首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bt transgenic cotton has not shown the same level of resistance to bollworm in China, as in other major Bt cotton growing areas of the world. The objective of this study was to investigate the effects of high temperature on the CryIA insecticidal protein content and nitrogen metabolism, in the leaf of Bt transgenic cotton. The study was undertaken on two transgenic cotton cultivars, one conventional (Xinyang 822) and the other a hybrid (Kumian No. 1), during the 2001 and 2002 growing seasons at the Yangzhou University Farm, Yangzhou, China.In the 2001 study, potted cotton plants were exposed to 37 °C for 24 h under glasshouse conditions at three growth stages – peak square, peak flowering and peak boll developing periods. Based on the 2001 results, in 2002 the same two cultivars were exposed to the same temperature for 48 h at two growth stages—peak flowering and boll developing periods. The results of the study indicated that the insecticidal protein content of the leaf was not significantly affected by the stress during the square and flowering periods. However, exposure to high temperature for 24 h during the boll period reduced the CryIA protein content by approximately 51% in the cultivar Kumian No 1, and 30% in Xinyang 822 in the 2001 study, and by approximately 73 and 63% for 48 h with the same cultivars, respectively, in the 2002 study. Glutamic–pyruvic transaminase (GPT) activity, total free amino acid and soluble protein content, and the activity of protease in the leaf, showed relatively little change in response to high temperature in the flowering period. However, exposure to high temperature in the boll period resulted in the following changes - a reduction of GPT activity, a sharp increase in free amino acid content, a significant decrease in soluble protein content, and significant increases in the activity of protease.The results suggest that high temperature may result in the degradation of soluble protein in the leaf, with a resulting decline in the level of the toxin CryIA. It is believed that this may be the cause of the reduced efficacy of Bt cotton in growing conditions in China, where temperatures during the boll period often reach 36–40 °C.  相似文献   

2.
Bt毒蛋白在转Bt基因棉中的表达及其在害虫-天敌间的转移   总被引:16,自引:2,他引:14  
以常规棉泗棉3号作为对照,采用酶联免疫生测法(ELISA)和室内生物测定法,研究了转Bt基因棉新棉33B和GK-12不同组织器官中Cry1Ac或Cry1Ab毒蛋白的表达及其向靶标害虫(棉铃虫)、非靶标害虫(棉蚜)以及天敌(龟纹瓢虫)的传递和影响。研究结果表明,新棉33B各组织器官中Bt毒蛋白的表达量较高,为79.7~1 390.0 ng/g鲜重,GK-012较低为165~2640 ng/g鲜重。在花盛期,新棉33B各组织器官中Bt毒蛋白的表达量依次为:柱头、花 >子房、花瓣>群尖;而5~7叶期的初展嫩叶、现蕾初期的幼蕾及花铃期的幼铃表达量相当,而且与花盛期群尖的表达量没有明显区别。同样处于花盛期的GK-12,其各组织器官中Bt毒蛋白的表达量依次为:花药>柱头>花瓣>群尖>子房;而5~7叶期的初展嫩叶、现蕾初期的幼蕾及花铃期的幼铃表达量相当,而且与花盛期群尖的表达量没有明显差异。常规对照棉的幼铃、花药、柱头以及子房中痕量Bt毒蛋白的存在可能与传粉昆虫等的活动有关。在转Bt基因棉田采集的棉蚜和棉铃虫老龄幼虫,其体内均可检测到Bt毒蛋白;在新棉33B棉田采集的龟纹瓢虫幼虫和成虫体内也可检测出Bt毒素。当以Bt棉田的棉蚜饲喂龟纹瓢虫时,龟纹瓢虫的生长发育、存活以及繁殖等基本没有受到影响。  相似文献   

3.
Seasonal levels of Bacillus thuringiensis (Bt) insecticidal protein and its control efficacy against Helicoverpa armigera (Hübner) in Bt transgenic cotton GK19 (carrying a Cry1Ac/Cry1Ab fused gene) and BG1560 (carrying a Cry1Ac gene) were investigated in Tianmen County, Hubei Province, located in the Yangtze River valley of China, in 2001 and 2002. The results showed that the toxin content in Bt cotton changed significantly over time, and that the structure, growth stage, and variety were significant sources of variability. Generally, insecticidal protein levels were high during the early stages of cotton growth; they declined in mid-season, and rebounded in late season. On most dates sampled, the toxin contents in leaf, square, petal, and stamens (including nonovule pistil tissue) were much higher than those in ovule and boll. Compared with BG1560, the expression of Cry1Ac/Cry1Ab protein in GK19 was more variable during the whole growth period of cotton. The field evaluation on larval population dynamics of H. armigera in Bt and conventional cotton showed that the larval densities in BG1560 and GK19 fields decreased, respectively, 92.04 and 81.85% in 2001, and 96.84 and 91.80% in 2002.  相似文献   

4.
为探讨土壤盐分对转Bt基因抗虫棉棉铃抗虫性的影响,以2个Bt棉品种‘新棉33B’(盐敏感)和‘中07’(耐盐)为试验材料,设置5个土壤盐分水平(0、0.15%、0.30%、0.45%和0.60%),采用盆栽法研究了不同土壤盐分下Bt棉盛铃期铃壳Bt蛋白含量变化及氮代谢生理特征.结果表明: 铃壳中Bt蛋白含量随土壤盐分的升高而降低,与对照相比(0%),盐敏感型品种在土壤盐分0.15%、耐盐型品种在0.30%以上时,铃壳中Bt蛋白含量显著下降.相同土壤盐分水平下,花后30 d(DPA)铃壳Bt蛋白含量下降幅度明显大于10 DPA.在铃壳Bt杀虫蛋白含量下降显著时,其可溶性蛋白含量明显下降,硝酸还原酶(NR)和谷氨酸丙酮酸转氨酶(GPT)活性显著下降;游离氨基酸含量、蛋白酶和肽酶活性在土壤盐分0.30%以上时显著增加.以上结果说明,土壤盐分影响铃壳的氮代谢,从而引起Bt蛋白合成减弱,中度以上土壤盐分水平会引起Bt蛋白分解加强,从而导致杀虫蛋白表达水平进一步下降.  相似文献   

5.
转Bt基因抗虫棉根际微生物区系和细菌生理群多样性的变化   总被引:51,自引:2,他引:51  
在大田栽培条件下 ,以转 Bt基因抗虫棉 GK-12和常规棉花泗棉 3号作为材料 ,在棉花不同发育时期 ,于 2 0 0 1和 2 0 0 2连续两年测定棉花根际土壤细菌、放线菌和真菌数量的变化 ,并在 2 0 0 2年棉花的花铃期和吐絮期对根际细菌生理群的数量和多样性进行了分析 ,结果表明 :虽然不同年份和生育期棉花根际微生物数量存在差异 ,但是 ,年度间和相同的发育时期棉花根际微生物的数量变化趋势一致。在棉花的苗期和吐絮期 ,转 Bt基因抗虫棉根际微生物的数量与对照差异不显著 ;在棉花的花铃期 ,转 Bt基因抗虫棉根际细菌的数量比对照增加 ,放线菌的数量差异不显著 ,而真菌的数量变化没有规律。在棉花发育的花铃期和吐絮期 ,Bt棉根际细菌生理群的总数量比常规棉增加 ,但是根际细菌生理群的 Simpson指数、Shannon-Wiener指数和细菌生理群分布的均匀度下降  相似文献   

6.
Transgenic cotton that produces insecticidal crystal protein Cry1Ac of Bacillus thuringiensis (Bt) has been effective in controlling pink bollworm, Pectinophora gossypiella (Saunders). We compared responses to bolls of Bt cotton and non-Bt cotton by adult females and neonates from susceptible and Cry1Ac-resistant strains of pink bollworm. In choice tests on caged cotton plants in the greenhouse, neither susceptible nor resistant females laid fewer eggs on Bt cotton bolls than on non-Bt cotton bolls, indicating that the Bt toxin did not deter oviposition. Multiple regression revealed that the number of eggs laid per boll was negatively associated with boll age and positively associated with boll diameter. Females also laid more eggs per boll on plants with more bolls. The distribution of eggs among bolls of Bt cotton and non-Bt cotton was clumped, indicating that boll quality rather than avoidance of previously laid eggs was a primary factor in oviposition preference. Parallel to the results from oviposition experiments, in laboratory no-choice tests with 10 neonates per boll, the number of entrance holes per boll did not differ between Bt cotton and non-Bt cotton for susceptible and resistant neonates. Also, like females, neonates preferred younger bolls and larger bolls. Thus, acceptance of bolls by females for oviposition and by neonates for mining was affected by boll age and diameter, but not by Bt toxin in bolls. The lack of discrimination between Bt and non-Bt cotton bolls by pink bollworm from susceptible and resistant strains indicates that oviposition and mining initiation are independent of susceptibility to Cry1Ac.  相似文献   

7.
转Bt基因棉花杀虫晶体蛋白的表达及光合特性的研究   总被引:2,自引:2,他引:0  
转Bt基因棉花(GK、ZK)及非Bt基因棉花(CZ)杀虫晶体蛋白表达及光合特性的研究表明,杀虫晶体蛋白在转Bt基因棉花GK与ZK中的表达总量及在各器官中的分配均有所不同.转Bt基因棉花叶片的净光合速率的光响应与常规棉有所不同.转Bt基因棉花GK与ZK叶片的叶绿素含量、净光合速率、蒸腾速率的日变化有明显的不同,而胞间二氧化碳浓度、气孔限制值、叶温的日变化趋势则基本一致.胞间二氧化碳浓度的日平均值在两转Bt基因棉花间的差异达显著水平,而其它各指标在不同处理间的差异均未达显著.  相似文献   

8.
棉大卷叶螟Sylepta derogata Fabricius为近年来长江流域棉花中后期的一种重要害虫。在其危害盛期测定了8种转基因棉叶片Bt毒蛋白的含量与受害程度,在此基础上就转基因棉对棉大卷叶螟的抗虫性采用不同抗性指标相结合的方法进行了综合评估,同时对转基因棉对棉大卷叶螟的抗虫效果与毒蛋白含量的相关性进行分析。结果表明:各转基因棉品种的不同部位叶片的毒蛋白含量呈现顶叶最高,功能叶次之,老叶含量最低的趋势。抗蚜8017和SGK321 2个转基因棉品种的棉叶毒蛋白表达量相对较低,平均值在120μg/g以下,对棉大卷叶螟的抗性级别均为中抗。其它供试转基因棉棉叶毒蛋白表达量均值在150μg/g以上,抗性级别也均为高抗,而非转基因棉泗棉3号与石远321对棉大卷叶螟不具抗性。转基因棉对棉大卷叶螟的抗性水平与毒蛋白含量呈正相关。  相似文献   

9.
苏云金芽孢杆菌杀虫晶体蛋白Cry1Ca7对重要的农业害虫甜菜夜蛾具有较高毒力.[目的]本文的研究目的是通过定点突变的方法获得毒力发生改变的毒蛋白,为下一步研究工作提供有价值的实验材料.[方法]利用重叠引物PCR技术对cry1Ca7基因进行定点突变,获得了10种突变基因,通过生物活性测定的方法确定了各突变基因表达产物对甜菜夜蛾的杀虫活性.[结果]活性降低的突变毒蛋白有G138S,T221D,T221R,N251S,439GGT440,N306R,W376F,R522E和 R570G,其中,位于DomainⅡ内的突变的活性依次是439GGT440相似文献   

10.
以Bt基因来源于中国的棉花品种泗抗1 号(常规种)、泗抗3 号(杂交种)和来源于美国的棉花品种99B(常规棉)、岱杂1 号(杂交棉)为材料,研究了不同高温水平下Bt 棉盛铃期铃壳中Bt 蛋白含量变化及氮代谢生理特征.结果表明: 铃壳中Bt 蛋白含量随温度升高而降低,与对照相比(32 ℃),常规棉品种在38 ℃、杂交棉品种在40 ℃以上时,铃壳中Bt 蛋白含量大幅度下降.其中,常规种泗抗1号和99B在38 ℃时分别下降53.0%和69.5%;杂交种泗抗3号和岱杂1号在40 ℃时下降64.8%和54.1%.铃壳Bt 杀虫蛋白含量下降显著时,其可溶性蛋白含量明显下降,游离氨基酸含量明显提高,GPT活性显著下降,蛋白酶活性显著增加.高温影响铃壳的氮代谢引起Bt蛋白的分解加剧,合成减弱,从而造成Bt蛋白含量减少,抗虫性下降.  相似文献   

11.
2000年7月中旬和8月中旬, 分别测定了采自田间的转CpTI-Bt基因双价抗虫棉(SGK321, 以下简称CpTI-Bt棉)和转Bt基因抗虫棉(中30,以下简称Bt棉)对棉铃虫Helicoverpa armigera幼虫存活、生长的影响。结果表明:7月中旬两种转基因抗虫棉抗虫效果均较好,尤其是CpTI-Bt棉棉叶和花瓣对4龄幼虫3天内致死率为92%以上;8月中旬两种转基因棉的抗虫活性均明显降低,且Bt棉的杀虫活性显著低于CpTI-Bt棉,其幼虫死亡率与对照受体棉中16的死亡率之间无显著差异,仅显著抑制了幼虫的生长;石远321(SGK321受体品系)的花瓣具有一定的抗虫活性,可显著降低取食幼虫的体重,甚至造成部分幼虫死亡; CpTI-Bt棉中,花瓣和棉叶的抗虫性明显高于蕾和铃心。对5龄幼虫取食棉铃1日后的营养指标测定结果显示: 两种转基因抗虫棉处理的幼虫相对生长率和相对取食量均显著低于石远321,但两者之间无显著差异; CpTI-Bt棉处理的幼虫近似消化率显著低于石远321和Bt棉,但其食物利用率显著高于石远321和Bt棉。  相似文献   

12.
抗植物病毒农药“病毒煞”的氨基酸成分分析   总被引:1,自引:0,他引:1  
本文通过对抗植物病毒农药“病毒煞”的氨基酸成分进行分析,共含有18种氨基酸,其中脯氨酸、谷氨酸、精氨酸和天冬氨酸含量较高,约占水解氨基酸总量的47%;含有19种游离氨基酸,脯氨酸含量最高,占游离氨基酸总量的51%,说明氨基酸可能是其防病增产的有效成分之一。  相似文献   

13.
Different isolates of the soil bacterium Bacillus thuringiensis produce multiple crystal (Cry) proteins toxic to a variety of insects, nematodes and protozoans. These insecticidal Cry toxins are known to be active against specific insect orders, being harmless to mammals, birds, amphibians, and reptiles. Due to these characteristics, genes encoding several Cry toxins have been engineered in order to be expressed by a variety of crop plants to control insectpests. The cotton boll weevil, Anthonomus grandis, and the fall armyworm, Spodoptera frugiperda, are the major economically devastating pests of cotton crop in Brazil, causing severe losses, mainly due to their endophytic habit, which results in damages to the cotton boll and floral bud structures. A cry1Ia-type gene, designated cry1Ia12, was isolated and cloned from the Bt S811 strain. Nucleotide sequencing of the cry1Ia12 gene revealed an open reading frame of 2160 bp, encoding a protein of 719 amino acid residues in length, with a predicted molecular mass of 81 kDa. The amino acid sequence of Cry1Ia12 is 99% identical to the known Cry1Ia proteins and differs from them only in one or two amino acid residues positioned along the three domains involved in the insecticidal activity of the toxin. The recombinant Cry1Ia12 protein, corresponding to the cry1Ia12 gene expressed in Escherichia coli cells, showed moderate toxicity towards first instar larvae of both cotton boll weevil and fall armyworm. The highest concentration of the recombinant Cry1Ia12 tested to achieve the maximum toxicities against cotton boll weevil larvae and fall armyworm larvae were 230 microg/mL and 5 microg/mL, respectively. The herein demonstrated insecticidal activity of the recombinant Cry1Ia12 toxin against cotton boll weevil and fall armyworm larvae opens promising perspectives for the genetic engineering of cotton crop resistant to both these devastating pests in Brazil.  相似文献   

14.
棉花植株中的黄酮类化台物是重要的抗病虫害物质。运用高效液相色谱技术,对转Bt基因棉花主要抗虫黄酮类化合物的种类、含量和时空动态进行了初步探讨。结果表明,棉花组织中主要抗虫黄酮类化台物(包括异斛皮苷、芳香苷和槲皮素等)能够用HPLC方法检测并进行定量;异树皮苷、芳香苷和树皮素的含量均以花瓣中最高,花萼、苞叶和棉铃中较少;棉花生长中后期顶端嫩叶中抗虫黄酮类化合物的含量明显高于苗期.不同组织不同生长期的主要抗虫黄酮类化合物含量有一定的差异,所起的抗虫作用也有所不同.  相似文献   

15.
Bt毒素在转基因棉花与土壤系统中的分布   总被引:2,自引:2,他引:2  
研究了转Bt基因棉花与土壤系统中Bt毒素的分布.结果表明,两种转Bt基因棉花地上部(叶片、茎秆)的毒素表达量(103.5~134.1 ng·g-1)显著高于地下部分(根系)(44.7~21.2 ng·g-1),土壤中Bt毒素总量可通过转基因棉花地上部分秸秆的处理得到控制;Bt毒素在转Bt基因棉花根系分泌物中的含量极低,如果控制Bt毒素的其它导入来源,将显著降低转Bt基因作物释放中因Bt毒素导入而引发的对土壤生态系统的扰动.  相似文献   

16.
转基因抗虫棉Bt基因不同剂量的聚合与抗虫性表现   总被引:9,自引:0,他引:9  
通过有性杂交手段培育出聚有不同数目Bt基因的植株,在不同生育期进行抗虫性测定和Bt毒蛋白表达的ELISA检测,旨在揭示聚合不同数目Bt基因的植株抗虫性的互作表达机理。聚合有1-4个Bt基因的植株在整个生育期的抗虫性、毒蛋白表达特性和单价抗虫棉时空表达一致,生育前期抗虫性好、毒蛋白表达量高;生育中、后期抗虫性有所下降,毒蛋白表达量降低。聚合有4个Bt基因的纯合材料并未因Bt基因的增加而起到抗性增强的效果,相反还因同源抑制而有所降低。不同来源的Bt基因处于杂合状态时其抗虫性和Bt毒蛋白量均得到充分表达。  相似文献   

17.
Various studies have been conducted to assess the damage caused by secondary lepidopteran pests to transgenic Bt maize expressing Cry1Ab. However, to date little is known on the effects of transgenic maize on Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae), a polyphagous herbivore which is considered a pest in Mediterranean maize growing areas. Here we present results on the effects of Bt maize (Bt‐11) and Bt spray (Dipel) on the various life stage parameters of this herbivore. We further assess the expression of Cry1Ab in different leaves and leaf parts in maize at a given plant growth stage, and determine whether the feeding damage of 3rd instar S. littoralis is influenced by Bt toxin expression. Contrary to previous literature reporting that S. littoralis is not sensitive to Bt Cry1Ab toxin, our results show that insects fed on either transgenic or Bt sprayed plants were negatively affected. Young S. littoralis larvae (1st and 2nd instars) were found to be the most sensitive to the Bt toxin. This was represented by a higher mortality and a slower developmental time of larvae maintained on transgenic or sprayed plants when compared to insects maintained on control plants. Moreover, Bt maize had a stronger and prolonged detrimental effect on insects when compared to Bt spray in maize. This was revealed by the fact that insects maintained on transgenic plants from 3rd instar to pupation took longer to reach adult emergence compared to insects that were maintained on sprayed plants. This was likely due to the continuous exposure of insects to the toxin when kept on transgenic maize. ELISA results showed a variation in the amount of Bt toxin among different leaf sections in transgenic maize at a given plant growth stage. These differences in Bt toxin were primarily found in the youngest leaf of growing plants. Although the lowest amounts of Bt toxin were detected in the growing leaf section of young leaves, this difference did not appear to influence the feeding behavior of 3rd instar S. littoralis.  相似文献   

18.
A field study was carried out to quantify plant growth and the foliar chemistry of transgenic Bacillus thuringiensis (Bt) cotton (cv. GK-12) exposed to ambient CO2 and elevated (double-ambient) CO2 for different lengths of time (1, 2 and 3 months) in 2004 and 2005. The results indicated that CO2 levels significantly affected plant height, leaf area per plant and leaf chemistry of transgenic Bt cotton. Significantly, higher plant height and leaf area per plant were observed after cotton plants that were grown in elevated CO2 were compared with plants grown in ambient CO2 for 1, 2 and 3 months in the investigation. Simultaneously, significant interaction between CO2 level x investigating year was observed in leaf area per plant. Moreover, foliar total amino acids were increased by 14%, 13%, 11% and 12%, 14%, 10% in transgenic Bt cotton after exposed to elevated CO2 for 1, 2 or 3 months compared with ambient CO2 in 2004 and 2005, respectively. Condensed tannin occurrence increased by 17%, 11%, 9% in 2004 and 12%, 11%, 9% in 2005 in transgenic Bt cotton after being exposed to elevated CO2 for 1, 2 or 3 months compared with ambient CO2 for the same time. However, Bt toxin decreased by 3.0%, 2.9%, 3.1% and 2.4%, 2.5%, 2.9% in transgenic Bt cotton after exposed to elevated CO2 for 1, 2 or 3months compared with ambient CO2 for same time in 2004 and 2005, respectively. Furthermore, there was prominent interaction on the foliar total amino acids between the CO2 level and the time of cotton plant being exposed to elevated CO2. It is presumed that elevated CO2 can alter the plant growth and hence ultimately the phenotype allocation to foliar chemistical components of transgenic Bt cotton, which may in turn, affect the plant-herbivore interactions.  相似文献   

19.
施氮方式对转基因棉花Bt蛋白含量及产量的影响   总被引:3,自引:0,他引:3  
为研究氮肥运筹对棉花叶片、棉蕾和棉铃不同器官中Bt蛋白含量的影响,2009—2010年,以抗虫杂交棉中棉所72为试验材料,在大田条件下进行了不同基肥:花铃肥:盖顶肥施氮比例(分别为0:0.4:0.6、0.2:0.4:0.4、0.4:0.4:0.2、0.6:0.4:0)的试验。结果表明,施氮方式对棉花不同器官中Bt蛋白含量有明显影响。总体表现为随着氮肥前移,棉花幼嫩器官中Bt蛋白含量呈明显增加的趋势,而老熟器官中Bt蛋白含量呈明显降低的趋势。施氮方式对棉花幼嫩器官中Bt蛋白含量的影响比老熟器官明显,尤其是对幼嫩叶片Bt蛋白含量的影响大于幼小的棉蕾和棉铃器官。抗虫棉采用基肥:花铃肥:盖顶肥为0.4:0.4:0.2的施氮方式,总体能提高前中期棉花器官Bt蛋白的含量,有利于提高其抗虫性能;减少后期棉花器官Bt蛋白的含量,减轻对环境的压力;而且比其余3种施氮方式的籽棉产量和皮棉产量分别增加4.15%—11.24%、3.73%—12.01%。  相似文献   

20.
Summary The concentrations of Bacillus thuringensis (Bt) toxin released from root exudation of Bt cotton were measured by an enzyme-linked immunosorbent assay (ELISA), and its impacts on the numbers of culturable functional bacteria in the rhizosphere were determined by cultivation. No Bt toxin was found in the rhizosphere of non-Bt cotton (SHIYUAN321), but varying levels of Bt toxin were present in the rhizosphere of two Bt cotton varieties (NuCOTN99B and SGK321) during the entire growth period. The levels of Bt toxin in the rhizosphere of NuCOTN99B were significantly higher (p<0.05) than those of SGK321 within all sampling dates except on June 17th in the whole growth season. Significant differences (p<0.05) were found in the numbers of the three functional bacteria between SHIYUAN321 and NuCOTN99B within each sampling day from May 27th to October 27th. No significant differences were found in the numbers of functional bacteria among three cultivars after growth season. Fortification of pure Bt toxin into rhizospheric soil did not result in significant changes in the numbers of culturable functional bacteria, except the nitrogen-fixing bacteria when the concentration of Bt toxin was higher than 500 ng/g. The results indicated that Bt toxin was not the direct factor causing decrease of the numbers of bacteria in the rhizosphere, and other factors may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号