首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了探索24表油菜素内酯(24-EBL)对盐胁迫下油菜生长的调节效应和植物色素在油菜耐盐性中的作用,采用盆栽实验,在盐胁迫下外源喷施1 000、10、0.1、0.001 nmol·L-1 24-EBL处理油菜幼苗,测定植株的生物量、电解质渗漏率(ELP)、净光合速率(Pn)、光合色素、酚类、类黄酮、花青素含量以及抗氧化能力(T-AOC).结果显示:(1) 24-EBL可显著缓解盐胁迫对油菜幼苗的氧化伤害,提高盐渍下油菜幼苗Pn和光合色素含量,并以0.1nmol·L-1 24 EBL(EBL3)对生长的调控效应最佳.(2)盐胁迫下,植株不同部位叶片的β-胡萝卜素(β-Car)和叶黄素(Lut)含量均显著下降,EBL3处理可显著提高其上部叶的β-Car含量,以及上部和中部叶的Lut含量;EBL3处理可显著提高盐胁迫下油菜所有叶片和叶柄的酚类含量,以及叶柄中类黄酮含量;EBL3处理可显著提高盐胁迫下油菜幼苗所有器官的花青素含量.(3) EBL3仅能够诱导上部叶和中部叶类胡萝卜素(Car)提取液的抗氧化能力(T-AOC)提高,但可诱导植株所有器官的酚类提取液的T-AOC提高.(4)不同部位的叶片Car、β-Car和Lut含量均与其Car提取液的T-AOC呈极显著正相关;而上部叶的总酚和花青素含量、中部叶和叶柄的花青素含量及茎秆中总酚、类黄酮和花青素含量与各自的酚类提取液的T-AOC呈极显著正相关.研究表明,外源喷施适宜浓度的24-EBL能够显著促进盐渍条件下油菜幼苗的光合能力,提高其抗氧化能力,从而增强其对盐渍胁迫的适应性,而光合色素和花青素水平被24-EBL诱导上升在油菜幼苗抗氧化过程中起着重要的作用.  相似文献   

2.
水杨酸对高温胁迫下铁皮石斛幼苗耐热性的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究不同浓度水杨酸对铁皮石斛幼苗耐热性的诱导效应,以移栽半年的铁皮石斛幼苗为实验材料,对不同浓度水杨酸诱导高温胁迫下铁皮石斛幼苗的耐热性进行外观评价及叶绿素、可溶性蛋白质、可溶性糖、丙二醛(MDA)、游离脯氨酸(Pro)含量以及超氧化物歧化酶(SOD)、过氧化酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性的动态测定,观察其动态变化趋势并筛选最佳施用浓度.结果显示:在高温胁迫环境下,随着胁迫时间的延长,不同浓度SA处理均能有效缓解高温对铁皮石斛植株伤害;1.5~2.0 mmol·L1SA处理使铁皮石斛叶片中SOD、POD活性显著提高,0.5~1.5 mmol·L-1 SA处理叶片中CAT、APX活性显著提高;1.5~2.0 mmol·L-1SA处理可显著促进叶片Pro、可溶性糖和可溶性蛋白的积累,有效抑制MDA含量的增加,且不同浓度处理之间差异显著.研究表明,适宜浓度水杨酸处理能提高铁皮石斛幼苗的耐热性,并以1.5 mmol·L-1浓度处理效果最好.  相似文献   

3.
A hydroponic experiment was conducted to investigate the effects of indole-3-acetic acid (IAA) on arsenic (As) uptake and antioxidative enzymes in fronds of Pteris cretica var. nervosa (As hyperaccumulator) and Pteris ensiformis (non-hyperaccumulator). Plants were exposed to 2 mg L?1 As(III), As(V) or dimethylarsinic acid (DMA) and IAA concentrations for 14 d. The biomass and total As in the plants significantly increased at 30 mg L?1 IAA. Superoxide dismutase (SOD) activities significantly increased with IAA addition. Catalase (CAT) activities showed a significant increase in P. ensiformis exposed to three As species at 30 or 50 mg L?1 IAA but varied in P. cretica var. nervosa. Peroxidase (POD) activities were unchanged in P. ensiformis except for a significant decrease at 50 mg L?1 IAA under As(III) treatment. However, a significant increase was observed in P. cretica var. nervosa at 10 mg L?1 IAA under As(III) or DMA treatment and at 50 mg L?1 IAA under As(V) treatment. Under DMA stress, malondialdehyde contents in fronds of P. cretica var. nervosa showed a significant decrease at 10 mg L?1 IAA but remained unchanged in P. ensiformis. Therefore, IAA enhanced As uptake and frond POD activity in P. cretica var. nervosa under As stress.  相似文献   

4.
The experiments were conducted to examine the effects of seed priming in solutions (100, 150 and 200 mg L?1) of different synthetic auxins, i.e., 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), α-naphthaleneacetic acid (NAA) on growth, grain yield, gaseous exchange characteristics, ionic and hormonal concentrations in two spring wheat (Triticum aestivum L.) cultivars MH-97 (salt intolerant) and Inqlab-91 (salt tolerant). The primed (soaked for 12 h) and non-primed seeds were sown in Petri plates in a growth room as well as in a field treated with 150 mM NaCl. Generally, all synthetic auxins did not increase germination percentage and rate in both cultivars when compared with hydropriming (control), and even decreased these attributes when applied at higher concentrations (200 mg L?1). Nonetheless, under salt stress, NAA (150 mg L?1) was most effective in increasing seedling shoot dry weight, fertile tillers per plant, number of grains per ear and grain yield in both cultivars. The plants raised from seed treated with NAA (150 mg L?1) had lower shoot [Na+] in the salt intolerant cultivar. Moreover, NAA treatment improved root [Ca2+] in both cultivars. Priming agents affected leaf free indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) concentrations differently in both cultivars. Treatment with NAA (150 mg L?1) lowered leaf free abscisic acid (ABA) and putrescine (Put) concentrations and raised salicylic acid (SA) and spermidine (Spd) concentrations in the salt intolerant cultivar. In conclusion, pre-treatment with NAA (150 mg L?1) showed consistent promotive effects on growth and grain yield in the two cultivars, which were partially attributed to the beneficial effects of NAA-priming on ionic and hormonal homeostasis under salt stress.  相似文献   

5.
Salsola ikonnikovii (Chenopodiaceae), a drought-tolerant plant species that is distributed in sand or light-saline soil in Xinjiang, China, produces seeds (fruits) with attached winged perianths. To study the role of the wing in seed germination under salt stress and to further investigate the growth and physiological responses of the plants to salt stress, the germination behaviour of S. ikonnikovii was determined after winged and non-winged seeds were treated with 0–1000 mmol · L?1 NaCl. Several parameters of two-month old plants that had been treated with NaCl for three weeks were measured. The results revealed that the winged perianths limited germination but protected the seeds from salt damage. The growth of the plants was stimulated by lower concentrations of salt (≤100 mmol · L?1 NaCl), while increasing salt concentrations inhibited growth. The level of reactive oxygen species and malondialdehyde increased significantly at high concentrations of salt. Correspondingly, concentrations of the osmolytes proline, betaine, and soluble sugars, and the activities of antioxidative enzymes (catalase, peroxidase and superoxide dismutase) increased, but the levels of non-enzymatic antioxidants (carotenoids, glutathione) were significantly reduced at high salt concentrations. These results imply that osmotic adjustment and the antioxidative system may work synergistically to ensure that a plant grows normally under high salt concentrations.  相似文献   

6.
A sandy culture experiment was conducted to investigate the effects of exogenous CaCl2 on the indole alkaloid accumulation in Catharanthus roseus under salt stress. One-month seedlings of C. roseus were treated with the different concentrations of NaCl (0, 50, and 100 mmol l? 1) and 7.5 mmol l? 1 CaCl2. The plant samples were analyzed after 7 days of the treatments. The NaCl-stressed plants showed decrease of fresh and dry weight and increase of malondialdehyde (MDA) content compared to control. Tryptophan decarboxylase (TDC) activity increased significantly under 50 mmol l? 1 NaCl without CaCl2 addition, 50 mmol l? 1 NaCl with 7.5 mmol l? 1 CaCl2, and CaCl2 treatment without NaCl addition. There was a significant increase in peroxidase activity under NaCl stress compared to control. The vindoline, catharanthine, vincristine, and vinblastine contents increased under salt stress (especially with 50 mmol l? 1 NaCl treatment with or without CaCl2). Addition of CaCl2 to NaCl-stressed plants increased biomass, TDC activity, vindoline, and catharanthine contents and lowered MDA and vincirstine contents compared to the plants without CaCl2. The plants treated with CaCl2 alone showed higher TDC activity, vindoline, catharanthine, and vinblastine content when compared to control. The results showed that exogenous CaCl2 could promote the indole alkaloid metabolism under salt stress.  相似文献   

7.
As a major antioxidant in plants, ascorbic acid (AsA) plays a very important role in the response to aluminum (Al) stress. However, the effect of AsA on the mitigation of Al toxicity and the mechanism of nitrate nitrogen (NO3 ?–N) uptake by plants under Al stress are unclear. In this study, a hydroponic experiment was conducted using peak 1 A rice (sterile line, Indica) with weaker resistance to Al and peak 1 superior 5 rice (F1 hybrid, Indica) with stronger resistance to Al to study the effects of exogenous AsA on the physiological and biochemical responses to NO3 ?–N uptake by rice roots exposed to 50 μmol L?1 Al. Al stress induced increases in the concentrations of H2O2 and malondialdehyde (MDA) and in the activities of antioxidant enzymes [such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)]. Plasma membrane (PM) H+-ATPase and H+-pump activities, endogenous AsA content and NO3 ?–N uptake in rice roots decreased under Al stress. After treatment with 2 mmol L?1 exogenous AsA combined with Al, concentrations of H2O2 and MDA in roots notably decreased, and endogenous AsA content and activities of SOD, POD, CAT, and APX in rice roots increased significantly; furthermore, the interaction of PM H+-ATPase and the 14-3-3 protein was also enhanced significantly compared with that in control plants without AsA treatment, which clearly increased NO3 ?–N uptake. Based on all of these data, the application of AsA significantly reduced the accumulation of H2O2 and MDA and increased the activities of PM H+-ATPase and the H+-pump by increasing the endogenous AsA content, the antioxidant enzyme activities, and the interaction of PM H+-ATPase and the 14-3-3 protein in the roots of the two rice cultivars under Al stress, thereby improving the uptake of NO3 ?–N in rice.  相似文献   

8.
该研究以耐热型水稻品种Nagina22和热敏型水稻品种YR343为供试材料,采用盆栽试验,设置喷施清水+常温处理(NT0)、喷施清水+穗分化期高温胁迫(HT0),以及分别喷施5、10、15、20 mmol·L-1外源海藻糖+高温胁迫(分别记为HT1、HT2、HT3、HT4)共6个处理,分析外源海藻糖对高温胁迫下穗分化期水稻叶片叶绿素含量、光合气体交换参数、抗氧化酶活性、渗透调节物质含量、活性氧含量等生理特性,以及籽粒产量及其构成因素的影响,为水稻抗热栽培和耐热品种的选育提供理论依据。结果表明:(1)在高温胁迫下水稻穗分化期,2个水稻品种叶片的叶绿素含量、光合气体交换参数及渗透调节物质含量均降低,叶片MDA和H2O2含量以及■的产生速率均上升,叶片抗氧化酶活性呈先增后降的趋势,最终显示水稻籽粒产量及其构成因素显著下降。(2)喷施外源海藻糖能显著增加高温胁迫下穗分化期水稻的每穗粒数、千粒重和结实率,从而提高籽粒产量,其中弱势粒千粒重和结实率的增幅高于强势粒,外源海藻糖最适喷施浓度为15 mmol·L-1...  相似文献   

9.
The effects of increasing arsenic (0, 10, 50, 100 mg L?1) and zinc (0, 50, 80, 120, 200 mg L?1) doses on germination and oxidative stress markers (H2O2, MDA, SOD, CAT, APX, and GR) were examined in two Brazilian savanna tree species (Anadenanthera peregrina and Myracrodruon urundeuva) commonly used to remediate contaminated soils. The deleterious effects of As and Zn on seed germination were due to As- and Zn-induced H2O2 accumulation and inhibition of APX and GR activities, which lead to oxidative damage by lipid peroxidation. SOD and CAT did not show any As- and Zn-induced inhibition of their activities as was seen with APX and GR. We investigated the close relationships between seed germination success under As and Zn stress in terms of GR and, especially, APX activities. Increased germination of A. peregrina seeds exposed to 50 mg L?1 of Zn was related to increased APX activity, and germination in the presence of As (10 mg L?1) was observed only in M. urundeuva seeds that demonstrated increased APX activity. All the treatments for both species in which germination decreased or was inhibited showed decreases in APX activity. A. peregrina seeds showed higher Zn-tolerance than M. urundeuva, while the reverse was observed with arsenic up to exposures of 10 mg L?1.  相似文献   

10.
以大豆种子、幼苗为试验材料,采用砂培的方法,研究了0.2mmol·L-1外源水杨酸(SA)对100mmol·L-1 NaCl胁迫下大豆种子萌发、幼苗形态及生物量、膜脂过氧化和抗氧化酶活性的影响。结果显示:NaCl胁迫下,大豆种子萌发和幼苗生长受到显著抑制,且随着胁迫时间的延长(0~3d),大豆幼苗相对电解质渗漏率、硫代巴比妥酸活性产物(TBARS)含量显著升高,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性均明显降低。外源SA促进NaCl胁迫下大豆种子萌发和根茎生长,增加幼苗生物量积累,降低幼苗叶片相对电解质渗漏率和TBARS含量,增强其叶片SOD、CAT、APX活性。研究表明,NaCl胁迫能显著抑制大豆种子萌发和幼苗生长,而一定浓度的外源SA能有效提高NaCl胁迫下大豆种子活力及幼苗抗氧化酶活性,减轻膜脂过氧化程度,缓解NaCl胁迫所造成的伤害,提高大豆幼苗抗盐胁迫的能力。  相似文献   

11.
Exogenous salicylic acid (SA) can be used for chemical hardening to alleviate oxidative stress in plants exposed to salinity. The treatment of 5-week-old Arabidopsis thaliana plants with increasing doses of SA alters the ascorbate (ASC) and glutathione (GSH) pools, and modulates their redox status and the activity of several antioxidant enzymes, such as ascorbate peroxidase (APX) and glutathione reductase (GR). To investigate the role of GR in the maintenance of cytoplasmic redox homeostasis after hardening by SA, wild type (WT) and gr1 mutant plants, expressing the cytoplasmic redox-sensitive green fluorescent protein (c-roGFP1), were pre-treated with 10?7 and 10?5 M SA for 2 weeks and subsequently exposed to 100 mM NaCl. The redox status of the salt-stressed WT plants became more oxidized, which was prevented by pretreatment with 10?5 M SA. The gr1 mutants showed more positive redox potential than WT plants, which could be reversed by treatment with 10?5 M SA. In mutants, the increased GSH levels may have compensated for the deleterious effect of GR deficiency and stabilized the redox potential in plants exposed to salinity. The ASC regeneration in WT plants shifted from the GSH-dependent dehydroascorbate reductase (DHAR) reaction to the NAD(P)H-dependent monodehydroascorbate reductase (MDHAR) activity during chemical hardening, which contributed to the preservation of the GSH pool in plants under salt stress. Our results suggest that the maintenance of GSH levels and redox homeostasis by SA-mediated hardening play a major role in priming and defending against salt stress.  相似文献   

12.
Negative impacts exerted by sodium (Na+) and chloride (Cl?) ions individually as well their possible additive effects (under NaCl) were evaluated on growth and yield reductions in rice, besides investigating whether salt-tolerant genotypes respond differentially than their sensitive counterparts. Though both Na+ and Cl? ions get accumulated in plant tissues under NaCl stress, most research has historically been aimed to decipher harmful effects induced by Na+ ions. Accordingly, physiological and molecular mechanisms involved in Cl? toxicity are not clearly understood in crop plants. To address these issues, 65-day-old plants of two rice cultivars, Panvel-3 (tolerant) and Sahyadri-3 (sensitive) were subjected to Cl?, Na+ and NaCl (each with 100 mM concentration and electrical conductivity of ≈10 dS m?1) stress using soil-based systems. Stress conditions were maintained till harvesting of mature (128-day-old) plants. All three treatments induced substantial antagonistic effects on growth, dry mass, yield components (number of grains per panicle, length, width, thickness and weight of grain, along with the percentage of grains filled) and overall crop yield, with greater impacts under NaCl than its constituent ions. Salinity treatments caused an imbalance in reducing sugars, protein, starch and proline contents, with the greatest magnitude under NaCl. A negative correlation between Cl?/Na+ accumulation and crop yield was witnessed, with higher severity on the sensitive cultivar. The overall magnitude of toxicity was observed highest in NaCl followed by Na+ and Cl?, respectively, suggesting additive effects of constituent ions under NaCl. Both cultivars responded similarly; however, the tolerant cultivar, unlike the sensitive one, kept Na+:K+ ratio <1.0 and accumulated proline in response to salinity treatments used in this study.  相似文献   

13.
Nitraria tangutorum Bobr. is a typical halophyte with superior tolerance to salinity. However, little is known about its physiological adaptation mechanisms to the salt environment. In the present study, N. tangutorum seedlings were treated with different concentrations of NaCl (100, 200, 300 and 400 mmol L?1) combined with five levels of Ca2+ (0, 5, 10, 15 and 20 mmol L?1) to investigate the effects of salt stress and exogenous Ca2+ on Na+ compartmentalization and ion pump activities of tonoplast and plasma membrane (PM) in leaves. Na+ and Ca2+ treatments increased the fresh weight and dry weight of N. tangutorum seedlings. The absorption of Na+ in roots, stems and leaves was substantially increased with the increases of NaCl concentration, and Na+ was mainly accumulated in leaves. Exogenous Ca2+ reduced Na+ accumulation in roots but promoted Na+ accumulation in leaves. The absorption and transportation of Ca2+ in N. tangutorum seedlings were inhibited under NaCl treatments. Exogenous Ca2+ promoted Ca2+ accumulation in the plant. Na+ contents in apoplast and symplast of leaves were also significantly increased, and symplast was the main part of Na+ intracellular compartmentalization. The tonoplast H+-ATPase and H+-PPase activities were significantly promoted under salt stress (NaCl concentrations ≤300 mmol L?1). PM H+-ATPase activities gradually increased under salt stress (NaCl concentrations ≤200 mmol L?1) followed by decreases with NaCl concentration increasing. The tonoplast H+-ATPase, H+-PPase and PM H+-ATPase activities increased first with the increasing exogenous Ca2+ concentration, reached the maximums at 15 mmol L?1 Ca2+, and then decreased. The tonoplast and PM Ca2+-ATPase activities showed increasing trends with the increases of NaCl and Ca2+ concentration. These results suggested that certain concentrations of exogenous Ca2+ effectively enhanced ion pump activities of tonoplast and PM as well as promoted the intracellular Na+ compartmentalization to improve the salt tolerance of N. tangutorum.  相似文献   

14.
Seed priming increases tolerance of plants against various environmental stresses. Although ample literature is available that depicts the beneficial effects of priming under different environmental stresses, the information on induction of tolerance to Pb stress through seed priming with ascorbic acid (AsA) is limited. Therefore, this study was performed to examine the effect of seed priming with AsA (50 and 100 mg L?1), hydropriming and without priming (control) on physiochemical processes of okra cultivars (Subz-Pari and Arka Anamika) under Pb stress (0, 100 mg L?1). Pb stress caused a considerable decline in plant growth and photosynthetic pigments. Contrarily, Pb stress exhibited rise in the contents of total amino acids, free proline, total soluble proteins and AsA. The POD, CAT, and SOD activities were recorded highest at 100 mg L?1 of Pb. Moreover, Pb stress markedly increased H2O2 and MDA levels that triggered oxidative stress. However, plants raised from seed primed with AsA and water exhibited better growth and had higher chlorophylls, free proline, total proteins, total amino acids, AsA and activities of enzymatic antioxidants. Priming with AsA (50 mg L?1) induced better tolerance to Pb stress in okra plants. Plants of cv. Arka Anamika exhibited greater tolerance to Pb than that of cv. Subz-Pari as was evident from higher plant fresh and dry masses.  相似文献   

15.
The pentacyclic triterpenoids from birch (Betula platyphylla suk) have broad pharmacological activities and can be potentially used for the development of anti-cancer and anti-AIDS drugs. In this study, we explored the effects of spraying 3-year-old white birch with different concentration of methyl jasmonate (MeJA) and salicylic acid (SA) on the expression of key genes in triterpenoid biosynthesis pathways and on the accumulation and physiological characteristics of triterpenoids in birch saplings. The results showed that spraying different concentration of MeJA and SA could obviously promote accumulation of total triterpenoids in 3-year-old white birch. The triterpenoid content in the stem bark was increased by 46.11 %, reaching 81.86 mg/g, after 1 day of treatment with 1 mmol·L?1 MeJA (MJ2), and by 45.07 %, reaching 91.4 mg/g, after 14 days of treatment with 5 mmol·L?1 SA (SA1). In addition, MeJA and SA treatment increased the contents of chlorophyll a and b, antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as photosynthetic performance, and affected the content of soluble sugar and soluble protein in birch leaf. Fluorescence quantitative polymerase chain reaction (qPCR) results showed that MeJA and SA treatment deferentially enhanced the key gene expression of cycloartenol synthase (BPX and BPX2), lupeol synthase (BPW) and beta-amyrin synthase (BPY) in triterpenoid synthesis pathway in birch bark and leaves. The results showed that MeJA and SA induced triterpenoid synthesis of birch plant is closely related with not only the expression of key genes of triterpenoid synthesis pathway but also photosynthesis, anti-stress response and physiological indexes, suggesting that regulation of triterpenoid synthesis of birch by MeJA and SA may involve in more complex mechanisms at physiological and molecular levels.  相似文献   

16.
The effect of 0.5–1.5 mM salicylic acid (SA) on modulating reactive oxygen species metabolism and ascorbate–glutathione cycle in NaCl-stressed Nitraria tangutorum seedlings was investigated. The individual plant fresh weight (PFW) and plant dry weight (PDW) significantly increased under 100 mM NaCl while remained unchanged or decreased under 200–400 mM NaCl compared to the control. Superoxide anion (O 2 ·? ), hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS), reduced ascorbate (AsA), dehydroascorbate (DHA), reduced glutathione (GSH) and oxidized glutathione (GSSG) increased whereas the ratios of AsA/DHA and GSH/GSSG decreased under varied NaCl treatments. Ascorbate peroxidase (APX) and glutathione reductase (GR) activities were enhanced while dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activities remained unvaried under 100–400 mM NaCl stresses. In addition, exogenous SA further increased PFW, PDW and root/shoot ratio. SA effectively diminished O 2 ·? accumulation. H2O2 and TBARS decreased under 0.5 and 1.0 mM SA treatments compared to those without SA. 0.5 mM of SA increased while 1.0 and 1.5 mM SA decreased APX activities. DHAR activities were elevated by 0.5 and 1.0 mM SA but not by 1.5 mM SA. MDHAR and GR activities kept constant or significantly increased at varying SA concentrations. Under SA treatments, AsA and GSH contents further increased, DHA and GSSG levels remained unaltered, while the decreases in AsA/DHA and GSH/GSSG ratios were inhibited. The above results demonstrated that the enhanced tolerance of N. tangutorum seedlings conferred by SA could be attributed mainly to the elevated GR and DHAR activities as well as the increased AsA/DHA and GSH/GSSG ratios.  相似文献   

17.
In the present study, the physiological responses of Nitraria tangutorum Bobr. seedlings to NaCl stress and the regulatory function of exogenous application of salicylic acid (SA) were investigated. NaCl in low concentration (100 mM) increased while in higher concentrations (200–400 mM) decreased the individual plant dry weights (wt) of seedlings. Decreased relative water content (RWC) and chlorophyll content were observed in the leaves of seedlings subjected to salinity stress (100–400 mM NaCl). Furthermore, NaCl stress significantly increased electrolyte leakage and malondialdehyde (MDA) content. The levels of osmotic adjustment solutes including proline, soluble sugars, and soluble protein were enhanced under NaCl treatments as compared to the control. In contrast, exogenous application of SA (0.5–1.5 mM) to the roots of seedlings showed notable amelioration effects on the inhibition of individual plant dry wt, RWC, and chlorophyll content. The increases in electrolyte leakage and MDA content in the leaves of NaCl-treated seedlings were markedly inhibited by SA application. The SA application further increased the contents of proline, soluble sugars, and soluble protein. The activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were up-regulated by NaCl stress and the activities of SOD, POD, and CAT were further enhanced by SA treatments. Application of SA in low concentration (0.5 mM) enhanced while in higher concentrations (1.0 and 1.5 mM) inhibited APX activities in leaves of NaCl-treated seedlings. These results indicate that SA effectively alleviated the adverse effects of NaCl stress on N. tangutorum.  相似文献   

18.
Auxin (IAA) is an important regulator of plant development and root differentiation. Although recent studies indicate that salicylic acid (SA) may also be important in this context by interfering with IAA signaling, comparatively little is known about its impact on the plant’s physiology, metabolism, and growth characteristics. Using carbon-11, a short-lived radioisotope (t 1/2 = 20.4 min) administered as 11CO2 to maize plants (B73), we measured changes in these functions using SA and IAA treatments. IAA application decreased total root biomass, though it increased lateral root growth at the expense of primary root elongation. IAA-mediated inhibition of root growth was correlated with decreased 11CO2 fixation, photosystem II (PSII) efficiency, and total leaf carbon export of 11C-photoassimilates and their allocation belowground. Furthermore, IAA application increased leaf starch content. On the other hand, SA application increased total root biomass, 11CO2 fixation, PSII efficiency, and leaf carbon export of 11C-photoassimilates, but it decreased leaf starch content. IAA and SA induction patterns were also examined after root-herbivore attack by Diabrotica virgifera to place possible hormone crosstalk into a realistic environmental context. We found that 4 days after infestation, IAA was induced in the midzone and root tip, whereas SA was induced only in the upper proximal zone of damaged roots. We conclude that antagonistic crosstalk exists between IAA and SA which can affect the development of maize plants, particularly through alteration of the root system’s architecture, and we propose that the integration of both signals may shape the plant’s response to environmental stress.  相似文献   

19.
Two ornamental plants of Althaea rosea Cav. and Malva crispa L. were exposed to various concentrations of lead (Pb) (0, 50, 100, 200 and 500 mg·kg?1) for 70 days to evaluate the accumulating potential and the tolerance characteristics. The results showed that both plant species grown normally under Pb stress, and A. rosea had a higher tolerance than M. crispa, while M. crispa had a higher ability in Pb accumulation than A. rosea. Besides, lower Pb concentration (50 mg·kg?1) stimulated the shoot biomass in both plant species. Pb accumulation in plants was consistent with the increase of Pb levels, and the main accumulation sites were the roots and the older leaves. In addition, the photosynthetic pigments content and chlorophyll fluorescence parameters were influenced by Pb stress. In such case, both of the plants could improve the activities of antioxidant enzymes of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), and the contents of the total soluble sugar and soluble protein, which reached the highest value at Pb 100 mg·kg?1, as well as the accumulation of the total thiols (T-SH) and non-protein thiols (NP-SH) to adapt to Pb stress. Thus, it provides the theoretical basis and possibility for ornamental plants of A. rosea and M. crispa in phytoremediation of Pb contaminated areas.  相似文献   

20.
In this research, the effect of different SA concentrations (0, 0.5, 1.0, 1.5, and 2.0 mM) on biological and grain yield as well as Na+, K+, Cl?, Ca2+, and Mg2+ distribution and accumulation in barley plants was examined under nonsaline (2 dS m?1) and saline (12 dS m?1) conditions in a three-year field study (2012–2015 growing seasons). Storage factor (SF) was defined as the concentration of an ion in the root, as a proportion of total uptake of that ion, to quantify ion partitioning between root and shoot. Salt stress decreased SF for K+, Ca2+, and Mg2+ and enhanced it for Na+ and Cl?, which led to reduce grain and biological yield. Nonetheless, foliar-applied SA in varying concentrations could lower some of these adverse effects on ion transport and accumulation. At the 2nd and 3rd years, unfavorable climatic conditions such as less precipitation and higher temperature intensified salt stress and decreased the alleviating impact of SA. Foliar application of SA at higher levels increased SF for Na+ and Cl? ions and decreased that for K+ indicating that SA helped barley plants keep more Na+ and Cl? and less K+ ions in the root system, which suggested the probable role of SA in altering ion transport within the plant in favor of salt stress tolerance. SF was found to be more correlated with grain yield under both nonsaline and saline conditions. Overall, SF might be considered as a potential criterion for salt tolerance in barley plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号