首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pavlova ZB  Lutova LA 《Genetika》2000,36(9):1173-1188
The stages of the legume-rhizobial symbiosis and nodule structure in various legume plants are briefly reviewed. Modern data on the mechanisms involved in the control of nodule initiation and morphogenesis are considered.  相似文献   

2.
Mouse embryonic stem (ES) cells can be differentiated in vitro into near homogeneous populations of both neurons and skeletal muscle as well as other cell types. We previously showed that treatment of pluripotent ES cells with retinoic acid (RA) induced differentiation into highly enriched populations of gamma-aminobutyric acid (GABA) expressing neurons. The reasons for generation of only GABA neurons as opposed to other neuronal cell types were not known. We have extended our previous work and now show that with RA induction of ES cells we not only obtain GABA neurons, but also dopaminergic neurons. Critical for the production of dopaminergic neurons after RA induction was the post-induction plating conditions used. No dopaminergic neurons were detected if cells were plated in serum-free media optimized for neuronal survival. However, significant numbers of dopamine neurons could be detected when cells were plated in media containing fetal calf serum. These observations support the conclusion that RA acts as a general neural inducing agent and that conditions post-induction either selectively support survival of a particular class of neuronal cells or that the conditions post-induction actually further instruct cells to differentiate into different types of neurons.  相似文献   

3.
Mycobacterial spheroplasts were prepared by treatment of the glycinesensitized cells with a combination of lipase and lysozyme. They were stable for several hours at room temperature but were lysed on treatment with 0.1% sodium dodecyl sulfate. The spheroplasts could be regenerated on a suitable medium. Fusion and regeneration of the spheroplasts were attempted using drug resistant mutant strains ofM. smegmalis. Recombinants were obtained from spheroplast fusion mediated by polyethylene glycol and dimethyl sulfoxide. Simultaneous expression of rccombinant properties was observed only after an initial lag in the isolated clones. This has been explained as due to “chromosome inactivation” in the fused product.  相似文献   

4.
5.
Neuroblastoma is a tumor arising in the peripheral sympathetic nervous system and is the most common cancer in childhood. Since most of the cellular and molecular mechanisms underlying neuroblastoma onset and progression remain unknown, the generation of new in vivo models might be appropriate to better dissect the peripheral sympathetic nervous system development in both physiological and disease states. This review is focused on the use of zebrafish as a suitable and innovative model to study neuroblastoma development. Here, we briefly summarize the current knowledge about zebrafish peripheral sympathetic nervous system formation, focusing on key genes and cellular pathways that play a crucial role in the differentiation of sympathetic neurons during embryonic development. In addition, we include examples of how genetic changes known to be associated with aggressive neuroblastoma can mimic this malignancy in zebrafish. Thus, we note the value of the zebrafish model in the field of neuroblastoma research, showing how it can improve our current knowledge about genes and biological pathways that contribute to malignant transformation and progression during embryonic life.  相似文献   

6.
HMG-CoA reductase inhibitor (statin) treatment is frontline therapy for lowering plasma cholesterol levels in patients with hyperlipidemia. In a few case studies, analysis of clinical data has revealed a decreased risk of fracture in patients on statin therapy. However, this reduction in the incidence of fracture is not always observed nor is it supported by an increase in bone density, which further complicates our understanding of the role of statins in bone metabolism. Thus, the precise role of statins in bone metabolism remains poorly understood. In this study, we examined the effect of statin treatment on osteoclastogenesis. Treatment with lovastatin resulted in a significant, dose-dependent decrease in the numbers of differentiated osteoclasts and decreased cholesterol biosynthesis activity with an EC(50) similar to that observed in freshly isolated rat or cultured human liver cells. Studies assessing the role of mevalonate metabolites in the development of the osteoclasts demonstrated that geranylgeraniol, but not squalene or farnesol was important for the development and differentiation of osteoclasts, implicating protein geranylgeranylation rather than protein farnesylation as a key factor in the osteoclast differentiation process. In conclusion, our data indicate that lovastatin inhibits osteoclast development through inhibition of geranylgeranylation of key prenylated proteins and that the bone effects of statins are at least partially due to their effects on osteoclast numbers.  相似文献   

7.
In this study, we documented that the kleptoparasitic spidersArgyroes elvatus consume and assimilate web material from thehost spider Nephila clavipes. We also demonstrated quantitativelythat the amount of web material consumed by the kleptopa asiteis equivalent to the amount of insect material comsumed whenhost vigilance is low, as expected when foraging conditionsare very good. Argyrodes vary in their impact on their hosts,as they may steal large prey, small prey, or silk. This host-kieptoparasite interaction is therefore an ideal system for experimentallycramming a variable producer-consumer interaction. We compareour experimental results to published experiments showing thatthe impact of Arg on a Nephila host can be deleterious whenforaging conditions are poor.  相似文献   

8.
Endocytosis is the membrane trafficking process by which plasma membrane components and extracellular material are internalized into cytoplasmic vesicles and delivered to early and late endosomes, eventually either recycling back to the plasma membrane or arriving at the lysosome/vacuole. The budding yeast Saccharomyces cerevisiae has proven to be an invaluable system for identifying proteins involved in endocytosis and elucidating the mechanisms underlying internalization and postinternalization events. Through genetic studies in yeast and biochemical studies in mammalian cells, it has become apparent that multiple cellular processes are linked to endocytosis, including actin cytoskeletal dynamics, ubiquitylation, lipid modification, and signal transduction. In this review, we will highlight the most exciting recent findings in the field of yeast endocytosis. Specifically, we will address the involvement of the actin cytoskeleton in internalization, the role of ubiquitylation as a regulator of multiple steps of endocytosis in yeast, and the sorting of endocytosed proteins into the recycling and vacuolar pathways.  相似文献   

9.
Protein misfolding and aggregation are central events in many disorders including several neurodegenerative diseases. This suggests that alterations in normal protein homeostasis may contribute to pathogenesis, but the exact molecular mechanisms involved are still poorly understood. The budding yeast Saccharomyces cerevisiae is one of the model systems of choice for studies in molecular medicine. Modeling human neurodegenerative diseases in this simple organism has already shown the incredible power of yeast to unravel the complex mechanisms and pathways underlying these pathologies. Indeed, this work has led to the identification of several potential therapeutic targets and drugs for many diseases, including the neurodegenerative diseases. Several features associated with these diseases, such as formation of protein aggregates, cellular toxicity mediated by misfolded proteins, oxidative stress and hallmarks of apoptosis have been faithfully recapitulated in yeast, enabling researchers to take advantage of this powerful model to rapidly perform genetic and compound screens with the aim of identifying novel candidate therapeutic targets and drugs. Here we review the work undertaken to model human brain disorders in yeast, and how these models provide insight into novel therapeutic approaches for these diseases.  相似文献   

10.
Ryu J  Kim HJ  Chang EJ  Huang H  Banno Y  Kim HH 《The EMBO journal》2006,25(24):5840-5851
Sphingosine 1-phosphate (S1P), produced by sphingosine kinase (SPHK), acts both by intracellular and extracellular modes. We evaluated the role of SPHK1 and S1P in osteoclastogenesis using bone marrow-derived macrophage (BMM) single and BMM/osteoblast coculture systems. In BMM single cultures, the osteoclastogenic factor receptor activator of NF-kappaB ligand (RANKL) upregulated SPHK1 and increased S1P production and secretion. SPHK1 siRNA enhanced and SPHK1 overexpression attenuated osteoclastogenesis via modulation of p38 and ERK activities, and NFATc1 and c-Fos levels. Extracellular S1P had no effect in these cultures. These data suggest that intracellular S1P produced in response to RANKL forms a negative feedback loop in BMM single cultures. In contrast, S1P addition to BMM/osteoblast cocultures greatly increased osteoclastogenesis by increasing RANKL in osteoblasts via cyclooxygenase-2 and PGE(2) regulation. S1P also stimulated osteoblast migration and survival. The RANKL elevation and chemotactic effects were also observed with T cells. These results indicate that secreted S1P attracts and acts on osteoblasts and T cells to augment osteoclastogenesis. Taken together, S1P plays an important role in osteoclastogenesis regulation and in communication between osteoclasts and osteoblasts or T cells.  相似文献   

11.
The creation of a small opening called the fusion pore is a necessary prerequisite for neurotransmitter release from synaptic vesicles. It is known that high intensity electric fields can create pores in vesicles by a process called electroporation. Due to the presence of charged phosphatidylserine (PS) molecules on the inner leaflet of the cell membrane, an electric field that is strong enough to cause electroporation of a synaptic vesicle might be present. It was shown by K. Rosenheck [K. Rosenheck. Biophys J 75, 1237-1243 (1998)] that in a planar geometry, fields sufficient to cause electroporation can occur at intermembrane separations of less than approximately 3 nm. It is frequently found, however, that the cell membrane is not planar but caves inward at the locations where a vesicle is close to it. Indentation of the cell membrane in the fusion region was modelled as a hemisphere and a theoretical study of the electric field in the vicinity of the cell membrane taking into account the screening effect of dissolved ions in the cytoplasm was performed. It was discovered that fields crossing the electroporation threshold occurred at a distance of 2 nm or less, supporting the claim that electroporation could be a possible mechanism for fusion pore formation.  相似文献   

12.
Osteoclast differentiation factor (ODF), a novel member of the TNF ligand family, is expressed as a membrane-associated protein by osteoblasts/stromal cells. The soluble form of ODF (sODF) induces the differentiation of osteoclast precursors into osteoclasts in the presence of M-CSF. Here, the effects of sODF on the survival, multinucleation, and pit-forming activity of murine osteoclasts were examined in comparison with those of M-CSF and IL-1. Osteoclast-like cells (OCLs) formed in cocultures of murine osteoblasts and bone marrow cells expressed mRNA of RANK (receptor activator of NF-kappaB), a receptor of ODF. The survival of OCLs was enhanced by the addition of each of sODF, M-CSF, and IL-1. sODF, as well as IL-1, activated NF-kappaB and c-Jun N-terminal protein kinase (JNK) in OCLs. Like M-CSF and IL-1, sODF stimulated the survival and multinucleation of prefusion osteoclasts (pOCs) isolated from the coculture. When pOCs were cultured on dentine slices, resorption pits were formed on the slices in the presence of either sODF or IL-1 but not in that of M-CSF. A soluble form of RANK as well as osteoprotegerin/osteoclastogenesis inhibitory factor, a decoy receptor of ODF, blocked OCL formation and prevented the survival, multinucleation, and pit-forming activity of pOCs induced by sODF. These results suggest that ODF regulates not only osteoclast differentiation but also osteoclast function in mice through the receptor RANK.  相似文献   

13.
The techniques of somatic cell hybridization have provided a valuable means of studying mechanisms of regulation of mammalian cell differentiation and transformation. Most previous studies have indicated that fusions between tumorigenic and nontumorigenic cells result in hybrid cells that are usually tumorigenic. In recent years it has been demonstrated that the phenotypic expression of tumorigenicity is at least partially due to the extensive chromosome loss that occurs in most interspecific and some intraspecific hybrid cells. In the present study we have utilized enucleation techniques that permit cells to be divided into nuclear (karyoplast) and cytoplasmic (cytoplast) cell fragments. Even though these nuclear and cytoplasmic fragments are metabolically stable for short periods of time, in our hands they ultimately degenerate. Viable cells can be reconstructed by PEG-induced fusion of karyoplasts to cytoplasts. Since reconstructed cells apparently do not segregate chromosomes, they may provide a clearer understanding of the interactions between the nucleus and the cytoplasm in the control of the expression of tumorigenicity. We have reconstructed cells using karyoplasts from the tumorigenic Y-1 cell line and cytoplasts from a nontumorigenic cell line, A-MT-BU-A1. In addition we have reconstructed cells containing Y-1 cytoplasts and A-MT-BU-A1 karyoplasts. The reconstructed cells porduced were assayed for tumorigenicity by their ability to grow in soft agar and in nude mice. The results of these experiments indicate that the reconstructed cells containing a tumorigenic nucleus and a nontumorigenic cytoplasm ultimately are tumorigenic and conversely the reconstructed cells containing a nontumorigenic nucleus and a tumorigenic cytoplasm are nontumorigenic. These experiments support the concept that with these cell lines the nucleus (karyoplast) is sufficient to control the phenotypic expression of tumorigenicity.  相似文献   

14.
Asymmetric cell division (ACD) is one of the processes creating the overall diversity of cell types in multicellular organisms. The essence of this process is that the daughter cells exit from it being different from both the parental cell and one another in their ability to further differentiation and specialization. The large bristles (macrochaetae) that are regularly arranged on the surface of the Drosophila adult function as mechanoreceptors, and since their development requires ACD, they have been extensively used as a model system for studying the genetic control of this process. Each macrochaete is composed of four specialized cells, the progeny resulting from several ACDs from a single sensory organ precursor (SOP) cell, which differentiates from the ectodermal cells of the wing imaginal disc in the third-instar larva and pupa. In this paper we review the experimental data on the genes and their products controlling the ACDs of the SOP cell and its daughter cells, and their further specialization. We discuss the main mechanisms determining the time when the cell enters ACD, as well as the mechanisms providing for the structural characteristics of asymmetric division, namely, polar distribution of protein determinants (Numb and Neuralized), orientation of the division spindle relative to these determinants, and unequal segregation of the determinants specifying the direction of daughter cell development.  相似文献   

15.
The Baltic Sea provides a unique model system for studying genetic effects of postglacial colonization and ecological differentiation, because all marine organisms must have immigrated after the opening of the Danish Straits 8000 years ago and responded to the development of the steep Skagerrak-Baltic salinity gradient. The red alga Ceramium tenuicorne shows conspicuous variation in growth and reproduction along this gradient. Herein we obtained reproductive data coupled with two types of molecular markers, one organellar (cox2-3 spacer sequences of mitochondrial DNA; mtDNA) and one mainly nuclear (random amplified polymorphic DNAs; RAPDs). Nine main populations were sampled in a nested spatial hierarchy including three salinity regions (Oslofjorden, Kattegat, and the Baltic Sea), and nine additional populations were sampled for the mtDNA analysis. Asexuality was frequent at low (Baltic) and medium (Kattegat) salinities but virtually absent at the highest salinity (Oslofjorden). Five mtDNA haplotypes were observed, of which two highly divergent ones were common. One was restricted to and fixed in Oslofjorden, and the other, which was closely related to the three rare haplotypes, was found from southernmost Norway via Kattegat into the Baltic. The RAPD data revealed, on the other hand, a continuous cline corresponding to the salinity gradient, with 27.4% divergence among salinity regions and most of the variation stored at the smallest spatial scale analysed (64.2%; within 1 m2 subpopulations). The combined data suggest colonization from a diverse Atlantic glacial gene pool followed by (1) lineage sorting of ancestral mtDNA polymorphisms and (2) strong differential selection among nuclear genotypes along the salinity gradient, including selection for nonrecombinant multiplication of those best fit to the marginal low-salinity habitats.  相似文献   

16.
Normal bone remodeling is maintained by a balance between osteoclast and osteoblast activity, whereas defects in osteoclast activity affecting such balance result in metabolic bone disease. Macrophage-macrophage fusion leading to multinucleated osteoclasts being formed is still not well understood. Here we present PEG-induced fusion of macrophages from both U937/A and J774 cell lines and the induced differentiation and activation of osteoclast-like cells according to the expression of osteoclast markers such as tartrate resistant acid phosphatase (TRAP) and bone resorptive activity. PEG-induced macrophage fusion, during the non-confluent stage, significantly increased the osteoclastogenic activity of macrophages from cell lines compared to that of spontaneous cell fusion in the absence of PEG (polyethylene glycol). The results shown in this work provide evidence that cell fusion per se induces osteoclast-like activity. PEG-fused macrophage differential response to pretreatment with osteoclastogenic factors was also examined in terms of its ability to form TRAP positive multinucleated cells (TPMNC) and its resorptive activity on bovine cortical bone slices. Our work has also led to a relatively simple method regarding those previously reported involving cell co-cultures. Multinucleated osteoclast-like cells obtained by PEG-induced fusion of macrophages from cell lines could represent a suitable system for conducting biochemical studies related to basic macrophage fusion mechanisms, bone-resorption activity and the experimental search for bone disease therapeutic alternatives.  相似文献   

17.
It is well known that sea urchin embryos are able to activate different defense strategies against stress. We previously demonstrated that cadmium treatment triggers the accumulation of metal in embryonic cells and the activation of defense systems depending on concentration and exposure time, through the synthesis of heat shock proteins and/or the initiation of apoptosis. Here we show that Paracentrotus lividus embryos exposed to Cd adopt autophagy as an additional stratagem to safeguard the developmental program. At present, there are no data focusing on the role of this process in embryo development of marine organisms.  相似文献   

18.
《Autophagy》2013,9(9):1028-1034
It is well known that sea urchin embryos are able to activate different defense strategies against stress. We previously demonstrated that cadmium treatment triggers the accumulation of metal in embryonic cells and the activation of defense systems depending on concentration and exposure time, through the synthesis of heat shock proteins and/or the initiation of apoptosis. Here we show that Paracentrotus lividus embryos exposed to Cd adopt autophagy as an additional stratagem to safeguard the developmental program. At present, there are no data focusing on the role of this process in embryo development of marine organisms.  相似文献   

19.
Reproducible models for examining early stages of human B cell differentiation are poorly developed. We now describe the establishment and characterization of a novel human leukemic cell line that recapitulates the pre-B to B cell stage of differentiation. This cell line, designated BLIN-1, was initially established in tissue culture medium containing low m.w. B cell growth factor, and consistently shows a dependency on this cytokine for optimal growth at low density. BLIN-1 cells have a 9p chromosomal abnormality, identical to the abnormality present in the leukemic blasts from the patient's original bone marrow aspirate. The immunologic phenotype of BLIN-1 is consistent with a cell arrested at the pre-B cell stage of development. Analysis of Ig gene rearrangement and Ig expression in a series of BLIN-1 subclones show that the cells spontaneously rearrange kappa light chain genes, leading to the differentiation of surface kappa-negative pre-B cells into surface kappa-positive B cells. The BLIN-1 cell line is, to our knowledge, the first defined human model for examining this critical developmental stage in human B cell ontogeny. As such, it offers a unique resource for examining variables influencing onset of kappa L chain gene rearrangement and expression.  相似文献   

20.
Static magnetic field (SMF) modulates bone metabolism, but little research is concerned with the effects of SMF on osteoclast. Our previous studies show that osteogenic differentiation is strongly correlated with magnetic strength from hypo (500 nT), weak (geomagnetic field, GMF), moderate (0.2 T) to high (16 T) SMFs. We speculated that the intensity that had positive (16 T) or negative (500 nT and 0.2 T) effects on osteoblast differentiation would inversely influence osteoclast differentiation. To answer this question, we examined the profound effects of SMFs on osteoclast differentiation from pre-osteoclast Raw264.7 cells. Here, we demonstrated that 500 nT and 0.2 T SMFs promoted osteoclast differentiation, formation and resorption, while 16 T had an inhibitory effect. Almost all the osteoclastogenic genes were highly expressed under 500 nT and 0.2 T, including RANK, matrix metalloproteinase 9 (MMP9), V-ATPase, carbonic anhydrase II (Car2) and cathepsin K (CTSK), whereas they were decreased under 16 T. In addition, 16 T disrupted actin formation with remarkably decreased integrin β3 expression. Collectively, these results indicate that osteoclast differentiation could be regulated by altering the intensity of SMF, which is just contrary to that on osteoblast differentiation. Therefore, studies of SMF effects could reveal some parameters that could be used as a physical therapy for various bone disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号