首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This study was to test the hypothesis that polyamines (PAs) and ethylene and their interactions may be involved in mediating the post-anthesis development of spikelets in rice (Oryza sativa L.). Six rice cultivars differing in grain filling rate were field-grown, and the changing patterns of PAs and ethylene levels in rice spikelets during the filling and their relations with grain filling rates were investigated. The results showed that inferior spikelets had much greater ethylene evolution rate and 1-aminocylopropane-1-carboxylic acid (ACC) concentration than superior spikelets. Opposite to ethylene production, superior spikelets showed much higher free-spermidine (Spd) and free-spermine (Spm) concentrations than inferior spikelets. Grain filling rate was very significantly and negatively correlated with ethylene evolution rate and ACC concentration, whereas positively correlated with free-Spd and free-Spm concentrations and with the ratio of free-Spd or free-Spm to ACC. Application of Spd, Spm, or aminoethoxyvinylglycine (an inhibitor of ethylene synthesis by inhibiting ACC synthesis) to panicles at the early grain filling stage significantly reduced ethylene evolution rate and ACC concentration, while significantly increased Spd and Spm concentrations, grain filling rate and grain weight of inferior spikelets. Application of ACC, ethephon (an ethylene-releasing agent), or methylglyoxal-bis (guanylhydrazone) (an inhibitor of Spd and Spm synthesis) showed the opposite effects. The results suggest that antagonistic interactions between PAs (Spd and Spm) and ethylene may be involved in mediating grain filling. A higher ratio of free-Spd or free-Spm to ethylene in rice spikelets could enhance grain filling.  相似文献   

2.
近地层臭氧浓度升高对杂交稻颖花形成的影响   总被引:2,自引:0,他引:2  
依托全球唯一的稻田开放式空气中臭氧浓度增高系统平台,以汕优63和两优培九为供试材料,设置大气背景臭氧浓度和高臭氧浓度(比大气背景臭氧浓度高50%)两个浓度水平,研究FACE条件下高O3浓度对杂交稻颖花形成的影响.结果表明:高O3浓度使汕优63和两优培九每穗颖花数分别减少28朵和34朵,下降幅度分别为15%和13%.从稻穗构成看,高O3浓度胁迫下杂交稻每穗颖花数减少主要与每穗2次枝梗颖花数明显减少有关,对每穗1次枝梗颖花数的影响较小,因此高O3浓度胁迫下水稻每穗1次枝梗颖花数占全穗的比率增加,每穗2次枝梗颖花数占全穗的比率降低.从颖花形成看,高O3浓度胁迫下杂交稻每穗颖花数下降主要是颖花(特别是2次颖花)的分化受到抑制所致,而颖花的退化数不增反降.上述结果表明,采取相应措施削弱高O3浓度胁迫对颖花分化的抑制作用可能是近地层高O3浓度条件下减少杂交稻产量损失的关键.  相似文献   

3.
This study was to test the hypothesis that polyamines (PAs) and ethylene may be involved in mediating the effect of water deficit on grain filling. Two wheat cultivars, drought-tolerant Shannong16 (SN16) and drought-sensitive Jimai22 (JM22), were used and subjected to well-watered and severe water deficit (SD) during grain filling. SD reduced the weight of superior and inferior grains, by 7.38 and 23.54 % in JM22, 13.8 and 2.2 % in SN16, respectively. Higher free-spermidine (Spd) and free-spermine (Spm) concentration and lower free-putrescine (Put) concentration, ethylene evolution rate (EER) and 1-aminocylopropane-1-carboxylic acid (ACC) concentration were found in superior grains than those in inferior ones. Opposite to the variations of Spd and Spm concentration, ACC, Put concentration and EER were significantly increased under SD. The percentage variation of PAs and ACC differed with cultivars and grain types. ACC concentration of superior and inferior grains under SD increased significantly at 21 days post-anthesis, by 90 and 164 % in JM22, 65 and 13.2 % in SN16, respectively. The equivalent value of Put concentration was 1.04 and 7.9 % in JM22, 34.4 and 10.3 % in SN16. Spd concentration of superior grains showed a higher decrease than that of inferior ones in both cultivars, while Spm exhibited an opposite trend between both grain types. These percentage variations were highly consistent with the differed responses of weight of both grain types to SD in JM22 and SN16. Grain filling rate was negatively correlated with EER and ACC concentration, while positively correlated with Spd and Spm concentration as well as the ratio of Spd or Spm to ACC. Exogenous Spd or aminoethoxyvinylglycine (an inhibitor of ethylene synthesis by inhibiting ACC synthesis) obviously reduced ACC concentration and EER and increased Spd and Spm concentration, while exogenous ethephon (an ethylene-releasing agent) or methylglyoxal-bis (an inhibitor of Spd and Spm synthesis) showed the opposite effects. The results suggested that it would be good for wheat to have the physiological traits of higher Spd and Spm, as well as a higher Spd/ACC or Spm/ACC, under SD.  相似文献   

4.
Yang J  Yunying C  Zhang H  Liu L  Zhang J 《Planta》2008,228(1):137-149
Early-flowered superior spikelets usually exhibit a faster grain filling rate and heavier grain weight than late-flowered inferior spikelets in rice (Oryza sativa L.). But the intrinsic factors responsible for the variations between the two types of spikelets are unclear. This study investigated whether and how polyamines (PAs) are involved in regulating post-anthesis development of rice spikelets. Six rice genotypes differing in grain filling rate were field grown, and PA levels and activities of the enzymes involved in PA biosynthesis were measured in both superior and inferior spikelets. The results showed that superior spikelets exhibited higher levels of free spermidine (Spd) and free spermine (Spm) and higher activities of arginine decarboxylase (ADC, EC 4.1.1.19), S-adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.50) and Spd synthase (EC 2.5.1.16) than inferior spikelets at the early endosperm cell division and grain filling stage. The maximum concentrations of free Spd and free Spm and the maximum activities of ADC, SAMDC and Spd synthase were significantly correlated with the maximum cell division and grain filling rates, maximum cell number and grain weight. Application of Spd and Spm to panicles resulted in significantly higher rates of endosperm cell division and grain filling in inferior spikelets along with the activities of sucrose synthase (EC 2.4.1.13), ADP glucose pyrophosphorylase (EC 2.7.7.27) and soluble starch synthase (EC 2.4.1.21), suggesting that these PAs are involved in the sucrose-starch metabolic pathway. The results indicate that the poor development of inferior spikelets is attributed, at least partly, to the low PA level and its low biosynthetic activity.  相似文献   

5.
利用HPLC和GC分别测定了水稻细胞质雄性不育系及其保持系幼穗多胺( 腐胺,亚精胺和精胺) 含量和乙烯释放速率,并研究了外施多胺合成抑制剂MGBG 和乙烯前体ACC生成抑制剂AVG 对两系幼穗多胺含量和乙烯释放速率以及花粉育性的影响。结果表明, 不育系幼穗乙烯释放速率显著高于其保持系幼穗, 外施AVG 引起两系幼穗乙烯释放速率下降,并使不育系花粉育性得以部分恢复; 不育系幼穗多胺含量显著低于保持系幼穗, 外施MGBG 使两系幼穗Spd 和Spm 含量下降, 并使保持系花粉育性降低。外施AVG 抑制乙烯释放,促进多胺合成;而外施MGBG 抑制Spd和Spm 合成, 却促进乙烯的释放; 而且,乙烯释放速率与多胺(精胺和亚精胺) 含量呈显著负相关。提示在水稻CMS 系及其保持系幼穗发育过程中乙烯与多胺( 精胺和亚精胺) 的生物合成竞争SAM。  相似文献   

6.
Involvement of polyamines in the drought resistance of rice   总被引:2,自引:0,他引:2  
This study investigated whether and how polyamines (PAs) in rice (Oryza sativa L.) plants are involved in drought resistance. Six rice cultivars differing in drought resistance were used and subjected to well-watered and water-stressed treatments during their reproductive period. The activities of arginine decarboxylase, S-adenosyl-L-methionine decarboxylase, and spermidine (Spd) synthase in the leaves were significantly enhanced by water stress, in good agreement with the increase in putrescine (Put), Spd, and spermine (Spm) contents there. The increased contents of free Spd, free Spm, and insoluble-conjugated Put under water stress were significantly correlated with the yield maintenance ratio (the ratio of grain yield under water-stressed conditions to grain yield under well-watered conditions) of the cultivars. Free Put at an early stage of water stress positively, whereas at a later stage negatively, correlated with the yield maintenance ratio. No significant differences were observed in soluble-conjugated PAs and insoluble-conjugated Spd and Spm among the cultivars. Free PAs showed significant accumulation when leaf water potentials reached -0.51 MPa to -0.62 MPa for the drought-resistant cultivars and -0.70 MPa to -0.84 MPa for the drought-susceptible ones. The results suggest that rice has a large capacity to enhance PA biosynthesis in leaves in response to water stress. The role of PAs in plant defence to water stress varies with PA forms and stress stages. In adapting to drought it would be good for rice to have the physiological traits of higher levels of free Spd/free Spm and insoluble-conjugated Put, as well as early accumulation of free PAs, under water stress.  相似文献   

7.
采用营养液栽培,研究了外源腐胺(Put)对根际低氧胁迫下黄瓜幼苗体内多胺含量和抗氧化系统的影响.结果显示,低氧胁迫显著刺激了黄瓜幼苗体内活性氧(ROS)和内源多胺含量的增加,提高了抗氧化酶活性;外源Put进一步提高了低氧胁迫下黄瓜幼苗体内多胺的含量和抗氧化酶活性,降低了ROS含量,从而缓解了低氧胁迫的伤害作用;Put合成抑制剂D-精氨酸(D-Arg)不仅显著抑制黄瓜幼苗体内多胺的合成,而且抑制抗氧化酶活性,同时ROS大量积累,进一步抑制黄瓜幼苗的生长;而外源Put可缓解D-Arg的抑制作用;Put转化抑制剂甲基乙二醛-双(脒基腙)(MGBG)和Put降解抑制剂氨基胍(AG)的混合施用造成游离态Put的过量积累,以及亚精胺(Spd)、精胺(Spm)含量和抗氧化酶活性的显著降低,造成ROS大量积累,进一步加重了低氧胁迫对植株的伤害.结果表明,低氧胁迫下外源Put可提高黄瓜幼苗体内游离态Put含量,促进游离态Put向Spd和Spm转化,Spd、Spm含量的增加以及(free-Spd free-Spm)/free-Put比值的升高有利于提高植株抗氧化酶活性,增强清除ROS的能力,降低膜脂过氧化的伤害,从而增强植株的低氧胁迫耐性.  相似文献   

8.
籼稻颖花分化与退化对不同播期温光的响应   总被引:1,自引:0,他引:1  
试验以三系杂交籼稻‘五优308’和‘天优华占’以及常规籼稻‘黄华占’为材料,在大田条件下,设置10个播期,研究田间不同温光条件对籼稻生育期天数、颖花分化和退化数的影响.结果表明: 温度对3个籼稻品种生育期的影响比日照长度大,平均温度升高1 ℃,播种-穗分化始期天数平均减少1.5 d,而穗分化历期天数与光照和温度的关系均不密切.不同播期间每穗颖花数和颖花分化数存在显著差异.穗分化期间平均温度、最高温度和最低温度升高,有效积温增加,昼夜温差扩大,光辐射增强,有利于穗分化期干物质积累和颖花分化,各品种趋势一致.穗分化期间有效积温增加50 ℃,颖花分化数增加10.5朵,昼夜温差扩大1 ℃,颖花分化增加14.3朵,总光辐射量增加50 MJ·m-2,颖花分化数增加17.1朵.颖花退化率与温度呈现二次项相关,极端高温或极端低温的自然条件不利于颖花形成,但低温天气对颖花退化的影响大于高温.温度低于临界温度,颖花退化率大幅增加,穗分化期临界积温为550~600 ℃,日平均温度为24.0~26.0 ℃,日最高温度为32.0~34.0 ℃,日最低温度为21.0~23.0 ℃.适宜高温、昼夜温差大、光照辐射强的自然条件利于颖花分化,并减少颖花退化.  相似文献   

9.
Water deficits at the anthesis stage of rice (Oryza sativa L.)induce a high percentage of spikelet sterility and reduce grainyield. This study attempted to elucidate the direct effectsof water stress on panicle exsertion, spikelet opening, andspikelet desiccation leading to spikelet sterility. A well-wateredtreatment and two water stress levels were imposed in pot-grownplants of IRAT 13 (upland cultivar) and IR20 (lowland cultivar)at the time of flowering under greenhouse conditions A cultivar difference was observed in the flowering responseto water stress with a high sensitivity in IR20. The time courseof panicle exsertion showed an inhibitory effect due to thelow panicle water status. Low panicle water potentials significantlyreduced the number of opened spikelets. Spikelet opening wascompletely inhibited at panicle water potentials below –1·8MPa and –2·3 MPa in IR20 and IRAT 13, respectively.However, the peak spikelet opening time in a day was not influencedby the stress treatment. Spikelets in stressed panicles wereobserved to remain open for a longer period than in the well-wateredpanicles. The role of turgor in spikelet opening is also discussedin the study. At low panicle water potentials, severe desiccationof spikelets and anthers was noted. The deleterious effectsof water deficits on spikelet opening and spikelet water losscontributed to reduced spikelet fertility Oryza sativa L., rice, spikelet sterility, flowering, water stress, panicle water potentials, turgor potentials, desiccation  相似文献   

10.
The flower opening of damson plum (Prunus insititia L.) was accompanied by an increase in the content of free-polyamines (PA) in the sepals, petals and sex organs, the ovary being most active in accumulating spermine (Spm). The fertilization process and senescence brought on a decline in ovarian Spm, but stimulated putrescine (Put) and spermidine (Spd) content in the sepals. The endocarp of this climacteric fruit produced only ethylene at the end of the S1 phase and throughout S2, in which there was a great richness in ACC and MACC. The greatest amounts of ACC and MACC were observed in the ripening mesocarp and epicarp. The contribution of the endocarp and epicarp to the total ACC in the developing fruit was very similar. During flowering and S1 and S2 phases, Spd was the most abundant PA; in contrast, during S3 and S4 Put was most abundant. The mesocarp contributed the most to the total content in PA throughout the fruit development. The control of SAM distribution towards ethylene and/or PA appears to differ during the development of the endocarp, as the only peak of free-Put (detected in S2) coincided with the highest ACC accumulation and ethylene production. On the contrary, in S3 it is probable that SAM was transformed preferentially into PA, given that free-Spd and Spm, hardly detectable in S1 and S2, peaked in this phase in which there was no gas production.  相似文献   

11.
Brassinosteroids(BRs) play crucial roles in many aspects of plant development. However, their function in spikelet differentiation and degeneration in rice(Oryza sativa L.) remains unclear. Here, we investigated the roles of these phytohormones in spikelet development in fieldgrown rice subjected to five different nitrogen(N)fertilization treatments during panicle differentiation. BR levels and expression of genes involved in BR biosynthesis and signal transduction were measured in spikelets. Pollen fertility and the number of differentiated spikelets were closely associated with 24-epicastasterone(24-epiCS) and28-homobrassinolide(28-homoBL) levels in spikelets.Enhanced BR biosynthesis and signal transduction, in response to N treatment, enhanced spikelet differentiation, reduced spikelet degeneration, and increased grain yield. Increases in proton-pumping ATPase activity, ATPconcentration, energy charge, and antioxidant system(AOS) levels were consistent with 24-epiCS and28-homoBL concentrations. Exogenous application of24-epiCS or 28-homoBL on young panicles induced a marked increase in endogenous 24-epiCS or 28-homoBL levels, energy charge, AOS levels, spikelet differentiation, and panicle weight. The opposite effects were observed following treatment with a BR biosynthesis inhibitor. Our findings indicate that, in rice, BRs mediate the effects of N fertilization on spikelet development and play a role in promoting spikelet development through increasing AOS levels and energy charge during panicle development.  相似文献   

12.
13.
不断升高的大气CO2浓度影响水稻颖花发育、灌浆结实和品质形成,但这种影响是否与籽粒在稻穗上的着生部位有关尚不清楚.利用稻田FACE (Free-Air CO2 Enrichment)平台,以优质丰产粳稻‘武运粳23’为材料,CO2处理设背景CO2浓度(Ambient)和高CO2浓度(增200 μmol·mol-1, FACE)两个水平,研究开放大田条件下高浓度CO2对水稻颖花密度、籽粒结实能力、稻米外观和食味品质的影响及其与稻穗不同着生位置的关系.结果表明:FACE处理使武运粳23籽粒产量平均增加18.3%,从产量构成因素看,穗数和饱粒重分别增加21.4%、9.4%,每穗颖花数、饱粒率平均减少9.0%、2.2%.FACE水稻饱粒率下降主要与稻穗不同部位空粒率大幅增加有关.FACE水稻每穗颖花数减少主要与稻穗上部、中部二次枝梗现存颖花大幅减少有关,而其他位置颖花数均无显著变化;稻穗不同位置饱粒重和饱粒率对FACE的响应无显著差异.FACE处理使绿粒率下降,但糙米长度和宽度均增加,稻穗不同部位趋势一致.FACE使垩白粒率(增幅59%)、垩白度(增幅55%)均极显著增加,增幅表现为稻穗一次枝梗>二次枝梗、上部>中部>下部.FACE使稻穗不同位置稻米直链淀粉含量略增,使最高粘度、热浆粘度、崩解值、最终粘度和消减值略降,但多未达显著水平.FACE使稻米糊化温度显著下降,弱势粒的降幅大于强势粒.综上,高浓度CO2环境下武运粳23产量增加主要与穗数增多和籽粒增重有关,而稻穗明显变小;高浓度CO2使稻米绿粒率减少,垩白增多,而对蒸煮食味品质影响较少;颖花着生位置对高浓度CO2环境下水稻颖花发育、结实和品质的影响因不同测定指标而异.  相似文献   

14.
Although basally positioned inferior spikelets of rice panicles emerge late from the flag leaf enclosure (boot), they mature early which precludes adequate grain filling. It is assumed that extended exposure to ethylene inside the boot restricts assimilate partitioning to the endosperm in basal spikelets by affecting the functions of seed coat. In the present study, ethylene concentration inside the boot was measured in two high yielding rice cultivars differing in percentage of spikelet sterility. To manipulate the concentration/action of ethylene, silver nitrate, aminoethoxyvinyl glycine and 2-chloroethylphosphonic acid were injected into the boot. The effect of these chemicals on the concentration of photosynthetic pigments, lipid peroxidation and peroxidase activity of the seed coat and lemma and palea were measured to monitor development. Ethylene reduced development during the juvenile phase but accelerated degradation of the photosynthetic tissues of the spikelets in the senescent phase. Boot ethylene correlated positively with number of barren spikelets in the panicle and negatively with concentration of photosynthetic pigments of the seed coat of inferior spikelets. The concentration of ethylene was higher in the high sterile cultivar Mahalaxmi than that of the low sterile Mahanadi. Inhibition of ethylene action or synthesis improved grain filling. The chemicals were most effective on the inferior spikelets. It was concluded that ethylene retarded seed coat development during the prestorage phase and reduced grain filling of basal spikelets.  相似文献   

15.
干旱期间春小麦叶片多胺含量与作物抗旱性的关系   总被引:8,自引:0,他引:8  
使用两种抑制剂MCBG(抑制SAMDC活性)和AOA(抑制ACC合成酶活性)研究了干旱期间两个春小麦品种8139(抗旱性较弱)和504(抗旱性较强)叶片多胺(Put、Spd和Spm)含量、RWC水平、SOD和POD活性以及MDA含量的变化,并由此探讨了不同类别多胺与作物抗旱性的关系以及多胺与乙烯在作物对干旱胁迫响应过程中对共同前体SAM的竞争趋向及其生理意义。  相似文献   

16.
Drought stress hampers rice performance principally by disrupting the plant–water relations and structure of biological membranes. This study appraised the role of polyamines (PAs) in improving drought tolerance in fine grain aromatic rice (Oryza sativa L.). Three PAs [putrescine (Put), spermidine (Spd) and spermine (Spm)] were used each at 10 μM as seed priming (by soaking seeds in solution) and foliar spray. Primed and non-primed seeds were sown in plastic pots with normal irrigation in a phytotron. At four-leaf stage, plants were subjected to drought stress by bringing the soil moisture down to 50% of field capacity by halting water supply. For foliar application, 10 μM solutions each of Put, Spd and Spm were sprayed at five-leaf stage. Results revealed that drought stress severely reduced the rice fresh and dry weights, while PAs application improved net photosynthesis, water use efficiency, leaf water status, production of free proline, anthocyanins and soluble phenolics and improved membrane properties. PAs improved drought tolerance in terms of dry matter yield and net photosynthesis was associated with the maintenance of leaf water status and improved water use efficiency. Among the antioxidants, catalase activity was negatively related to H2O2 and membrane permeability, which indicated alleviation of oxidative damage on cellular membranes by PAs application. Foliar application was more effective than the seed priming, and among the PAs, Spm was the most effective in improving drought tolerance.  相似文献   

17.
Aims Changes in the phenotype of crops (phenotypic plasticity) are known to play an important role in determining responses to nutrient availability, with the direction and magnitude of plasticity of individual traits being crucial for grain yields. Our study analysed the direction, magnitude and hierarchy of plastic responses of yield-related traits (i.e. biomass allocation and yield components) of rice (Oryza sativa L.) to nutrient availability. We estimated the effect of inoculation with arbuscular mycorrhizal fungi (AMF) on these characteristics of phenotypic plasticity.Methods A field experiment was carried out in northeast China, providing rice with six NPK fertilizer levels with or without inoculation with Glomus mosseae. At maturity, we quantified biomass allocation traits (shoot:root ratio and panicle:shoot ratio) and yield component traits (panicle number per hill, spikelet number per panicle, percentage of filled spikelets and seed weight). We also assessed the direction of change in each trait and the magnitude of trait plasticity.Important findings In non-inoculated plants, we found that biomass allocation and seed-number traits (i.e. panicle number per hill, spikelet number per panicle and percentage of filled spikelets) responded to fertilization in the same direction, increasing with rising fertilization. Panicle formation was the most plastic trait, while seed mass was the least plastic trait. AMF inoculation nullified the relationship between most biomass allocation and seed-number traits (except for that between panicle:shoot ratio and the percentage of filled spikelets) but increased the magnitude of plasticity in biomass allocation traits without altering the hierarchy of traits' plasticity. These results underscore the importance of plasticity of yield-related traits per se, and the impact of AMF on plasticity, for maintaining rice yields under low fertilization regimes.  相似文献   

18.
19.
抗旱和不抗旱的小麦幼苗叶片与根系,在1MPaPEG渗透胁迫下释出乙烯和生成内源腐胺、亚精胺和精胺的数量增加。当增加2mmol钴离子处理6h和12h后,乙烯生成显著受到抑制,而亚精肢和精胺呈现进一步增加。表明钴离子阻遏了氨基环烷羧酸向乙烯转变的途径,并为多胺合成提供了更多的底物,从而有利于提高小麦抗衰老和抗旱的能力,抗旱品种表现更为明显。  相似文献   

20.
This study investigated whether and how the interaction between abscisic acid (ABA) and ethylene is involved in the regulation of rice (Oryza sativa L.) spikelet sterility when subjected to water stress during meiosis. Two rice cultivars, HA-3 (drought-resistant) and WY-7 (drought-susceptible), were used and subjected to well-watered and water-stressed (WS) treatments during meiosis (15–2 days before heading). Leaf water potentials of both cultivars markedly decreased during the day as a result of the WS treatment, but panicle water potentials remained constant. The percentage of sterile spikelets in WS plants was increased by 49.7% for WJ-7 but only 12.7% for HA-3. ABA, ethylene, and 1-aminocyclopropane-1-carboxylic acid were all enhanced in spikelets by the water stress, but ethylene was enhanced more than ABA in WY-7 when compared with that in HA-3. Spikelet sterility was significantly reduced when ABA or amino-ethoxyvinylglycine, an inhibitor of ethylene synthesis, was applied to the panicles of WS plants at the early meiosis stage. Application of ethephon, an ethylene-releasing agent, or fluridone, an inhibitor of ABA synthesis, had the opposite effect, and sterility was increased. The results suggest that antagonistic interactions between ABA and ethylene may be involved in mediating the effect of water stress on spikelet fertility. A higher ratio of ABA to ethylene would be a physiologic trait of rice adaptation to water stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号