首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1)H NMR spectroscopy has been established for the determination of uronate residues in glycosaminoglycans (GAGs) such as dermatan sulfate (DS), heparin (HP), and heparan sulfate (HS). Because of variation in the sulfonation positions in DS, HP, or HS, interpretation of spectra is difficult. Solvolysis was applied to remove O-sulfo groups from these GAG chains in dimethyl sulfoxide containing 10% methanol at 80 degrees C for 5 h. In the cases of HP and HS, N-sulfo groups on glucosamine residues were also removed under the same conditions. The resulting unsubstituted amino groups in HP and HS chains were re-N-acetylated using acetic anhydride to obtain homogeneous core structure with the exception of the variation of uronate residues. The contents of glucuronate and iduronate residues in the chemically modified DS, HP, and HS samples were analyzed by 600-MHz (1)H NMR spectroscopy. These methods were applied to compositional analysis of uronate residues in GAGs isolated from various sources.  相似文献   

2.
Heparanases are mammalian endoglucuronidases that degrade heparan sulfate (HS) glycosaminoglycans to short 5-6 kDa pieces. In the Golgi, HS glycosaminoglycans are modified by a series of interdependent reactions which result in chains that have regions rich in N- and O-sulfate groups and iduronate residues (S-domains), separated by regions that are nearly devoid of sulfate. Structural analysis of the short HS chains produced by Chinese hamster ovary (CHO) cell heparanases indicate that the enzymes recognize differences in sulfate content between S-domains and unmodified sequences, and cleave the chain at junctions between these regions. To look more closely at whether the spacing of S-domains on the gly- cosaminoglycan influences its ability to be cleaved by heparanases, we examined the susceptibility of the HS chains synthesized by the proteoglycan synthesis mutant, pgsE-606. PGS:E-606 cells are deficient in the modification enzyme N-deacetylase/N-sulfotransferase I, and synthesize HS chains that have fewer N- and O-sulfate groups and iduronate residues compared to wild-type (Bame et al., (1991), J. Biol. Chem., 266, 10287). HS glycosaminoglycans were isolated from wild-type and pgsE-606 cells and separated into populations based on sulfate content. Compared to wild-type HS, which has 14 S-domains, pgsE-606 cells synthesize three HS species, 606-1, 606-2, and 606-3, with 1, 4, and 8 S-domains, respectively. The spacing of the S-domains on the pgsE-606 HS chains is similar to the spacing the modified sequences on wild-type HS, indicating that each mutant glycosaminoglycan is composed of wild-type-like sequences and sequences devoid of S-domains. When incubated with partially purified CHO heparanases, only the portion of the mutant HS chains that had S-domains were degraded. Structural analysis of the heparanase-products confirmed that both the number and the arrangement of S-domains on the HS glycosaminoglycan are important for heparanase susceptibility. The structure of the different pgsE-606 HS chains also suggests mechanisms for the placement of S-domains when the gly- cosaminoglycan is synthesized.  相似文献   

3.
Cell surface-associated heparan sulfate proteoglycans, predominantly perlecan, are involved in the process of binding and endocytosis of thrombospondin-1 (TSP-1) by vascular endothelial cells. To investigate the structural properties of heparan sulfate (HS) side chains that mediate this interaction, the proteoglycans were isolated from porcine endothelial cells and HS chains obtained thereof by beta-elimination. To characterize the structural composition of the HS chains and to identify the TSP-1-binding sequences, HS was disintegrated by specific chemical and enzymatic treatments. Cell layer-derived HS chains revealed the typical structural heterogeneity with domains of non-contiguously arranged highly sulfated disaccharides separated by extended sequences containing predominantly N-acetylated sequences of low sulfation. Affinity chromatography on immobilized TSP-1 demonstrated that nearly all intact HS chains possessed binding affinity, whereas after heparinase III treatment only a small proportion of oligosaccharides were bound with similar affinity to the column. Size fractioning of the bound and unbound oligosaccharides revealed that only a specific portion of deca- to tetradecasaccharides possessed TSP-1-binding affinity. The binding fraction contained over 40% di- and trisulfated disaccharide units and was enriched in the content of the trisulfated 2-O-sulfated L-iduronic acid-N-sulfated-6-O-sulfated glucosamine disaccharide unit. Comparison with the disaccharide composition of the intact HS chains and competition experiments with modified heparin species indicated the specific importance of N- and 6-O-sulfated glucosamine residues for binding. Further depolymerization of the binding oligosaccharides revealed that the glucosamine residues within the TSP-1-binding sequences are not continuously N-sulfated. The present findings implicate specific structural properties for the HS domain involved in TSP-1 binding and indicate that they are distinct from the binding sequence described for basic fibroblast growth factor, another HS ligand and a potential antagonist of TSP-1.  相似文献   

4.
Heparan sulfate (HS) interacts with a variety of proteins and thus mediates numerous complex biological processes. These interactions critically depend on the patterns of O-sulfate groups within the HS chains that determine binding sites for proteins. In particular the distribution of 6-O-sulfated glucosamine residues influences binding and activity of HS-dependent signaling molecules. The protein binding domains of HS show large structural variability, potentially because of differential expression patterns of HS biosynthetic enzymes along with differences in substrate specificity. To investigate whether different isoforms of HS glucosaminyl 6-O-sulfotransferase (6-OST) give rise to differently sulfated domains, we have introduced mouse 6-OST1, 6-OST2, and 6-OST3 in human embryonic kidney 293 cells and compared the effects of overexpression on HS structure. High expression of any one of the 6-OST enzymes resulted in appreciably increased 6-O-sulfation of N-sulfated as well as N-acetylated glucosamine units. The increased 6-O-sulfation was accompanied by a decrease in nonsulfated as well as in iduronic acid 2-O-sulfated disaccharide structures. Furthermore, overexpression led to an altered HS domain structure, the most striking effect was the formation of extended 6-O-sulfated predominantly N-acetylated HS domains. Although the effect was most noticeable in 6-OST3-expressing cells, these results were largely independent of the particular 6-OST isoform expressed and mainly influenced by the level of overexpression.  相似文献   

5.
Many of the biological functions attributed to cell surface heparan sulfate (HS) proteoglycans, including the Syndecan family, are elicited through the interaction of their HS chains with soluble extracellular molecules. Tightly controlled, cell-specific sulfation and epimerization of HS precursors endows these chains with highly sulfated, iduronate-rich regions, which are major determinants of cytokine and matrix-protein binding and which are interspersed by N-acetylated, poorly sulfated regions. Until this study, there have been no comprehensive structural comparisons made on HS chains decorating simultaneously expressed, but different, syndecan core proteins. In this paper we demonstrate that the HS chains on affinity-purified syndecan-1 and -4 from murine mammary gland cells are essentially identical by a number of parameters. Size determination, disaccharide analyses, enzymatic and chemical scission methods, and affinity co-electrophoresis all failed to reveal any significant differences in fine structure, domain organization, or ligand-binding properties of these HS species. These findings lead us to suggest that the imposition of the fine structure onto HS occurs independently of the core protein to which it is attached and that these core proteins, in addition to the HS chains, may play a pivotal role in the various biological functions ascribed to these macromolecules.  相似文献   

6.
Glypicans are a family of cell-surface proteoglycans that regulate Wnt, hedgehog, bone morphogenetic protein, and fibroblast growth factor signaling. Loss-of-function mutations in glypican core proteins and in glycosaminoglycan-synthesizing enzymes have revealed that glypican core proteins and their glycosaminoglycan chains are important in shaping animal development. Glypican core proteins consist of a stable α-helical domain containing 14 conserved Cys residues followed by a glycosaminoglycan attachment domain that becomes exclusively substituted with heparan sulfate (HS) and presumably adopts a random coil conformation. Removal of the α-helical domain results in almost exclusive addition of the glycosaminoglycan chondroitin sulfate, suggesting that factors in the α-helical domain promote assembly of HS. Glypican-1 is involved in brain development and is one of six members of the vertebrate family of glypicans. We expressed and crystallized N-glycosylated human glypican-1 lacking HS and N-glycosylated glypican-1 lacking the HS attachment domain. The crystal structure of glypican-1 was solved using crystals of selenomethionine-labeled glypican-1 core protein lacking the HS domain. No additional electron density was observed for crystals of glypican-1 containing the HS attachment domain, and CD spectra of the two protein species were highly similar. The crystal structure of N-glycosylated human glypican-1 core protein at 2.5 Å, the first crystal structure of a vertebrate glypican, reveals the complete disulfide bond arrangement of the conserved Cys residues, and it also extends the structural knowledge of glypicans for one α-helix and two long loops. Importantly, the loops are evolutionarily conserved in vertebrate glypican-1, and one of them is involved in glycosaminoglycan class determination.  相似文献   

7.
Heparan sulfate (HS) proteoglycans play critical roles in a wide variety of biological processes such as growth factor signaling, cell adhesion, wound healing, and tumor metastasis. Functionally important interactions between HS and a variety of proteins depend on specific structural features within the HS chains. The fruit fly (Drosophila melanogaster) is frequently applied as a model organism to study HS function in development. Previous structural studies of Drosophila HS have been restricted to disaccharide composition, without regard to the arrangement of saccharide domains typically found in vertebrate HS. Here, we biochemically characterized Drosophila HS by selective depolymerization with nitrous acid. Analysis of the generated saccharide products revealed a novel HS design, involving a peripheral, extended, presumably single, N-sulfated domain linked to an N-acetylated sequence contiguous with the linkage to core protein. The N-sulfated domain may be envisaged as a heparin structure of unusually low O-sulfate content.  相似文献   

8.
The heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPG) are “ubiquitous” components of the cell surface and the extracellular matrix (EC) and play important roles in the physiopathology of developmental and homeostatic processes. Most biological properties of HS are mediated by interactions with “heparin-binding proteins” and can be modulated by exogenous heparin species (unmodified heparin, low molecular weight heparins, shorter heparin oligosaccharides and various non-anticoagulant derivatives of different sizes). Heparin species can promote or inhibit HS activities to different extents depending, among other factors, on how closely their structure mimics the biologically active HS sequences. Heparin shares structural similarities with HS, but is richer in “fully sulfated” sequences (S domains) that are usually the strongest binders to heparin/HS-binding proteins. On the other hand, HS is usually richer in less sulfated, N-acetylated sequences (NA domains). Some of the functions of HS chains, such as that of activating proteins by favoring their dimerization, often require short S sequences separated by rather long NA sequences. The biological activities of these species cannot be simulated by heparin, unless this polysaccharide is appropriately chemically/enzymatically modified or biotechnologically engineered. This mini review covers some information and concepts concerning the interactions of HS chains with heparin-binding proteins and some of the approaches for modulating HS interactions relevant to inflammation and cancer. This is approached through a few illustrative examples, including the interaction of HS and heparin-derived species with the chemokine IL-8, the growth factors FGF1 and FGF2, and the modulation of the activity of the enzyme heparanase by these species. Progresses in sequencing HS chains and reproducing them either by chemical synthesis or semi-synthesis, and in the elucidation of the 3D structure of oligosaccharide–protein complexes, are paving the way for rational approaches to the development of HS-inspired drugs in the field of inflammation and cancer, as well in other therapeutic fields.  相似文献   

9.
Cell surface heparan sulfate (HS) proteoglycans are required in development and postnatal repair. Important classes of ligands for HS include growth factors and extracellular matrix macromolecules. For example, the focal adhesion component syndecan-4 interacts with the III(12-14) region of fibronectin (HepII domain) through its HS chains. The fine structure of HS is critical to growth factor responses, and whether this extends to matrix ligands is unknown but is suggested from in vitro experiments. Cell attachment to HepII showed that heparin oligosaccharides of >or=14 sugar residues were required for optimal inhibition. The presence of N-sulfated glucosamine in the HS was essential, whereas 2-O-sulfation of uronic acid or 6-O-sulfation of glucosamine had marginal effects. In the more complex response of focal adhesion formation through syndecan-4, N-sulfates were again required and also glucosamine 6-O-sulfate. The significance of polymer N-sulfation and sulfated domains in HS was confirmed by studies with mutant Chinese hamster ovary cells where heparan sulfation was compromised. Finally, focal adhesion formation was absent in fibroblasts synthesizing short HS chains resulting from a gene trap mutation in one of the two major glucosaminoglycan polymerases (EXT1). Several separate, specific properties of cell surface HS are therefore required in cell adhesion responses to the fibronectin HepII domain.  相似文献   

10.
The sulfated glycosaminoglycan heparan sulfate (HS) is found ubiquitously on cell surfaces, in the extracellular matrix, and intracellularly as HS proteoglycans. Because of the structural heterogeneity of HS, tissue-derived HS preparations represent a mixture of HS chains originating from different cell types and tissue loci. Monoclonal anti-HS antibodies have been employed to detect the localization of specific HS epitopes in tissues, but limited information has been available on the saccharide structures recognized by the antibodies. We have studied the saccharide epitope structures of four anti-HS antibodies, HepSS1, JM13, JM403, and 10E4, which all recognize distinct HS species as demonstrated by different patterns of immunoreactivity upon staining of embryonic rat and adult human tissues. The epitopes recognized by JM13 and HepSS1 were found almost exclusively in basement membrane HS, whereas JM403 and 10E4 reacted also with cell-associated HS species. The binding of HepSS1, JM403, and 10E4 to HS was dependent on the GlcN N-substitution of the polysaccharide rather than O-sulfation. HepSS1 thus interacted with N-sulfated HS domains, JM403 binding was critically dependent on N-unsubstituted GlcN residues, and 10E4 bound to "mixed" HS domains containing both N-acetylated and N-sulfated disaccharide units. By contrast, JM13 binding seemed to require the presence of 2-O-sulfated glucuronic acid residues.  相似文献   

11.
Lipoprotein lipase (LPL), which is an important enzyme in lipid metabolism, binds to heparan sulfate (HS) proteoglycans. This interaction is crucial for several aspects of LPL function, such as intracellular/extracellular transport and high capacity attachment to cell surfaces. Retention of LPL on the capillary walls, and elsewhere, via HS chains is most likely affected by the quality and quantity of HS present. Earlier studies have demonstrated that LPL interacts with highly sulfated HS and heparin oligosaccharides. Since such structures are relatively rare in endothelial HS, we have re-addressed the question of physiological ligand structures for LPL by affinity purification of end-labeled oligosaccharides originating from heparin and HS on immobilized LPL. By a combination of chemical modification and fragmentation of the bound material we identified that the bound fraction contained modestly sulfated oligosaccharides with an average sulfation of one O-sulfate per disaccharide unit and tolerates N-acetylated glucosamine residues. Therefore LPL, containing several clusters of positive charges on each subunit, may constitute an ideal structure for a protein that needs to bind with reasonable affinity to a variety of modestly sulfated sequences of the type that is abundant in HS chains.  相似文献   

12.
Heparan sulfate (HS) plays essential roles in assisting herpes simplex virus infection and other biological processes. The biosynthesis of HS includes numerous specialized sulfotransferases that generate a variety of sulfated saccharide sequences, conferring the selectivity of biological functions of HS. We report a structural study of human HS 3-O-sulfotransferase isoform 3 (3-OST-3), a key sulfotransferase that transfers a sulfuryl group to a specific glucosamine in HS generating an entry receptor for herpes simplex virus 1. We have obtained the crystal structure of 3-OST-3 at 1.95 A in a ternary complex with 3'-phosphoadenosine 5'-phosphate and a tetrasaccharide substrate. Mutational analyses were also performed on the residues involved in the binding of the substrate. Residues Gln255 and Lys368 are essential for the sulfotransferase activity and lie within hydrogen bonding distances to the carboxyl and sulfo groups of the uronic acid unit. These residues participate in the substrate recognition of 3-OST-3. This structure provides atomic level evidence for delineating the substrate recognition and catalytic mechanism for 3-OST-3.  相似文献   

13.
The 3-O-sulfation of glucosamine is a key modification step during the biosynthesis of anticoagulant heparan sulfate (HS). Both heparan sulfate 3-O-sulfotransferase -1 (3-OST-1) and 3-O-sulfotransferase-5 (3-OST-5) transfer sulfate to the 3-OH group of glucosamine to generate antithrombin-binding heparan sulfate (HS(act)). Here, we reported the isolation and characterization of the antithrombin-binding HS oligosaccharides generated by 3-OST-5 (3-OST-5 oligo(act)). (3)H-labeled HS of Chinese hamster ovary cells was exhaustively modified by 3-OST-1 to remove the 3-OST-1 modification sites followed by antithrombin-affinity fractionation. The non-antithrombin-binding fraction of 3-OST-1 pretreated HS was further modified by 3-OST-5 to generate additional antithrombin-binding HS, which was designated as 3-OST-5 HS(act). Structural analysis of 3-OST-5 HS(act) revealed that the antithrombin-binding site of 3-OST-5 HS(act) is located within a domain clustered with N-sulfated glucosamine units. We also isolated 3-OST-5 antithrombin-binding oligosaccharides (3-OST-5 oligo(act)) from high pH nitrous acid degraded 3-OST-5 HS(act). A disaccharide analysis revealed that 3-OST-5 oligo(act) were composed of multiple 3-O-sulfated glucosamine units. Our results provide additional insights on the relationship between the anticoagulant activity and structure of HS.  相似文献   

14.
Nguyen TK  Raman K  Tran VM  Kuberan B 《FEBS letters》2011,585(17):2698-2702
Heparan sulfate (HS) chains play crucial biological roles by binding to various signaling molecules including fibroblast growth factors (FGFs). Distinct sulfation patterns of HS chains are required for their binding to FGFs/FGF receptors (FGFRs). These sulfation patterns are putatively regulated by biosynthetic enzyme complexes, called GAGOSOMES, in the Golgi. While the structural requirements of HS-FGF interactions have been described previously, it is still unclear how the FGF-binding motif is assembled in vivo. In this study, we generated HS structures using biosynthetic enzymes in a sequential or concurrent manner to elucidate the potential mechanism by which the FGF1-binding HS motif is assembled. Our results indicate that the HS chains form ternary complexes with FGF1/FGFR when enzymes carry out modifications in a specific manner.  相似文献   

15.
Nearly all vertebrate cells have been shown to express heparan sulfate proteoglycans (HSPGs) at the cell surface. The HSPGs bind to many secreted signaling proteins, including numerous growth factors, cytokines, and morphogens, to affect their tissue distribution and signaling. The heparan sulfate (HS) chains may have variable length and may differ with regard to both degree and pattern of sulfation. As the sulfation pattern of HS chains in most cases will determine if an interaction with a potential ligand will take place, as well as the affinity of the interaction, a key to understanding the function of HSPGs is to clarify how HS biosynthesis is regulated in different biological contexts. This review provides an introduction to the current understanding of HS biosynthesis and its regulation, and identifies research areas where more knowledge is needed to better understand how the HS biosynthetic machinery works.  相似文献   

16.
Heparan sulfate (HS) and chondroitin sulfate (CS) are highly sulfated polysaccharides with a wide range of biological functions. Heparan sulfate 2-O-sulfotransferase (HS-2OST) transfers the sulfo group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the 2-OH position of the hexauronic acid that is adjacent to N-sulfated glucosamine, whereas chondroitin sulfate 2-O-sulfotransferase (CS-2OST) transfers the sulfo group to the hexauronic acid that is adjacent to N-acetylated galactosamine. Here we report a systematic mutagenesis study of HS-2OST and CS-2OST based on their structural homology to estrogen sulfotransferase and HS 3-O-sulfotransferase isoform 3 (3-OST3), for which crystal structures exist. We have identified six residues possibly involved in binding to PAPS. HS-2OST carrying mutations of these residues lacks sulfotransferase activity and the ability to bind 3'-phosphoadenosine 5'-phosphate, a PAPS analogue, as determined by isothermal titration calorimetry. Similar residues involved in binding to PAPS were also identified in CS-2OST. Additional residues that participate in carbohydrate substrate binding were also identified in both enzymes. Mutations at these residues led to the loss of sulfotransferase activity but maintained the ability to bind to phosphoadenosine 5'-phosphate. The catalytic function of HS-2OST appears to involve two histidine residues (His140 and His142), whereas only one histidine (His168) of CS 2-OST is likely to be critical. This unique feature of HS 2-OST catalytic residues directed us to characterize the Drosophila heparan sulfate 2-O-sulfotransferase. The results from this study provide insight into the differences and similarities various residues play in the biological roles of the HS-2OST and CS-2OST enzymes.  相似文献   

17.
Heparan sulfate (HS) polysaccharides interact with numerous proteins at the cell surface and orchestrate many different biological functions. Though many functions of HS are well established, only a few specific structures can be attributed to HS functions. The extreme diversity of HS makes chemical synthesis of specific bioactive HS structures a cumbersome and tedious undertaking that requires laborious and careful functional group manipulations. Now that many of the enzymes involved in HS biosynthesis are characterized, we show in this study how one can rapidly and easily assemble bioactive HS structures with a set of cloned enzymes. We have demonstrated the feasibility of this new approach to rapidly assemble antithrombin III-binding classical and non-classical anticoagulant polysaccharide structures for the first time.  相似文献   

18.
19.
Heparan sulfate proteoglycans (HSPGs) interact with numerous proteins of importance in animal development and homeostasis. Heparanase, which is expressed in normal tissues and upregulated in angiogenesis, cancer and inflammation, selectively cleaves beta-glucuronidic linkages in HS chains. In a previous study, we transgenically overexpressed heparanase in mice to assess the overall effects of heparanase on HS metabolism. Metabolic labeling confirmed extensive fragmentation of HS in vivo. In the current study we found that in liver showing excessive heparanase overexpression, HSPG turnover is accelerated along with upregulation of HS N- and O-sulfation, thus yielding heparin-like chains without the domain structure typical of HS. Heparanase overexpression in other mouse organs and in human tumors correlated with increased 6-O-sulfation of HS, whereas the domain structure was conserved. The heavily sulfated HS fragments strongly promoted formation of ternary complexes with fibroblast growth factor 1 (FGF1) or FGF2 and FGF receptor 1. Heparanase thus contributes to regulation of HS biosynthesis in a way that may promote growth factor action in tumor angiogenesis and metastasis.  相似文献   

20.
Many of the biological functions of heparan sulfate (HS) proteoglycans can be attributed to specialized structures within HS moieties, which are thought to modulate binding and function of various effector proteins. Cyclophilin B (CyPB), which was initially identified as a cyclosporin A-binding protein, triggers migration and integrin-mediated adhesion of peripheral blood T lymphocytes by a mechanism dependent on interaction with cell surface HS. Here we determined the structural features of HS that are responsible for the specific binding of CyPB. In addition to the involvement of 2-O,6-O, and N-sulfate groups, we also demonstrated that binding of CyPB was dependent on the presence of N-unsubstituted glucosamine residues (GlcNH2), which have been reported to be precursors for sulfation by 3-O-sulfotransferases-3 (3-OST-3). Interestingly, 3-OST-3B isoform was found to be the main 3-OST isoenzyme expressed in peripheral blood T lymphocytes and Jurkat T cells. Moreover, down-regulation of the expression of 3-OST-3 by RNA interference potently reduced CyPB binding and consequent activation of p44/42 mitogen-activated protein kinases. Altogether, our results strongly support the hypothesis that 3-O-sulfation of GlcNH2 residues could be a key modification that provides specialized HS structures for CyPB binding to responsive cells. Given that 3-O-sulfation of GlcNH2-containing HS by 3-OST-3 also provides binding sites for glycoprotein gD of herpes simplex virus type I, these findings suggest an intriguing structural linkage between the HS sequences involved in CyPB binding and viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号