time and salt tolerance candidate genes were included. Since most traits deviated from a normal distribution, results based on the Kruskal–Wallis non-parametric test were preferred. Interval mapping methodology and ANOVA were also used for QTL detection. Eight out of 15 QTLs at each population were detected for the target traits under both control and high salinity conditions, and among them, only average fruit weight (FW) and fruit number (FN) QTLs (fw1.1, fw2.1 and fn1.2) were detected in both populations. The individual contribution of QTLs were, in general, low. After leaf chloride concentration, flowering time is the trait most affected by salinity because different QTLs are detected and some of their QTL×E interactions have been found significant. Also reinforcing the interest on information provided by QTL analysis, it has been found that non-correlated traits may present QTL(s) that are associated with the same marker. A few salinity specific QTLs for fruit yield, not associated with detrimental effects, might be used to increase tomato salt tolerance. The beneficial allele at two of them, fw8.1 (in C) and tw8.1 (for total fruit weight in P) corresponds to the salt sensitive parent, suggesting that the effect of the genetic background is crucial to breed for wide adaptation using wild germplasm.  相似文献   

14.
Despite possessing related ancestral genomes, hexaploid wheat behaves as a diploid during meiosis. The wheat Ph1 locus promotes accurate synapsis and crossover of homologous chromosomes. Interspecific hybrids between wheat and wild relatives are exploited by breeders to introgress important traits from wild relatives into wheat, although in hybrids between hexaploid wheat and wild relatives, which possess only homoeologues, crossovers do not take place during meiosis at metaphase I. However, in hybrids between Ph1 deletion mutants and wild relatives, crossovers do take place. A single Ph1 deletion (ph1b) mutant has been exploited for the last 40 years for this activity. We show here that chemically induced mutant lines, selected for a mutation in TaZIP4-B2 within the Ph1 locus, exhibit high levels of homoeologous crossovers when crossed with wild relatives. Tazip4-B2 mutant lines may be more stable over multiple generations, as multivalents causing accumulation of chromosome translocations are less frequent. Exploitation of such Tazip4-B2 mutants, rather than mutants with whole Ph1 locus deletions, may therefore improve introgression of wild relative chromosome segments into wheat.  相似文献   

15.
The aim of this study was to determine the effect of genotype and induction medium in anther culture of wheat (Triticum aestivum L.). Ten F1 winter wheat genotypes were tested in anther culture (AC) to compare the two most frequently applied induction media (W14mf and P4mf). Androgenesis was induced during the treatment of each tested genotypes and green plants were produced from them using both media. Based on statistical analysis, the genotypes significantly influenced (at the 0.001 probability level) the efficiency of AC (embryo-like structures (ELS), albinos, green plantlets and transplanted plantlets) and the media also had a significant effect on the number of ELS and albino plantlets. Both media can be used for AC in wheat doubled haploid (DH) plant production. The production of ELS and green plantlets was higher in P4mf medium (48.84 ELS/100 anthers, 4.82 green plantlets/100 anthers) than in W14mf medium (28.14 ELS/100 anthers, 4.59 green plantlets/100 anthers). However, the green plant regeneration efficiency of the microspore-derived structures was 16.9% when using W14mf medium, while this value was 9.6% in the case of ELS induced with P4mf medium. The application of W14mf medium thus proved to be time- and labour-saving medium in the large-scale production of DH wheat plants. In our experiments, 267 DH plants were produced for our winter wheat breeding program. The spontaneous rediploidization rate was 32.72%.  相似文献   

16.
With increasing industrialization, numerous air pollutants are generated. This research aimed to investigate the effects of inhalation of oxidative pollutants. H2O2 was used to simulate oxidative air pollutants, and glutathione, a reducing agent that is widely distributed in organisms, was used as an antagonist, to protect cells from oxidative stress. H2O2 was diluted using two gradients (0.05 mM, 0.20 mM, 0.80 mM, 3.20 mM and 0.05 mM, 0.10 mM, 0.15 mM, 0.20 mM) and GSH was dissolved at 20 μM. MTT, MDA, ROS, GSH, and TSLP were used as biomarkers to evaluate oxidative stress and possible resulting molecular events. A dose–response relationship was observed between H2O2 concentrations and the above-mentioned biomarkers. Glutathione significantly reduced levels of oxidative stress.  相似文献   

17.
Crop improvement of Coffea arabica L. (coffee) via mutagenesis could accelerate breeding programs; thus, the present study aimed to develop an in vitro protocol using the chemical mutagens sodium azide (NaN3) and ethyl methanesulfonate (EMS) on embryogenic cell suspensions of Arabica coffee variety Catuaí and, subsequently, to evaluate the responses of the resulting mutagenized tissues to salinity stress. Embryogenic suspension cultures were incubated with 0.0, 2.5, 5.0, or 10.0 mM NaN3 or 0.0, 185.2, 370.5, or 741.0 mM EMS. As the concentration of NaN3 or EMS increased, the survival of embryogenic suspension cultures decreased compared to controls. The median lethal dose (LD50) for NaN3 was 5 mM for 15 min and for EMS it was 185.2 mM for 120 min. Embryogenic suspension cultures treated with NaN3 or EMS were cultured on selective medium supplemented with 0, 50, 100, 150, 250, or 300 mM NaCl showed that 50 mM NaCl could be used as selection pressure. Plantlet growth and total amino acid content were affected by NaCl stress; some mutants had longer shoots and higher amino acid content than controls. Random amplified polymorphic DNA (RAPD) analysis was performed to determine whether the NaN3 or EMS treatments could induce genetic variability and resulted in identifiable polymorphic markers. A total of 18 10-mer primers were used to amplify genomic DNA of putative mutant and non-mutant arabica coffee embryogenic cultures and produced 50 scorable bands, of which 22% were polymorphic.  相似文献   

18.
The objective of this study was to produce durum wheat doubled haploid (DH) plants through the induction of microspore embryogenesis. The microspore culture technique was improved to maximize production of green plants per spike using three commercial cultivars. Studies on factors such as induction media composition, induction media support and the stage and growth of donor plants were carried out in order to develop an efficient protocol to regenerate green and fertile DH plants. Microspores were plated on a C17 induction culture medium with ovary co-culture and a supplement of glutathione plus glutamine; 300 g/l Ficoll Type-400 was incorporated to the induction medium support. Donor plants were fertilized with a combination of macro and microelements. With the cultivars ‘Ciccio’ and ‘Claudio’ an average of 36.5 and 148.5 fertile plants were produced, respectively, from 1,000 anthers inoculated. This technique was then used to produce fertile DH plants of potential agronomic interest from a collection of ten F1 crosses involving cultivars of high breeding value. From these crosses 849 green plants were obtained and seed was harvested from 702 plants indicating that 83% of green plants were fertile and therefore were spontaneously DHs. No aneuploid plant was obtained. The 702 plants yielded enough seeds to be field tested. One of the DH lines obtained by microspore embryogenesis, named ‘Lanuza’, has been sent to the Spanish Plant Variety Office for Registration by the Batlle Seed Company. This protocol can be used instead of the labor-intensive inter-generic crossing with maize as an economically feasible method to obtain DHs for most crosses involving the durum wheat cultivars grown in Spain.  相似文献   

19.
Aluminium (Al) tolerance in barley is conditioned by the Alp locus on the long arm of chromosome 4H, which is associated with Al-activated release of citrate from roots. We developed a high-resolution map of the Alp locus using 132 doubled haploid (DH) lines from a cross between Dayton (Al-tolerant) and Zhepi 2 (Al-sensitive) and 2,070 F2 individuals from a cross between Dayton and Gairdner (Al-sensitive). The Al-activated efflux of citrate from the root apices of Al-tolerant Dayton was 10-fold greater than from the Al-sensitive parents Zhepi 2 and Gairdner. A suite of markers (ABG715, Bmag353, GBM1071, GWM165, HvMATE and HvGABP) exhibited complete linkage with the Alp locus in the DH population accounting 72% of the variation for Al tolerance evaluated as relative root elongation. These markers were used to map this genomic region in the Dayton/Gairdner population in more detail. Flanking markers HvGABP and ABG715 delineated the Alp locus to a 0.2 cM interval. Since the HvMATE marker was not polymorphic in the Dayton/Gairdner population we instead investigated the expression of the HvMATE gene. Relative expression of the HvMATE gene was 30-fold greater in Dayton than Gardiner. Furthermore, HvMATE expression in the F2:3 families tested, including all the informative recombinant lines identified between HvGABP and ABG715 was significantly correlated with Al tolerance and Al-activated citrate efflux. These results identify HvMATE, a gene encoding a multidrug and toxic compound extrusion protein, as a candidate controlling Al tolerance in barley.  相似文献   

20.
The cytochrome b 6 f (Cyt b 6 f) complex, which functions as a plastoquinol-plastocyanin oxidoreductase and mediates the linear electron flow between photosystem II (PSII) and photosystem I (PSI) and the cyclic electron flow around PSI, was isolated from spinach (Spinacia oleracea L.) chloroplasts using n-octyl-β-D-glucopyranoside (β-OG). The preparation was also able to catalyze the peroxidase-like reaction in the presence of hydrogen peroxide (H2O2) and guaiacol. The optimal conditions for peroxidase activity of the preparation included: pH 3.6, ionic strength 0.1, and temperature 35°C. The apparent Michaelis constant (K m) values for H2O2 and guaiacol were 50 mM and 2 mM, respectively. The bimolecular rate constant (k obs) was about 26 M−1 s−1 and the turnover number (K cat) was about 60 min−1 (20 mM guaiacol, 100 mM sodium phosphate, pH 3.6, 25°C, [H2O2]<100mM). These parameters were similar to those of several other heme-containing proteins, such as myoglobin and Cyt c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号