首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Na+, K+ and the ratio of Na+/K+ were higher in cells of the halotolerant Aspergillus repens grown with 2 M NaCl than without NaCl. The osmolytes, proline, glycerol, betaine and glutamate, did not affect the Na+/K+ ratio, nor the polyol content of cells under any conditions. The concentrations of polyols, consisting of glycerol, arabitol, erythritol and mannitol, changed markedly during growth, indicating that they have a crucial role in osmotic adaptation.  相似文献   

2.
Antioxidant defense mechanism under salt stress in wheat seedlings   总被引:6,自引:0,他引:6  
The present study was carried out to study the effect of salt stress on cell membrane damage, ion content and antioxidant enzymes in wheat (Triticum aestivum) seedlings of two cultivars salt-tolerant KRL-19 and salt-sensitive WH-542. Seedlings (4-d-old) were irrigated with 0, 50 and 100 mM NaCl. Observations were recorded on the 3rd and 6th day after salt treatment and 2nd day after salt removal. The relative water content declined with induction of salt stress, more in WH-542 than in cv. KRL-19. K+/Na+ ratio in KRL-19 was higher than in WH-542. WH-542 suffered greater damage to cellular membranes due to lipid peroxidation as indicated by higher accumulation of H2O2, MDA and greater leakage of electrolytes than KRL-19. The activities of catalase, peroxidase and ascorbate peroxidase and glutathione reductase increased with increase in salt stress in both the cultivars, however, superoxide dismutase activity declined. Upon desalanization, partial recovery in the activities of these enzymes was observed in KRL-19 and very slow recovery in WH-542.  相似文献   

3.
Very little is known about the adaptation mechanism of Chenopodiaceae Halogeton glomeratus, a succulent annual halophyte, under saline conditions. In this study, we investigated the morphological and physiological adaptation mechanisms of seedlings exposed to different concentrations of NaCl treatment for 21 d. Our results revealed that H. glomeratus has a robust ability to tolerate salt; its optimal growth occurs under approximately 100 mm NaCl conditions. Salt crystals were deposited in water‐storage tissue under saline conditions. We speculate that osmotic adjustment may be the primary mechanism of salt tolerance in H. glomeratus, which transports toxic ions such as sodium into specific salt‐storage cells and compartmentalizes them in large vacuoles to maintain the water content of tissues and the succulence of the leaves. To investigate the molecular response mechanisms to salt stress in H. glomeratus, we conducted a comparative proteomic analysis of seedling leaves that had been exposed to 200 mm NaCl for 24 h, 72 h and 7 d. Forty‐nine protein spots, exhibiting significant changes in abundance after stress, were identified using matrix‐assisted laser desorption ionization tandem time‐of‐flight mass spectrometry (MALDI‐TOF/TOF MS/MS) and similarity searches across EST database of H. glomeratus. These stress‐responsive proteins were categorized into nine functional groups, such as photosynthesis, carbohydrate and energy metabolism, and stress and defence response.  相似文献   

4.
5.
Nutrient stress is one of the most favorable ways of increasing neutral lipid and high value‐added output production by microalgae. However, little is known about the level of the oxidative damage caused by nutrient stress for obtaining an optimal stress level for maximum production of specific molecules. In this study, the antioxidant response of Chlamydomonas reinhardtii grown under element deprivation (nitrogen, sulfur, phosphorus and magnesium) and supplementation (nitrogen and zinc) was investigated. All element regimes caused a decrease in growth, which was most pronounced under N deprivation. Element deprivation and Zn supplementation caused significant increases in H2O2 and lipid peroxidation levels of C. reinhardtii. Decrease in total chlorophyll level was followed by an increase of total carotenoid levels in C. reinhardtii under N and S deprivation while both increased under N supplementation. Confocal imaging of live cells revealed dramatic changes of cell shape and production of neutral lipid bodies accompanied by a decrease of chlorophyll clusters. Antioxidant capacity of cells decreased under N, S and P deprivation while it increased under N and Zn supplementation. Fluctuation of antioxidant enzyme activities in C. reinhardtii grown under different element regimes refers to different metabolic sources of reactive oxygen species production triggered by a specific element absence or overabundance.  相似文献   

6.
Seed imbibition and radicle emergence are generally less affected by salinity in soybean than in other crop plants. In order to unveil the mechanisms underlying this remarkable salt tolerance of soybean at seed germination, a comparative label‐free shotgun proteomic analysis of embryonic axes exposed to salinity during germination sensu stricto (GSS) was conducted. The results revealed that the application of 100 and 200 mmol/L NaCl stress was accompanied by significant changes (>2‐fold, P<0.05) of 97 and 75 proteins, respectively. Most of these salt‐responsive proteins (70%) were classified into three major functional categories: disease/defense response, protein destination and storage and primary metabolism. The involvement of these proteins in salt tolerance of soybean was discussed, and some of them were suggested to be potential salt‐tolerant proteins. Furthermore, our results suggest that the cross‐protection against aldehydes, oxidative as well as osmotic stress, is the major adaptive response to salinity in soybean.  相似文献   

7.
Physiology and Molecular Biology of Plants - Brassica juncea is an important oilseed crop and drought stress is major abiotic stress that limits its growth and productivity. RH0116 (drought...  相似文献   

8.
Shi S  Chen W  Sun W 《Proteomics》2011,11(24):4712-4725
Many environmental stimuli, including light, biotic and abiotic stress factors, induce changes in cellular Ca(2+) concentrations in plants. Such Ca(2+) signatures are perceived by sensor molecules such as calcineurin B-like (CBL) proteins. AtCBL1, a member of the CBL family which is highly inducible by multiple stress signals, is known to function in the salt stress signal transduction pathway and to positively regulate the plant tolerance to salt. To shed light into the molecular mechanisms of the salt stress response mediated by AtCBL1, a two-dimensional DIGE proteomic approach was applied to identify the differentially expressed proteins in Arabidopsis wild-type and cbl1 null mutant plants in response to salt stress. Seventy-three spots were found altered in expression by least 1.2-fold and 50 proteins were identified by MALDI-TOF/TOF-MS, including some well-known and novel salt-responsive proteins. These proteins function in various processes, such as signal transduction, ROS scavenging, energy production, carbon fixation, metabolism, mRNA processing, protein processing and structural stability. Receptor for activated C kinase 1C (RACK1C, spot 715), a WD40 repeat protein, was up-regulated in the cbl1 null mutant, and two rack1c mutant lines showed decreased tolerance to salt stress, suggesting that RACK1C plays a role in salt stress resistance. In conclusion, our work demonstrated the advantages of the proteomic approach in studies of plant biology and identified candidate proteins in CBL1-mediated salt stress signaling network.  相似文献   

9.
The effects of NaCl stress on the activity of antioxidant enzymes, lipid peroxidation, cell membrane stability, net photosynthetic rate, gas-exchange, and chlorophyll content were investigated in two Jerusalem artichoke cultivars, Dafeng (salt-tolerant) and Wuxi (salt-sensitive), grown under control (nutrient solution) or salt stress (nutrient solution containing 75, 150, and 225 mM NaCl) conditions for 7 days. In leaves of salt-tolerant cv. Dafeng, superoxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7), and catalase (EC 1.11.1.6) activities significantly increased as compared to the controls, whereas no significant change was observed in cv. Wuxi. Lipid peroxidation and cell membrane injury were enhanced in both cultivars. Net photosynthesis and stomatal conductance decreased in response to salt stress, but cv. Dafeng showed a smaller reduction in photosynthesis than cv. Wuxi. The results indicated that stomatal aperture limited leaf photosynthetic capacity in the NaCl-treated plants of both cultivars. However, significant reduction in the leaf chlorophyll content due to NaCl stress was observed only in cv. Wuxi. These results suggested that salt-tolerant Jerusalem artichoke varieties may have a better protection against reactive oxygen species, at least in part, by increasing the activity of antioxidant enzymes under salt stress.  相似文献   

10.
11.
Cells ofMicrasterias denticulata Bréb. were kept in nutrient solution of high osmolality (salt stress) for four weeks. In a special cell multiplication test it was established that cell division is gradually inhibited at increasing salt concentrations and totally arrested at the highest concentration (26 mosm/kg). Recovery studies proved that even cells from the highest concentration range start dividing immediately after being placed in aqua bidest. thus indicating the full reversibility of the inhibiting effect. — Cells of the highest concentration range show marked ultrastructural changes. Besides an enormous accumulation of starch and oil bodies and a condensed appearance of the ground plasma, a reduction of mitochondria, ER and the Golgi-system is found. The most striking effect occurs on the vacuolar system which appears extremely reduced and condensed. The cell wall is thickened by the formation of an additional cell wall layer with a spongy electron microscopical appearance. Through the cell wall many droplets of a probably fat-like substance are excreted. — In summary, salt stress induces growth-inhibited akinete cells in the sense ofFritsch; these can be reactivated by decreasing the salt concentration. The salt-induced akinete state seems to be an ecological adaption to unfavourable conditions rather than a degeneration of the cells.Dedicated to Prof. DrLothar Geitler on the occasion of his 90th birthday.23. 12. 1988  相似文献   

12.
Salt stress limits crop yield and sustainable agriculture in most arid and semiarid regions of the world. Arbuscular mycorrhizal fungi (AMF) are considered bio-ameliorators of soil salinity tolerance in plants. In evaluating AMF as significant predictors of mycorrhizal ecology, precise quantifiable changes in plant biomass and nutrient uptake under salt stress are crucial factors. Therefore, the objective of the present study was to analyze the magnitude of the effects of AMF inoculation on growth and nutrient uptake of plants under salt stress through meta-analyses. For this, data were compared in the context of mycorrhizal host plant species, plant family and functional group, herbaceous vs. woody plants, annual vs. perennial plants, and the level of salinity across 43 studies. Results indicate that, under saline conditions, AMF inoculation significantly increased total, shoot, and root biomass as well as phosphorous (P), nitrogen (N), and potassium (K) uptake. Activities of the antioxidant enzymes superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase also increased significantly in mycorrhizal compared to nonmycorrhizal plants growing under salt stress. In addition, sodium (Na) uptake decreased significantly in mycorrhizal plants, while changes in proline accumulation were not significant. Across most subsets of the data analysis, identities of AMF (Glomus fasciculatum) and host plants (Acacia nilotica, herbs, woody and perennial) were found to be essential in understanding plant responses to salinity stress. For the analyzed dataset, it is concluded that under salt stress, mycorrhizal plants have extensive root traits and mycorrhizal morphological traits which help the uptake of more P and K, together with the enhanced production of antioxidant enzymes resulting in salt stress alleviation and increased plant biomass.  相似文献   

13.
14.
Penicillium corylophilum can grow in a medium containing NaCl up to 3 mol/L, whereasHalobacterium halobium can grow at 5 mol/L NaCl. At 1 and 3 mol/L NaCl the number of spores decreased with constrictions in the conidiophore and damage in phialides and metulae while there were no morphological changes in bacterial cells grown in the presence of NaCl. Addition of some amino acids or sugar alcohol to the growth medium enhanced the growth of both organisms in the presence of NaCl. Total protein in the fungal cells grown at 1 mol/L NaCl increased by 50% more than in the control cells but it decreased in the bacterial cells with increasing NaCl concentration in the growth medium. Total saccharides and lipids increased in both organisms with increasing NaCl in the growth medium. The endogenous amino acid pool increased in fungal and bacterial cells in the presence of NaCl. Proline was the major amino acid in the fungal cells at 1 mol/L NaCl, representing 41.3% of the total identified amino acids at this concentration, being 8.4 times higher than in the control cells. Glutamate and aspartate showed the highest amount in bacterial cells at 3 mol/L NaCl. Isoleucine showed the highest increase at 3 mol/L NaCl, being 54 times higher than in the control cells.  相似文献   

15.
16.
Two cultivars of okra (Chinese green and Chinese red) were subjected to salt stress (0%, 6%, 12% and 18%) and equal proportions of NaCl and CaCl2 in Hoagland’s nutrient solution and re-watering. Salt stress significantly reduced growth parameters and photosynthetic attributes of both cultivars. Treatment subjected to 18% salt stress caused 90% redundancy in growth parameters of both cultivars compared to control. Re-watering gave a positive response for plant growth of both cultivars in different levels. Chinese green showed better recovery at 6–0% re-watering level and Chinese red showed 12–6% and 6–0%, due to its salt tolerance nature. Considering re-watering water use efficiency and net photosynthetic rate the optimum values of salt tolerance for Chinese green and Chinese red were 8.3% and 12.02%, respectively. The best re-watering degree found as salt stress level ranged from 12.02% to 6% for Chinese red and 8.3% to 2.3% for Chinese green. This study provided a new method for the determination of irrigation time and quantification in crops.  相似文献   

17.
Accumulation of unfolded protein or misfolded protein causes endoplasmic reticulum (ER) stress. Increased salt concentration activates a stress response pathway in the ER in Arabidopsis thaliana to induce the expression of several salt stress response genes, leading to a more optimal protein folding environment in the ER. In addition, some salt stress-regulated proteins require zinc for their activity, including some zinc-dependent DNA binding proteins and zinc-finger proteins. In a recent study, we reported that ZTP29, a putative zinc transporter at the ER membrane, is involved in the response to salt stress through regulation of zinc level in the ER to induce the UPR pathway. In this addendum, we propose a testable hypothesis for the role of ZTP29 in the response to salt stress via the regulation of zinc levels in the ER.Key words: zinc, ER stress, unfolded protein response, salt stress, arabidopsisHigh salinity is a common abiotic stress that adversely affects plant growth and crop production.1 Plants must sense the stress and transduce stress signals to activate response pathways leading to adaptation to, or tolerance of, the abiotic stress in salt environment.2 Salt stress activates a stress response pathway in the endoplasmic reticulum (ER) in Arabidopsis thaliana, indicating that the adaptation of plants to salt stress involves ER stress signal regulation.3,4 There is limited understanding of molecular mechanisms on ER stress in plants, as compared to yeast and mammalian cells. bZIP60, bZIP28, bZIP17 are three membrane-associated basic domain/leucine zipper (bZIP) factors, which have been reported as candidates for ER-folding proteins in plants.57 BiP acts as a general chaperone in the ER lumen, due to its ability to discriminate between properly folded and unfolded protein structures.8 Unfolded or misfolded proteins are retained in the ER and form stable complexes with BiP and other ER resident chaperones.9 Zinc deficiency induces unfolded protein response (UPR) in most eukaryotes.10 Zinc is an important trace element, which participates in physiological and biochemical process in vivo. The requirement of zinc for proper ER function is evolutionarily conserved.  相似文献   

18.
该文选择从西沙东岛采集蒭雷草,通过分株繁殖挑选健壮植株作为材料,模拟热带珊瑚岛生境设置不同浓度NaCl处理,研究不同程度的盐胁迫对其植株叶片丙二醛(MDA)、抗氧化酶以及渗透调节物质的影响.结果表明:(1)短期(28 d)盐胁迫下,NaCl浓度的增加并未加速蒭雷草叶片细胞发生膜脂过氧化作用,MDA含量增加幅度较小;随着...  相似文献   

19.
Protoplasma - Plants adjust their complex molecular, biochemical, and metabolic processes to overcome salt stress. Here, we investigated the proteomic and epigenetic alterations involved in the...  相似文献   

20.
The effects of seed priming with 6 M NaCl solution have been investigated with respect to growth and physiological responses of tomato plants ( Lycopersicon esculentum Mill. cv. Pera) exposed to 70 and 140 m M NaCl nutrient solutions from 11 to 60 days after sowing. Tomato seedlings from primed seeds emerged earlier than from non-primed seeds. At 70 m M , a lower shoot and root dry weight reduction was found in plants from primed seeds at the different harvests (30, 45 and 60 days after sowing), while at 140 m M the positive effect of seed priming was only shown in roots. Significant changes in Na+ and CI accumulation with seed priming were only found in roots at 60 days after sowing, with ion accumulation in roots being higher in plants grown at 70 and 140 m M from primed seeds. In leaves of salt-treated plants, significant increases in sugars and organic acids with seed priming were found from 30 days after sowing, and these increases were higher at longer treatment times. In roots, however, only the organic acids tended to increase in plants from primed seeds, although they increased less than in leaves, especially at 60 days after sowing. These results support the hypothesis that priming of seeds with NaCl induces physiological changes in the plants, changes which are shown more clearly at advanced growth stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号