首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The ATP-dependent Mur ligases (MurC, MurD, MurE and MurF) successively add l-Ala, d-Glu, meso-A2pm or l-Lys, and d-Ala-d-Ala to the nucleotide precursor UDP-MurNAc, and they represent promising targets for antibacterial drug discovery. We have used the molecular docking programme eHiTS for the virtual screening of 1990 compounds from the National Cancer Institute ‘Diversity Set’ on MurD and MurF. The 50 top-scoring compounds from screening on each enzyme were selected for experimental biochemical evaluation. Our approach of virtual screening and subsequent in vitro biochemical evaluation of the best ranked compounds has provided four novel MurD inhibitors (best IC50 = 10 μM) and one novel MurF inhibitor (IC50 = 63 μM).  相似文献   

2.
《Biophysical journal》2021,120(15):2943-2951
Despite their importance in function, the conformational state of proteins and its changes are often poorly understood, mainly because of the lack of an efficient tool. MurD, a 47-kDa protein enzyme responsible for peptidoglycan biosynthesis, is one of those proteins whose conformational states and changes during their catalytic cycle are not well understood. Although it has been considered that MurD takes a single conformational state in solution as shown by a crystal structure, the solution nuclear magnetic resonance (NMR) study suggested the existence of multiple conformational state of apo MurD in solution. However, the conformational distribution has not been evaluated. In this work, we investigate the conformational states of MurD by the use of electron paramagnetic resonance (EPR), especially intergadolinium distance measurement using double electron-electron resonance (DEER) measurement. The gadolinium ions are fixed on specific positions on MurD via a rigid double-arm paramagnetic lanthanide tag that has been originally developed for paramagnetic NMR. The combined use of NMR and EPR enables accurate interpretation of the DEER distance information to the structural information of MurD. The DEER distance measurement for apo MurD shows a broad distance distribution, whereas the presence of the inhibitor narrows the distance distribution. The results suggest that MurD exists in a wide variety of conformational states in the absence of ligands, whereas binding of the inhibitor eliminates variation in conformational states. The multiple conformational states of MurD were previously implied by NMR experiments, but our DEER data provided structural characterization of the conformational variety of MurD.  相似文献   

3.
Computer-based molecular design has been used to produce a series of new macrocyclic systems targeted against the bacterial cell wall biosynthetic enzyme MurD. Following their preparation, which involved a novel metathesis-based cyclisation as the key step, these systems were found to show good inhibition when assayed against the MurD enzyme.  相似文献   

4.
Enzymes catalyzing the biosynthesis of bacterial peptidoglycan represent traditionally a collection of highly selective targets for novel antibacterial drug design. Four members of the bacterial Mur ligase family—MurC, MurD, MurE and MurF—are involved in the intracellular steps of peptidoglycan biosynthesis, catalyzing the synthesis of the peptide moiety of the Park’s nucleotide. In our previous virtual screening campaign, a chemical class of benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives exhibiting dual MurD/MurE inhibition properties was discovered. In the present study we further investigated this class of compounds by performing inhibition assays on all four Mur ligases (MurC–MurF). Furthermore, molecular dynamics (MD) simulation studies of one of the initially discovered compound 1 were performed to explore its geometry as well as its energetic behavior based on the Linear Interaction Energy (LIE) method. Further in silico virtual screening (VS) experiments based on the parent active compound 1 were conducted to optimize the discovered series. Selected hits were assayed against all Escherichia coli MurC–MurF enzymes in biochemical inhibition assays and molecules 1014 containing benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole coupled with five member-ring rhodanine moiety were found to be multiple inhibitors of the whole MurC–MurF cascade of bacterial enzymes in the micromolar range. Steady-state kinetics studies suggested this class to act as competitive inhibitors of the MurD enzyme towards d-Glu. These compounds represent novel valuable starting point in the development of novel antibacterial agents.  相似文献   

5.
Mur ligases play an essential role in the intracellular biosynthesis of bacterial peptidoglycan, the main component of the bacterial cell wall, and represent attractive targets for the design of novel antibacterials. UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD) catalyses the addition of D-glutamic acid to the cytoplasmic intermediate UDP-N-acetylmuramoyl-L-alanine (UMA) and is the second in the series of Mur ligases. MurD ligase is highly stereospecific for its substrate, D-glutamic acid (D-Glu). Here, we report the high resolution crystal structures of MurD in complexes with two novel inhibitors designed to mimic the transition state of the reaction, which contain either the D-Glu or the L-Glu moiety. The binding modes of N-sulfonyl-D-Glu and N-sulfonyl-L-Glu derivatives were also characterised kinetically. The results of this study represent an excellent starting point for further development of novel inhibitors of this enzyme.  相似文献   

6.
Enzymes MurD, MurE, MurF, folylpolyglutamate synthetase and cyanophycin synthetase, which belong to the Mur synthetase superfamily, possess an invariant lysine residue (K198 in the Escherichia coli MurD numbering). Crystallographic analysis of MurD and MurE has recently shown that this residue is present as a carbamate derivative, a modification presumably essential for Mg(2+) binding and acyl phosphate formation. In the present work, the importance of the carbamoylated residue was investigated in MurD, MurE and MurF by site-directed mutagenesis and chemical rescue experiments. Mutant proteins MurD K198A/F, MurE K224A and MurF K202A, which displayed low enzymatic activity, were rescued by incubation with short-chain carboxylic acids, but not amines. The best rescuing agent was acetate for MurD K198A, formate for K198F, and propionate for MurE K224A and MurF K202A. In the last of these, wild-type levels of activity were recovered. A complementarity between the volume of the residue replacing lysine and the length of the carbon chain of the acid was noted. These observations support a functional role for the carbamate in the three Mur synthetases. Experiments aimed at recovering an active enzyme by introducing an acidic residue in place of the invariant lysine residue were also undertaken. Mutant protein MurD K198E was weakly active and was rescued by formate, indicating the necessity of correct positioning of the acidic function with respect to the peptide backbone. Attempts at covalent rescue of mutant protein MurD K198C failed because of its lack of reactivity towards haloacids.  相似文献   

7.
The life-threatening infections caused by Leptospira serovars remain a global challenge since long time. Prevention of infection by controlling environmental factors being difficult to practice in developing countries, there is a need for designing potent anti-leptospirosis drugs. ATP-dependent MurD involved in biosynthesis of peptidoglycan was identified as common drug target among pathogenic Leptospira serovars through subtractive genomic approach. Peptidoglycan biosynthesis pathway being unique to bacteria and absent in host represents promising target for antimicrobial drug discovery. Thus, MurD 3D models were generated using crystal structures of 1EEH and 2JFF as templates in Modeller9v7. Structural refinement and energy minimization of the model was carried out in Maestro 9.0 applying OPLS-AA 2001 force field and was evaluated through Procheck, ProSA, PROQ, and Profile 3D. The active site residues were confirmed from the models in complex with substrate and inhibitor. Four published MurD inhibitors (two phosphinics, one sulfonamide, and one benzene 1,3-dicarbixylic acid derivative) were queried against more than one million entries of Ligand.Info Meta-Database to generate in-house library of 1,496 MurD inhibitor analogs. Our approach of virtual screening of the best-ranked compounds with pharmacokinetics property prediction has provided 17 novel MurD inhibitors for developing anti-leptospirosis drug targeting peptidoglycan biosynthesis pathway.  相似文献   

8.
Mur ligases are bacterial enzymes involved in the cytoplasmic steps of peptidoglycan biosynthesis and are viable targets for antibacterial drug discovery. We have performed virtual screening for potential ATP-competitive inhibitors targeting MurC and MurD ligases, using a protocol of consecutive hierarchical filters. Selected compounds were evaluated for inhibition of MurC and MurD ligases, and weak inhibitors possessing dual inhibitory activity have been identified. These compounds represent new scaffolds for further optimisation towards multiple Mur ligase inhibitors with improved inhibitory potency.  相似文献   

9.
The purified Pseudomonas aeruginosa cell wall biosynthesis MurD amide ligase enzyme was used to screen C-7-C and 12 mers peptides from phage display libraries using competitive biopanning approaches with the specific substrates D-glutamate and ATP. From the 60 phage-encoded peptides identified, DNA was sequenced, deduced amino acid sequences aligned and two peptides were synthesized from consensus sequences identified. The UDP-N-acetylmuramyl-L-alanine MurD substrate was synthesized, purified and used to develop a spectrophotometric assay. One peptide synthesized was found to specifically inhibit ATPase activity of MurD. The IC50 value was estimated at 4 microM for the C-7-C MurDp1 peptide. The loop conformation of MurDp1 was shown to be important for the inhibition of the UDP-N-acetylmuramyl-L-alanine:D-glutamate MurD ligase. The linear 12 mers MurD2 peptide has an IC50 value of 15 mM. A conserved amino acid motif was found between MurDp2 and the bacterial glyceraldehyde 3-phosphate dehydrogenase indicating that MurDp2 binds at a protein-protein interacting site. The approach proposed and results obtained suggest that efficient peptide inhibitors as well as protein-protein interaction domains can be identified by phage display.  相似文献   

10.
The increasing incidence of bacterial resistance to most available antibiotics has underlined the urgent need for the discovery of novel efficacious antibacterial agents. The biosynthesis of bacterial peptidoglycan, where the MurD enzyme is involved in the intracellular phase of UDP-MurNAc-pentapeptide formation, represents a collection of highly selective targets for novel antibacterial drug design. Structural studies of N-sulfonyl-glutamic acid inhibitors of MurD have made possible the examination of binding modes of this class of compounds, providing valuable information for the lead optimization phase of the drug discovery cycle. Binding free energies were calculated for a series of MurD N-sulphonyl-Glu inhibitors using the linear interaction energy (LIE) method. Analysis of interaction energy during the 20-ns MD trajectories revealed non-polar van der Waals interactions as the main driving force for the binding of these inhibitors, and excellent agreement with the experimental free energies was obtained. Calculations of binding free energies for selected moieties of compounds in this structural class substantiated even deeper insight into the source of inhibitory activity. These results constitute new valuable information to further assist the lead optimization process. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Tom SolmajerEmail:
  相似文献   

11.
UDP-N-acetylmuramoyl-l-alanyl-d-glutamate:meso-diaminopimelate ligase is a cytoplasmic enzyme that catalyzes the addition of meso-diaminopimelic acid to nucleotide precursor UDP-N-acetylmuramoyl-l-alanyl-d-glutamate in the biosynthesis of bacterial cell-wall peptidoglycan. The crystal structure of the Escherichia coli enzyme in the presence of the final product of the enzymatic reaction, UDP-MurNAc-l-Ala-gamma-d-Glu-meso-A(2)pm, has been solved to 2.0 A resolution. Phase information was obtained by multiwavelength anomalous dispersion using the K shell edge of selenium. The protein consists of three domains, two of which have a topology reminiscent of the equivalent domain found in the already established three-dimensional structure of the UDP-N-acetylmuramoyl-l-alanine: D-glutamate-ligase (MurD) ligase, which catalyzes the immediate previous step of incorporation of d-glutamic acid in the biosynthesis of the peptidoglycan precursor. The refined model reveals the binding site for UDP-MurNAc-l-Ala-gamma-d-Glu-meso-A(2)pm, and comparison with the six known MurD structures allowed the identification of residues involved in the enzymatic mechanism. Interestingly, during refinement, an excess of electron density was observed, leading to the conclusion that, as in MurD, a carbamylated lysine residue is present in the active site. In addition, the structural determinant responsible for the selection of the amino acid to be added to the nucleotide precursor was identified.  相似文献   

12.
Abstract

A new series of benzothiazol-2-ylcarbamodithioate functional compounds 5a-f has been designed, synthesized and characterized by spectral data. These compounds were screened for their in vitro antibacterial activity against strains of Staphylococcus aureus (NCIM 5021, NCIM 5022 and methicillin-resistant isolate 43300), Bacillus subtilis (NCIM 2545), Escherichia coli (NCIM 2567), Klebsiella pneumoniae (NCIM 2706) and Psudomonas aeruginosa (NCIM 2036). Compounds 5a and 5d exhibited significant activity against all the tested bacterial strains. Specifically, compounds 5a and 5d showed potent activity against K. pneumoniae (NCIM 2706), while compound 5a also displayed potent activity against S. aureus (NCIM 5021). Compound 5d showed minimum IC50 value of 13.37?μM against S. aureus MurD enzyme. Further, the binding interactions of compounds 5a-f in the catalytic pocket have been investigated using the extra-precision molecular docking and binding free energy calculation by MM-GBSA approach. A 30?ns molecular dynamics simulation of 5d/modeled S. aureus MurD enzyme was performed to determine the stability of the predicted binding conformation.  相似文献   

13.
A series of optimized sulfonamide derivatives was recently reported as novel inhibitors of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD). These are based on naphthalene-N-sulfonyl-D-glutamic acid and have the D-glutamic acid replaced with rigidified mimetics. Here we have defined the binding site of these novel ligands to MurD using 1H/13C heteronuclear single quantum correlation. The MurD protein was selectively 13C-labeled on the methyl groups of Ile (δ1 only), Leu and Val, and was isolated and purified. Crucial Ile, Leu and Val methyl groups in the vicinity of the ligand binding site were identified by comparison of chemical shift perturbation patterns among the ligands with various structural elements and known binding modes. The conformational and dynamic properties of the bound ligands and their binding interactions were examined using the transferred nuclear Overhauser effect and saturation transfer difference. In addition, the binding mode of these novel inhibitors was thoroughly examined using unrestrained molecular dynamics simulations. Our results reveal the complex dynamic behavior of ligand–MurD complexes and its influence on ligand–enzyme contacts. We further present important findings for the rational design of potent Mur ligase inhibitors.  相似文献   

14.
UDP-N-acetylmuramoyl-l-alanine:d-glutamate (MurD) ligase catalyses the addition of d-glutamate to the nucleotide precursor UDP-N-acetylmuramoyl-l-alanine (UMA). The crystal structures of Escherichia coli in the substrate-free form and MurD complexed with UMA have been determined at 2.4 A and 1.88 A resolution, respectively. The MurD structure comprises three domains each of a topology reminiscent of nucleotide-binding folds. In the two structures the C-terminal domain undergoes a large rigid-body rotation away from the N-terminal and central domains. These two "open" structures were compared with the four published "closed" structures of MurD. In addition the comparison reveals which regions are affected by the binding of UMA, ATP and d-Glu. Also we compare and discuss two structurally characterized enzymes which belong to the same ligase superfamily: MurD and folylpolyglutamate synthetase (FGS). The analysis allows the identification of key residues involved in the reaction mechanism of FGS. The determination of the two "open" conformation structures represents a new step towards the complete elucidation of the enzymatic mechanism of the MurD ligase.  相似文献   

15.
The biochemical properties of the D-glutamate-adding enzymes (MurD) from Escherichia coli, Haemophilus influenzae, Enterococcus faecalis, and Staphylococcus aureus were investigated to detect any differences in the activity of this enzyme between gram-positive and gram-negative bacteria. The genes (murD) that encode these enzymes were cloned into pMAL-c2 fusion vector and overexpressed as maltose-binding protein-MurD fusion proteins. Each fusion protein was purified to homogeneity by affinity to amylose resin. Proteolytic treatments of the fusion proteins with factor Xa regenerated the individual MurD proteins. It was found that these fusion proteins retain D-glutamate-adding activity and have Km and Vmax values similar to those of the regenerated MurDs, except for the H. influenzae enzyme. Substrate inhibition by UDP-N-acetylmuramyl-L-alanine, the acceptor substrate, was observed at concentrations greater than 15 and 30 microM for E. coli and H. influenzae MurD, respectively. Such substrate inhibition was not observed with the E. faecalis and S. aureus enzymes, up to a substrate concentration of 1 to 2 mM. In addition, the two MurDs of gram-negative origin were shown to require monocations such as NH4+ and/or K+, but not Na+, for optimal activity, while anions such as Cl- and SO4(2-) had no effect on the enzyme activities. The activities of the two MurDs of gram-positive origin, on the other hand, were not affected by any of the ions tested. All four enzymes required Mg2+ for the ligase activity and exhibited optimal activities around pH 8. These differences observed between the gram-positive and gram-negative MurDs indicated that the two gram-negative bacteria may apply a more stringent regulation of cell wall biosynthesis at the early stage of peptidoglycan biosynthesis pathway than do the two gram-positive bacteria. Therefore, the MurD-catalyzed reaction may constitute a fine-tuning step necessary for the gram-negative bacteria to optimally maintain its relatively thin yet essential cell wall structure during all stages of growth.  相似文献   

16.
UDP -N- acetylmuramoyl- L -alanine: D -glutamate (MurD) ligase catalyses the addition of d -glutamate to the nucleotide precursor UDP -N- acetylmuramoyl- L -alanine (UMA). The crystal structures of three complexes of Escherichia coli MurD with a variety of substrates and products have been determined to high resolution. These include (1) the quaternary complex of MurD, the substrate UMA, the product ADP, and Mg2+, (2) the quaternary complex of MurD, the substrate UMA, the product ADP, and Mn2+, and (3) the binary complex of MurD with the product UDP - N- acetylmuramoyl- L -alanine- D -glutamate (UMAG). The reaction mechanism supported by these structures proceeds by the phosphorylation of the C-terminal carboxylate group of UMA by the gamma-phosphate group of ATP to form an acyl-phosphate intermediate, followed by the nucleophilic attack by the amino group of D-glutamate to produce UMAG. A key feature in the reaction intermediate is the presence of two magnesium ions bridging negatively charged groups.  相似文献   

17.
Perdih A  Hodoscek M  Solmajer T 《Proteins》2009,74(3):744-759
MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase), a three-domain bacterial protein, catalyses a highly specific incorporation of D-glutamate to the cytoplasmic intermediate UDP-N-acetyl-muramoyl-L-alanine (UMA) utilizing ATP hydrolysis to ADP and P(i). This reaction is part of a biosynthetic path yielding bacterial peptidoglycan. On the basis of structural studies of MurD complexes, a stepwise catalytic mechanism was proposed that commences with a formation of the acyl-phosphate intermediate, followed by a nucleophilic attack of D-glutamate that, through the formation of a tetrahedral reaction intermediate and subsequent phosphate dissociation, affords the final product, UDP-N-acetyl-muramoyl-L-alanine-D-glutamate (UMAG). A hybrid quantum mechanical/molecular mechanical (QM/MM) molecular modeling approach was utilized, combining the B3LYP QM level of theory with empirical force field simulations to evaluate three possible reaction pathways leading to tetrahedral intermediate formation. Geometries of the starting structures based on crystallographic experimental data and tetrahedral intermediates were carefully examined together with a role of crucial amino acids and water molecules. The replica path method was used to generate the reaction pathways between the starting structures and the corresponding tetrahedral reaction intermediates, offering direct comparisons with a sequential kinetic mechanism and the available structural data for this enzyme. The acquired knowledge represents new and valuable information to assist in the ongoing efforts leading toward novel inhibitors of MurD as potential antibacterial drugs.  相似文献   

18.
The peptidoglycan biosynthetic pathway provides an array of potential targets for antibacterial drug design, attractive especially with respect to selective toxicity. Within this pathway, the members of the Mur ligase family are considered as promising emerging targets for novel antibacterial drug design. Based on the available MurD crystal structures co-crystallised with N-sulfonyl glutamic acid inhibitors, a virtual screening campaign was performed, combining three-dimensional structure-based pharmacophores and molecular docking calculations. A novel class of glutamic acid surrogates—benzene 1,3-dicarboxylic acid derivatives—were identified and compounds 14 and 16 found to possess dual MurD and MurE inhibitory activity.  相似文献   

19.
《Gene》1998,210(1):117-125
Bacterial UDP-N-acetylmuramyl-l-alanine:d-glutamate ligase (MurD), a cytoplasmic peptidoglycan biosynthetic enzyme, catalyzes the ATP-dependent addition of d-glutamate to an alanyl residue of the UDP-N-acetylmuramyl-l-alanine precursor, generating the dipeptide. The murD gene was cloned from both Staphylococcus aureus and Streptococcus pyogenes. Sequence analysis of the S. aureus murD gene revealed an open reading frame of 449 amino acids. The deduced aa sequence of S. aureus MurD is highly homologous to MurD from Escherichia coli, Haemophilus influenzae, Bacillus subtilis and St. pyogenes. Recombinant MurD protein from both S. aureus and St. pyogenes was separately overproduced in E. coli and purified as His-tagged fusion. Both recombinant enzymes catalyzed the ATP-dependent addition of d-glutamate to the precursor sugar peptide.  相似文献   

20.
UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD) is a cytoplasmic enzyme involved in the biosynthesis of peptidoglycan which catalyzes the addition of D-glutamate to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanine (UMA). The crystal structure of MurD in the presence of its substrate UMA has been solved to 1.9 A resolution. Phase information was obtained from multiple anomalous dispersion using the K-shell edge of selenium in combination with multiple isomorphous replacement. The structure comprises three domains of topology each reminiscent of nucleotide-binding folds: the N- and C-terminal domains are consistent with the dinucleotide-binding fold called the Rossmann fold, and the central domain with the mononucleotide-binding fold also observed in the GTPase family. The structure reveals the binding site of the substrate UMA, and comparison with known NTP complexes allows the identification of residues interacting with ATP. The study describes the first structure of the UDP-N-acetylmuramoyl-peptide ligase family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号