首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hydroponic experiment was conducted to elucidate the difference in growth and cell ultrastructure between Tibetan wild and cultivated barley genotypes under moderate (150 mM NaCl) and high (300 mM NaCl) salt stress. The growth of three barley genotypes was reduced significantly under salt stress, but the wild barley XZ16 (tolerant) was less affected relative to cultivated barley Yerong (moderate tolerant) and Gairdner (sensitive). Meanwhile, XZ16 had lower Na+ and higher K+ concentrations in leaves than other two genotypes. In terms of photosynthetic and chlorophyll fluorescence parameters, salt stress reduced maximal photochemical efficiency (F v/F m), net photosynthetic rate (Pn), stomatal conductance (Gs), and intracellular CO2 concentration (Ci). XZ16 showed relatively smaller reduction in comparison with the two cultivated barley genotypes. The observation of transmission electron microscopy found that fundamental cell ultrastructure changes happened in both leaves and roots of all barley genotypes under salt NaCl stress, with chloroplasts being most changed. Moreover, obvious difference could be detected among the three genotypes in the damage of cell ultrastructure under salt stress, with XZ16 and Gairdner being least and most affected, respectively. It may be concluded that high salt tolerance in XZ16 is attributed to less Na+ accumulation and K+ reduction in leaves, more slight damage in cell ultrastructure, which in turn caused less influence on chloroplast function and photosynthesis.  相似文献   

2.
Our previous study suggested that aluminium (Al) stress increased plasma membrane (PM) H+-ATPase activity and citrate secretion and simultaneously enhanced the interaction between 14-3-3 proteins and phosphorylated PM H+-ATPase in Al-resistant Tamba black soybean (RB). Adenosine 5′-monophosphate (AMP) is known as an inhibitor of the interaction between 14-3-3 proteins and PM H+-ATPases. To investigate the effects of AMP on Al resistance, PM H+-ATPase activity and citrate exudation, AMP was used to treat Al-stressed RB. The results showed that after treatment with either 100 μM AMP or 50 μM Al for 8 h, RB root growth was inhibited by approximately 50 and 30%, respectively. However, simultaneous treatment with 100 μM AMP and 50 μM Al for 8 h resulted in a 60% inhibition of RB root growth, indicating that the presence of AMP reduced Al tolerance in RB. The interaction of PM H+-ATPase and 14-3-3 proteins in the root tips of Al-treated RB was stronger than that in the untreated control. However, the interaction of the two proteins was greatly reduced (lower than that in the control) after co-treatment with Al and AMP, suggesting that the presence of AMP under Al stress reduced the Al-enhanced interaction between PM H+-ATPase and 14-3-3 proteins. Consequently, PM H+-ATPase activity decreased by approximately 50%, which led to a significant decrease in H+ efflux and citrate secretion in RB roots under Al stress. Collectively, these results indicate that AMP reduced citrate exudation and Al resistance in RB by inhibiting the interaction between 14-3-3 proteins and PM H+-ATPases under Al stress.  相似文献   

3.
Identification and characterization of proteins involved in salt tolerance are imperative for revealing its genetic mechanisms. In this study, ionic and proteomic responses of a Tibetan wild barley XZ16 and a well‐known salt‐tolerant barley cv. CM72 were analyzed using inductively coupled plasma‐optical emission spectrometer, 2DE, and MALDI‐TOF/TOF MS techniques to determine salt‐induced differences in element and protein profiles between the two genotypes. In total, 41 differentially expressed proteins were identified in roots and leaves, and they were associated with ion homeostasis, cell redox homeostasis, metabolic process, and photosynthesis. Under salinity stress, calmodulin, Na/K transporters, and H+‐ATPases were involved in establishment of ion homeostasis for barley plants. Moreover, ribulose‐1,5‐bisphosphate carboxylase/oxygenase activase and oxygen‐evolving enhancer proteins were significantly upregulated under salinity stress, indicating the great impact of salinity on photosynthesis. In comparison with CM72, XZ16 had greater relative dry weight and lower Na accumulation in the shoots under salinity stress. A higher expression of HvNHX1 in the roots, and some specific proteins responsible for ion homeostasis and cell redox homeostasis, was also found in XZ16 exposed to salt stress. The current results showed that Tibetan wild barley XZ16 and cultivated barley cultivar CM72 differ in the mechanism of salt tolerance.  相似文献   

4.
5.
In vitro grown callus and seedlings of Brassica juncea were treated with equimolar concentrations of cadmium and compared for their respective tolerance to cadmium. Calli cultures were grown on Murashige and Skoog medium supplemented with α 6-benzyl aminopurine (200 µg L?1, naphthalene acetic acid 200 µg L?1) and 2,4-dichloro-phenoxy acetic acid (65 µg L?1) while the seedlings grown on Hoagland's nutrient solution have been carried out. Cellular homeostasis and detoxification to cadmium in B. juncea were studied by analyzing the growth in terms of fresh weight and dry weight, lipid peroxidation, proline accumulation, and antioxidative enzymes (superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT)). At 200 µM cadmium, callus and seedlings showed 73.61% and 74.76% reduction in tolerance, respectively. A significant increase in malondialdehyde (MDA) content was found in both calli and seedlings; however, the amount of MDA content was more in seedlings. Proline content increased on lower concentration of cadmium (up to 50 µM), and it further decreased (up to 200 µM). But the accumulation of proline was higher in callus cultures. The overall activity of antioxidative enzymes (SOD, CAT, and APX) was found to be higher in callus in comparison to seedlings of B. juncea. Callus and seedlings showed a significant (P?≤?0.5) increase in SOD activity in a concentration-dependent manner up to 50 µM cadmium concentration but decreased further. APX activity increased significantly at low cadmium levels but CAT activity decreased significantly throughout on increasing cadmium concentrations from 5 to 200 µM, respectively. Hence, it was observed that callus of B. juncea was more tolerant in comparison to seedlings exposed to equimolar concentrations of cadmium. Thus, from the present studies, it is concluded that calli were more tolerant toward cadmium-induced oxidative stress. Hence, it is suitable material for the study of cadmium tolerance mechanisms and for the manipulations within them for better understanding of cadmium detoxification strategies in B. juncea.  相似文献   

6.
The influence of low (3 μM) and high (60 and 120 μM) cadmium (Cd) concentrations were studied on selected aspects of metabolism in 4-week-old chamomile (Matricaria chamomilla L.) plants. After 10 days’ exposure, dry mass accumulation and nitrogen content were not significantly altered under any of the levels of Cd. However, there was a significant decline in chlorophyll and water content in the leaves. Among coumarin-related compounds, herniarin was not affected by Cd, while its precursors (Z)- and (E)-2-β-d-glucopyranosyloxy-4-methoxycinnamic acids (GMCAs) increased significantly at all the levels of Cd tested. Cd did not have any effect on umbelliferone, a stress metabolite of chamomile. Lipid peroxidation was also not affected by even 120 μM Cd. Cd accumulation was approximately seven- (60 μM Cd treatment) to eleven- (120 μM Cd treatment) fold higher in the roots than that in the leaves. At high concentrations, it stimulated potassium leakage from the roots, while at the lowest concentration it could stimulate potassium uptake. The results supported the hypothesis that metabolism was altered only slightly under high Cd stress, indicating that chamomile is tolerant to this metal. Preferential Cd accumulation in the roots indicated that chamomile could not be classified as a hyperaccumulator and, therefore, it is unsuitable for phytoremediation.  相似文献   

7.
8.
It has been reported that aluminum (Al) toxicity is a major limiting factor for plant growth and production on acidic soils. Boron (B) is indispensable micronutrient for normal growth of higher plants, and its addition could alleviate Al toxicity. The rape seedlings were grown under three B (0.25, 25 and 500 μM) and two Al concentrations [0 (?Al) and 100 μM (+Al) as AlCl3·6H2O]. The results indicated that Al stress severely hampered root elongation and root activity at 0.25 μM B while the normal (25 μM) and excess (500 μM) B improved the biomass of rape seedlings under Al exposure. Additionally, normal and excess B treatment reduced accumulation of Al in the roots and leaves under Al toxicity, which was also confirmed by hematoxylin with light staining. This indicates that both normal and excess B could alleviate Al toxicity. Furthermore, it also decreased the contents of malondialdehyde and soluble protein under Al toxicity. Likewise, superoxide dismutase activity (SOD) improved by 97.82 and 131.96% in the roots, and 168 and 119.88% in the leaves at 25 and 500 µM B, respectively, while the peroxidase and catalase activities dropped as a result of Al stress. The study results demonstrated that appropriate B application is necessary to avoid the harmful consequences of Al toxicity in rape seedlings.  相似文献   

9.
A study quantifying the interactive effects of cadmium (Cd) and carbon nanotubes (CNTs) on plant growth and Cd accumulation of pot-cultured Spartina alterniflora was conducted. The experiment consisted of two Cd levels (50, 200 mg kg?1) as well as two CNTs levels (800, 2,400 mg kg?1). As expected, CNTs alleviated higher Cd stress (200 mg kg?1) due to restored shoot growth reduction, retrieved water content and resumed plant height. Furthermore, CNTs mitigated the deleterious effects of Cd stress through improving K+ and Ca2+ contents, while reducing Na+/K+ and Na+/Ca2+ ratios, regardless of the level of Cd stress. The proline contents in combined Cd and CNTs treatments were lower than Cd alone, suggesting that CNTs could reduce production of organic solutes under Cd stress. The results also showed higher Cd accumulation in roots than shoots, and both were improved by CNTs, except inhibition in roots under higher Cd stress (200 mg kg?1). It appears that CNTs may not significantly affect negative Cd effects on growth of S. alterniflora, but improve total Cd accumulation under lower Cd stress (50 mg kg?1). However, under higher Cd stress (200 mg kg?1), CNTs restored the reduced plant growth, improved and reduced Cd accumulation in shoots and roots, respectively. Therefore, the effects of CNTs on plant growth and Cd accumulation are different, and levels of Cd stress should be considered when evaluating the combined application of CNTs and S. alterniflora on phytoremediation of Cd pollution.  相似文献   

10.
We investigated the impact of low pH and aluminum (Al) stress on the growth, nutrients concentration, chlorophyll a fluorescence, photosynthetic pigment contents, proline and carbohydrate accumulation in shoots and plantlets (leaves and roots) of Plantago almogravensis and P. algarbiensis. Both species accumulated considerable and similar amounts of Al in their tissues, mainly in the roots. The presence of Al caused a significant reduction on root elongation in P. algarbiensis. Low pH and Al induced significant changes on nutrient accumulation, but no significant alterations on the maximum efficiency of PSII (F v/F m), quantum yield of PSII photochemistry (?PSII), quantum yield of regulated energy dissipation (?NPQ) and quantum yield of non-regulated energy dissipation (?NO) were detected in both species in response to these stresses. However, Al increased significantly the non-photochemical quenching and the chlorophyll b content and decreased the PSII excitation pressure (1 ? q p) in P. almogravensis leaves. Both stress treatments induced carbohydrate accumulation in the shoots and roots of this species, but not in leaves. In P. algarbiensis, low pH and Al decreased the photosynthetic pigment contents in the shoots, whereas Al stimulated the carbohydrate accumulation in the leaves. Although our data showed that both species are tolerant to Al3+ and H+, P. almogravensis appeared to be more adapted to maintain cellular physiology and growth under those conditions.  相似文献   

11.
The present study aimed at investigating the effects of foliar applied nitric oxide (as SNP [sodium nitroprusside]) on sulfur (glutathione reductase, guaiacol peroxidase, and glutathione S-transferase) and nitrate assimilation (nitrite and nitrate reductase) pathway enzymes in maize (Zea mays L.) exposed to water deficit conditions. The seedlings of a drought tolerant (NK8711) and sensitive (P1574) maize hybrid were applied with various SNP doses (0, 50, 100, 150, and 200 µM) under normal and drought stress conditions. Foliar spray of 100 µM markedly improved water status and chlorophyll contents and alleviated drought-induced oxidative damages through increased antioxidant (catalase, ascorbate peroxidase, and superoxide dismutase) activities in both maize hybrids. Moreover, exogenous SNP supply increased nitrite and nitrate reductase activities and upregulated glutathione reductase, glutathione S-transferase, and guaiacol peroxidase compared to no SNP supply. Interestingly, the negative effects of excess NO generation at high SNP doses (150, 200 µM) were more pronounced in P1574 than NK8711 leading to lower biomass accumulation in drought-sensitive hybrid.  相似文献   

12.
A GSK3/shaggy-like kinase (AtGSK1) has been implicated in the regulation of drought and salt tolerance. We transferred AtGSK1 from Arabidopsis thaliana to a hybrid poplar (Populus alba × P. tremula var. grandulosa) to determine the effect of the transgene expression in the transgenic trees. The results from northern blot and RT-PCR analyses showed that the expression level varied among the transgenic lines. During their culture on tissue culture media, the transgenic poplars formed vigorous growing roots even in the presence of 125 mM NaCl and callus in the presence of 150 mM NaCl. When the transgenic poplars were growing in pots and provided with NaCl solution, they stayed much healthier than did nontransgenic poplars, showing higher rates of photosynthetic rates, stomatal conductance, and evaporation rates under the stress. Whereas the total level of leaf Na+ level increased dramatically in transgenic poplars under severe saline conditions (150 mM NaCl), that of leaf K+ decreased in the same plants under the same conditions. Total root Na+ level increased in nontransgenic poplars under severe saline conditions. In contrast, total root K+ level decreased in the same plants under the same conditions. The chloride content and relative electrical conductivity of the transgenic poplars after salt stress treatment were lower than those of nontransgenic poplars. The transgenic poplars were also tolerant to up to 20 % PEG remaining significantly healthy when compared with nontransgenic poplars with necrosis and chlorosis symptoms. Another dramatic feature of the transgenic poplars was wilting tolerance for prolonged drought treatment up to 2 weeks. The results provide evidence that the expression of AtGSK1 gene conferred drought and salt tolerance in the transgenic poplars.  相似文献   

13.
The objectives of this study were to develop and evaluate a Tl+ ion-selective microelectrode (ISME) and to determine the basis for observed differences in Tl accumulation by durum wheat (Triticum turgidum L. var ‘Kyle’) and spring canola (Brassica napus L. cv ‘Hyola 401’). Seedlings were grown hydroponically and fluxes of K+ and Tl+ were measured at the root surface in solutions containing 5 μM Tl+ or 3 mM K+. After testing two different Tl(I) ionophores, a functional Tl+ ISME was developed from calix[4]arene tetra-n-propyl ether which had a detection limit of 2.5 µM and a slope of 56.6 mV/dec. Measurements of Tl+ flux indicate that Tl+ efflux occurred within 300–500 µm of the root tip, and influx farther from the root tip. Compared with canola, wheat had a slightly larger region of efflux and a smaller region of maximal influx, resulting in flux per root branch that was 2.3 to 4 times greater in canola than in wheat. The magnitude and pattern of K+ fluxes by the two species were more similar. Our results indicate that observed differences in Tl accumulation by wheat and canola are due both to differences in the magnitude of Tl flux per root branch of these species, and to differences in root morphology resulting in more root tips in canola than in wheat roots.  相似文献   

14.
Salt stress has multiple damaging effects on plants including physiological damage, reduced growth, and productivity. Plant growth-promoting rhizobacteria (PGPR) are one of the valuable options to mitigate the negative effects of this stress. In the present study, native bacteria from chickpea’s rhizosphere were isolated, and checked for their salt tolerance and plant growth-promoting attributes (phosphate (P) solubilization, siderophores, indole-3-acetic acid (IAA) production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase production). One isolate, subsequently identified as Pantoea dispersa, showed appreciable production of IAA (218.3 µg/ml) and siderophores (60.33% SU), P-solubilization (3.64 µg/ml) and ACC deaminase activity (207.45 nmol/mg/h) in the presence of 150 mM NaCl, under laboratory conditions. Salt stress in uninoculated chickpea (GPF2 cultivar) plants induced high accumulation of Na+ ions (3.86 mg g?1 dw) in the leaves, along with significant reduction in K+ uptake, membrane integrity, chlorophyll concentration, and leaf water content, thus resulting in impaired growth of the plant and yield (pods and seeds) in a salt concentration-dependent manner. The damage due to salt stress was restored significantly in plants inoculated with P. dispersa. A significant improvement in biomass (32–34%), pods number (31–34.5%), seeds number (32–35.7%), pods weight (30–32.6%), and seeds weight (27–35%) per plant occurred in salt stress-affected plants, which was associated with significant reduction in Na+ uptake, reduced membrane damage, significantly improved leaf water content, chlorophyll content, and K+ uptake. This study suggests for the first time that native P. dispersa strain PSB3 can be used to alleviate the negative effects of salt stress on chickpea plants and holds the potential to be used as a biofertilizer.  相似文献   

15.
Salinity is a major abiotic stress that limits plant productivity. Plants respond to salinity by switching on a coordinated set of physiological and molecular responses that can result in acclimation. Medicago truncatula is an important model legume species, thus understanding salt stress responses and acclimation in this species is of both fundamental and applied interest. The aim of this work was to test whether acclimation could enhance NaCl tolerance in calli of M. truncatula. A new protocol is described incorporating multi-step up acclimation over 0–350 mM exogenous NaCl. By the end of the experiment, calli were tolerant to 150 mM and competent for embryogenesis at 100 mM NaCl. Positive and negative linear relationships between Na+ and K+ uptake and exogenous NaCl concentration intercepted at 160 mM suggesting a Na+/K+ homeostasis. Proline level peaked at 100/150 mM whilst highest osmolarity and lowest water content occurred at 250/350 mM NaCl. The concentration of water soluble sugars was positively related to 0–250 mM NaCl whilst callus growth and embryogenesis occurred regardless of endoreduplication. Expression of genes linked to growth (WEE1), in vitro embryogenesis (SERK), salt tolerance (SOS1), proline synthesis (P5CS) and ploidy level (CCS52 and WEE1) peaked at 100/150 mM NaCl. Hence, these genes and various physiological traits except sugar levels, served as useful markers of NaCl tolerance. To our knowledge, this is the first report of a multi-step acclimation conferring tolerance to 150 mM NaCl in leaf-derived calli of M. truncatula.  相似文献   

16.
A pot experiment with 17 diverse genotypes of cucumber with four levels of salt stress viz., 0, 2, 4 and 6 dS m?1 was carried out during 2006. ANOVA revealed significant differences amongst genotypes and genotype × salt stress interaction indicating the genetic variability and differential response of the genotypes to different salt stress levels. The salt stress adversely affected the biochemical parameters; effects were severe under 4 dS m?1. No genotype could survive at 6 dS m?1. Sodium content, Na+–K+ ratio, proline, reducing sugars, phenol and yield reduction (%) increased significantly as the salt stress increased. Potassium, chlorophyll, membrane stability index and fruit yield decreased significantly under salt stress in all genotypes. However, the genotypes CRC-8, CHC-2 and G-338 showed lower accumulation of sodium, lesser depletion of potassium, lower Na+–K+ ratio and higher accumulation of proline, reducing sugars, phenols, better membrane stability and lower yield reduction (%) under salt stress, while CH-20 and DC-1 were sensitive to salt stress. Thus, a combination of traits such as higher membrane stability, lower Na+–K+ ratio, higher osmotic concentration and selective uptake of useful ions and prevention of over accumulation of toxic ions contribute to salt stress tolerance in cucumber. These traits would be useful selection criteria during salt stress breeding in cucumber.  相似文献   

17.
As a major antioxidant in plants, ascorbic acid (AsA) plays a very important role in the response to aluminum (Al) stress. However, the effect of AsA on the mitigation of Al toxicity and the mechanism of nitrate nitrogen (NO3 ?–N) uptake by plants under Al stress are unclear. In this study, a hydroponic experiment was conducted using peak 1 A rice (sterile line, Indica) with weaker resistance to Al and peak 1 superior 5 rice (F1 hybrid, Indica) with stronger resistance to Al to study the effects of exogenous AsA on the physiological and biochemical responses to NO3 ?–N uptake by rice roots exposed to 50 μmol L?1 Al. Al stress induced increases in the concentrations of H2O2 and malondialdehyde (MDA) and in the activities of antioxidant enzymes [such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)]. Plasma membrane (PM) H+-ATPase and H+-pump activities, endogenous AsA content and NO3 ?–N uptake in rice roots decreased under Al stress. After treatment with 2 mmol L?1 exogenous AsA combined with Al, concentrations of H2O2 and MDA in roots notably decreased, and endogenous AsA content and activities of SOD, POD, CAT, and APX in rice roots increased significantly; furthermore, the interaction of PM H+-ATPase and the 14-3-3 protein was also enhanced significantly compared with that in control plants without AsA treatment, which clearly increased NO3 ?–N uptake. Based on all of these data, the application of AsA significantly reduced the accumulation of H2O2 and MDA and increased the activities of PM H+-ATPase and the H+-pump by increasing the endogenous AsA content, the antioxidant enzyme activities, and the interaction of PM H+-ATPase and the 14-3-3 protein in the roots of the two rice cultivars under Al stress, thereby improving the uptake of NO3 ?–N in rice.  相似文献   

18.
The phytotoxic aluminum species (Al3+) is considered as the primary factor limiting crop productivity in over 40 % of world’s arable land that is acidic. We evaluated the responses of two wheat cultivars (Triticum aestivum L.) with differential Al resistance, cv. Yecora E (Al-resistant) and cv. Dio (Al-sensitive), exposed to 0, 37, 74 and 148 μM Al for 14 days in hydroponic culture at pH 4.5. With increasing Al concentration, leaf Ca2+ and Mg2+ content decreased, as well as the effective quantum yield of photosystem II (PSII) photochemistry (Φ PSII ), while a gradual increase in leaf membrane lipid peroxidation, Al accumulation, photoinhibition (estimated as F v /F m ), and PSII excitation pressure (1 ? q p ) occurred. However, the Al-resistant cultivar with lower Al accumulation, retained larger concentrations of Ca2+ and Mg2+ in the leaves and kept a larger fraction of the PSII reaction centres (RCs) in an open configuration, i.e. a higher ratio of oxidized to reduced quinone A (QA), than plants of the Al-sensitive cultivar. Four times higher Al concentration in the nutrient solution was required for Al-resistant plants (148 μM Al) than for Al-sensitive (37 μM Al), in order to establish the same closed RCs. Yet, the decline in photosynthetic efficiency in the cultivar Dio was not only due to closure of PSII RCs but also to a decrease in the quantum yield of the open RCs. We suggest that Al3+ toxicity may be mediated by nutrient deficiency and oxidative stress, and that Al-resistance of the wheat cultivar Yecora E, may be due at least partially, from the decreased Al accumulation that resulted to decreased reactive oxygen species (ROS) formation. However, under equal internal Al accumulation (exposure Al concentration: Dio 74 μM, Yecora E 148 μM) that resulted to the same oxidative stress, the reduced PSII excitation pressure and the better PSII functioning of the Al-resistant cultivar was probably due to the larger concentrations of Ca2+ and Mg2+ in the leaves. We propose that the different sensitivities of wheat cultivars to Al3+ toxicity can be correlated to differences in the redox state of QA. Thus, chlorophyll fluorescence measurements can be a promising tool for rapid screening of Al resistance in wheat cultivars.  相似文献   

19.
The effects of salt stress were studied on the accumulation and metabolism of proline and its correlation with Na+ and K+ content in shoots and callus tissue of four potato cultivars, viz., Agria, Kennebec (relatively salt tolerant), Diamant and Ajax (relatively salt sensitive). Na+ and proline contents increased in all cultivars under salt stress. However, K+ and protein contents decreased in response to NaCl treatments. The activities of enzymes involved in proline metabolism, Δ1-pyrroline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (ProDH) increased and decreased, respectively, in response to elevated NaCl concentrations. The changes of P5CS and ProDH activities in more salt sensitive cultivars (Diamant, Ajax) were more than those in the tolerant ones. Then the stimulation of synthesis in combination with a partially increase of protein proteolysis, a decrease in proline utilization and inhibition of oxidation resulted in high proline contents in seedlings and calli under salt stress. In callus tissue, reduced growth and cell size may be partially responsible for high proline accumulation in response to high NaCl levels. However, although the basic proline contents in the seedlings of more salt tolerant cultivars were higher than the sensitive ones, a clear relationship was not generally observed between accumulation of proline and salt tolerance in potato.  相似文献   

20.
Leidi  E.O.  Saiz  J.F. 《Plant and Soil》1997,190(1):67-75
Physiological responses to salt stress were studied in two cotton cultivars previously selected on the basis of growth under salinity. Plants were grown in nutrient solutions under controlled conditions. In the first experiment, the genotypes were grown at different salt concentrations (0, 100 and 200 mt M NaCl) and growth rates, water contents and ion accumulation were determined. In a second experiment, both genotypes were grown at the same salt concentration (200 mt M NaCl). Dry matter partitioning in individual leaves, stem and roots, water contents, specific leaf area (SLA), ion accumulation (K+, Na+, Cl) and leaf water potentials were measured. Finally, an experiment with low salt levels (2.7 and 27 mt M NaCl) was run to compare K and Na+ uptake and distribution.There were no differences in growth between the cultivars in the absence of salt stress, whereas under stress genotype Z407 had higher leaf area and dry matter accumulation than P792. Leaf water potential and leaf water content were lower in cv P792 than in cv Z407. There were no significant differences in the levels of Cl accumulation between genotypes. The main feature of the tolerant genotype (Z407) was a higher accumulation of Na+ in leaves and an apparent capacity for K+ redistribution to younger leaves.We postulate that the higher tolerance in Z407 is the result of several traits such as a higher Na+ uptake and water content. Adaptation through adequate, but tightly controlled ion uptake, typical of some halophytes, matched with efficient ion compartmentation and redistribution, would result in an improved water uptake capacity under salt stress and lead to maintenance of higher growth rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号