首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herbivore populations are influenced by a combination of food availability and predator pressure, the relative contribution of which is hypothesized to vary across a productivity gradient. In tropical forests, treefall gaps are pockets of high productivity in the otherwise less productive forest understory. Thus, we hypothesize that higher light availability in gaps will increase plant resources, thereby decreasing resource limitation of herbivores relative to the understory. As a result, predators should regulate herbivore populations in gaps, whereas food should limit herbivores in the understory. We quantified potential food availability and compared arthropod herbivore and predator densities in large forest light gaps and in the intact understory in Panama. Plants, young leaves, herbivores and predators were significantly more abundant per ground area in gaps than in the understory. This pattern was similar when we focused on seven gap specialist plant species and 15 shade-tolerant species growing in gaps and understory. Consistent with the hypothesis, herbivory rates were higher in gaps than the understory. Per capita predation rates on artificial caterpillars indicated higher predation pressure in gaps in both the dry and late wet seasons. These diverse lines of evidence all suggest that herbivores experience higher predator pressure in gaps and more food limitation in the understory.  相似文献   

2.
1. Predator and alternative food density are important factors influencing herbivore suppression by generalist predators. Herbivore suppression can be reduced if predators forage preferentially on alternative foods. Cannibalism can increase at high predator densities, further reducing herbivore suppression. However, complex interactions are possible, as alternative food can increase predator abundance and survival restoring top‐down effects on herbivores. 2. In two species of carabid larvae (Poecilus chalcites and Anisodactylus ovularis), we studied how alternative foods (fly pupae and grass seeds) and predator density affect predation of black cutworm larvae and how alternative foods affect cannibalism among carabid larvae. 3. Adding alternative food to microcosms generally reduced total predation of cutworms. However, the strength of this effect was dependent on carabid species, larval density, and food type. 4. Increasing larval density from one to three per microcosm reduced per‐capita predation by both species irrespective of alternative food treatment. 5. Alternative food reduced cannibalism in both carabid species and increased survival of carabid larvae in field plots, such that twice as many were captured in plots subsidised with pupae than plots with no alternative food. 6. These results provide new insight into the complex interactions that influence predator survival and herbivore suppression in resource diverse habitats by demonstrating the primacy of intraguild interactions among carabid larvae.  相似文献   

3.
S. Harrison 《Oecologia》1987,72(1):65-68
Summary The moth Zunacetha annulata (Dioptidae) is a specialist on the understory shrub Hybanthus prunifolius (Violaceae) in the forest of Barro Colorado Island (BCI), Panama. The larvae, which are capable of defoliating entire shrubs, concentrate their attack upon the small minority of H. prunifolius individuals that grow in treefall gaps. Field experiments demonstrated that larval growth rates were 37% higher, and weights at pupation 25% higher, on shrubs in gaps than on shrubs in the understory. In a common environment in the laboratory, growth rates of larvae were 23% higher on foliage taken from shrubs in gaps than on foliage from shrubs in the understory.However, larvae grown in a temperature regime simulating that of gaps did not grow faster than larvae in an understory regime, when the two groups were reared in growth chambers on foliage taken from the same shrubs. In the field, predation appeared higher in gaps: experimental groups of larvae survived at rates of 65% per day in gaps and 78% per day in the understory. Quality of foliage, and not direct effects of the environment, appears to be responsible for the observed pattern of defoliation by this moth.  相似文献   

4.
1. Seasonal variation in leaf quality and climate conditions often imposes constraints on the temporal occurrence of tree‐feeding insect larvae, but the seasonal effects of predation have received limited attention. In temperate climate zones, both the abundance and activity of predators can be expected to vary over time. 2. The study reported herein examined the impact of temporal variation in predator activity levels on the life history of an herbivorous insect feeding on a constant food source: previous‐year needles of Scots pine (Pinus sylvestris L.). In field experiments, the survival and growth rates of colonies of Thaumetopoea pinivora Treitschke larvae that had been manipulated to hatch at three different dates were compared. Eggs of T. pinivora usually hatch by mid‐April in southern Sweden, which is earlier than most other herbivorous insects that overwinter as eggs in this region. 3. Predator exclusion experiments indicated that larvae which hatched later than April experienced a higher level of predator activity, mainly by ants. The final larval size and the timing of pupation were not affected by hatching date. First instar larvae were more extensively preyed on than second instars. 4. The life history of herbivore species can be affected by seasonal variation in predation pressures. This study suggests that early hatching in a lepidopteran species can allow a temporal escape from predation during the vulnerable early life stages.  相似文献   

5.
Amounts of seed predation by grapsid crabs (Brachyura: Grapsidae) on two species of mangroves (Aegiceras corniculatum and Avicennia marina) were compared among different habitats in an Australian mangrove forest. For Avicennia, comparisons were between canopy gaps and the adjacent forest understory for six, mid intertidal, gaps of different sizes. For Aegiceras the comparisons were among canopy gaps in the high intertidal; open, accreting mud/sand banks where mangroves were colonizing in the low intertidal; and in the forest understory in both the high and low intertidal zones. These were repeated in the high salinity (35\%) downstream portion and the low salinity (0–5\%) upstream portion of a tidal river.Predation on Avicennia was significantly higher in the understory than in adjacent canopy gaps. Within a canopy opening, predation was greatest in the smallest gaps and lowest in the largest gaps. Predation on Aegiceras was greater in the high intertidal compared to the low intertidal, but no differences were found between river mouth and upstream locations. In the high intertidal zone of the forest, there were no differences in predation between canopy gap or forest understory sites for Aegiceras. In the low intertidal zone, however, significant differences in amount of predation were found between habitats. More Aegiceras propagules were consumed in the understory than on adjacent accreting sandbanks.Frequency of tidal inundation, which in turn affects the amount of time available to forage, is hypothesized to account for differences in predation between low and high intertidal forests and between small and large canopy gaps. Our results also suggest that shade intolerance in these two species may actually reflect an escape from predators, successful when the seeds are dispersed into open areas such as canopy gaps or mud banks.  相似文献   

6.
Herbivore populations are regulated by bottom‐up control through food availability and quality and by top‐down control through natural enemies. Intensive agricultural monocultures provide abundant food to specialized herbivores and at the same time negatively impact natural enemies because monocultures are depauperate in carbohydrate food sources required by many natural enemies. As a consequence, herbivores are released from both types of control. Diversifying intensive cropping systems with flowering plants that provide nutritional resources to natural enemies may enhance top‐down control and contribute to natural herbivore regulation. We analyzed how noncrop flowering plants planted as “companion plants” inside cabbage (Brassica oleracea) fields and as margins along the fields affect the plant–herbivore–parasitoid–predator food web. We combined molecular analyses quantifying parasitism of herbivore eggs and larvae with molecular predator gut content analysis and a comprehensive predator community assessment. Planting cornflowers (Centaurea cynanus), which have been shown to attract and selectively benefit Microplitis mediator, a larval parasitoid of the cabbage moth Mamestra brassicae, between the cabbage heads shifted the balance between trophic levels. Companion plants significantly increased parasitism of herbivores by larval parasitoids and predation on herbivore eggs. They furthermore significantly affected predator species richness. These effects were present despite the different treatments being close relative to the parasitoids’ mobility. These findings demonstrate that habitat manipulation can restore top‐down herbivore control in intensive crops if the right resources are added. This is important because increased natural control reduces the need for pesticide input in intensive agricultural settings, with cascading positive effects on general biodiversity and the environment. Companion plants thus increase biodiversity both directly, by introducing new habitats and resources for other species, and indirectly by reducing mortality of nontarget species due to pesticides.  相似文献   

7.
Many plants employ indirect defenses against herbivores; often plants provide a shelter or nutritional resource to predators, increasing predator abundance, and lessening herbivory to the plant. Often, predators on the same plant represent different life stages and different species. In these situations intraguild predation (IGP) may occur and may decrease the efficacy of that defense. Recently, several sticky plants have been found to increase indirect defense by provisioning predatory insects with entrapped insects (hereafter: carrion). We conducted observational studies and feeding trials with herbivores and predators on two sticky, insect‐entrapping asters, Hemizonia congesta and Madia elegans, to construct food webs for these species and determine the prevalence of IGP in these carrion‐provisioning systems. In both systems, intraguild predation was the most common interaction observed. To determine whether IGP was driven by resource abundance, whether it reduced efficacy of this indirect defense and whether stickiness or predator attraction was induced by damage, we performed field manipulations on H. congesta. Carrion supplementation led to an increase in predator abundance and IGP. IGP was asymmetric within the predator guild: assassin bugs and spiders preyed on small stilt bugs but not vice versa. Despite increased IGP, carrion provisions decreased the abundance of the two most common herbivores (a weevil and a mealybug). Overall seed set was driven by plant size, but number of seeds produced per fruit significantly increased with increasing carrion, likely because of the reduction in the density of a seed‐feeding weevil. Observationally and experimentally, we found that carrion‐mediated indirect defense of tarweeds led to much intraguild predation, though predators effectively reduced herbivore abundance despite the increase in IGP.  相似文献   

8.
Larvae of some species of mosquitoes have been shown to respond to water‐borne kairomones from predators by reducing bottom‐feeding and replacing it with surface filter‐feeding, which uses less movement and is thus less likely to attract a predator. However, if no predator attack takes place, then it would be more efficient to use a risk allocation strategy of habituating their response depending on the predator and the overall risk. The larvae of Culiseta longiareolata Macquart live in temporary rain‐filled pools, where they are exposed to a high level of predation. Within one hour, they responded to kairomones from dragonfly or damselfly nymphs, or to the fish Aphanius, by significantly reducing bottom‐feeding activity. Continued exposure to the predator kairomones resulted in habituation of their response to damselflies, a slower habituation to fish, but no habituation to dragonflies even after 30 h. In contrast, the larvae of Culex quinquefasciatus Say normally live in highly polluted and thus anaerobic water, where the predation risk will be much lower. They also showed a significant reduction in bottom‐feeding after 1 h of exposure to predator kairomones but had completely habituated this response within 6 h of continuous exposure. Some species of mosquito larvae can thus show a very rapid habituation to predator kairomones, while others only habituate slowly depending on the predator and overall predation risk.  相似文献   

9.
1. Although theory suggests that intraguild predation destabilises food webs and may result in exclusion of species, empirical observations of food webs reveal that it is a common interaction. It has been proposed that habitat structure reduces the interaction strength of intraguild predation, thus facilitating the coexistence of species. 2. This was tested using acarodomatia, tiny structures on plant leaves, and predatory mites, which usually reside in these domatia. Sweet pepper plants (Capsicum annuum L.) were used, which possess domatia consisting of tufts of hair, and coffee plants (Coffea arabica L.) with pit‐shaped domatia. 3. On sweet pepper, the predatory mites Neoseiulus cucumeris Oudemans and Iphiseius degenerans Berl. feed on each other's juveniles. Larvae of each of the species were therefore used as intraguild prey with adult females of the other species as intraguild predators. On coffee, a similar set‐up was used, with larvae and adult females of Amblyseius herbicolus Chant and Iphiseiodes zuluagai Denmark & Muma as intraguild prey and intraguild predators, respectively. 4. Domatia on detached, isolated sweet pepper and coffee leaves were either closed with glue or left open, after which larvae and adult predators were released. As a control, larvae were released on leaves with open or closed domatia without an adult predator. 5. Survival of larvae was high in the absence of the adult (intraguild) predator. In the presence of the intraguild predator, survival was significantly higher on leaves with open domatia than on leaves with closed domatia. 6. This shows that even such tiny structures as plant domatia may significantly affect the interaction strength of intraguild predation.  相似文献   

10.
1. The feeding methods and intensity of predation by larvae of the damselfly Erythromma najas on leaf‐mining larvae of the chironomid Glyptotendipes gripekoveni were examined in artificial habitats differing in complexity. The experiments assessed the influence of chemical stimuli from the predator, light and the concentration of suspended food on the feeding activity of G. gripekoveni inside and outside of the mine.
2.  Erythromma najas preyed upon G. gripekoveni as the latter grazed outside mines. The intensity of this predation decreased significantly at night in a habitat offering alternative prey.
3. When the food concentration for the chironomid was high, it significantly reduced both filtering activity and activity outside mines in response to the kairomone produced by E. najas . Feeding activity did not change when food was scarce.
4. The induced reduction in filter‐feeding and deposit‐feeding activity probably reduced predator success by reducing the probability of long‐distance detection of a mine and location of the chironomid's hole.
5. The predator can detect and catch mining prey in either the light (visually) or dark (mechanically). This may explain the lack of diel periodicity in the chemically induced differences in prey activity.
6. Reduced feeding activity of mining larvae in the chemically simulated presence of a larval damselfly can be explained as an induced antipredator behaviour, illustrating the trade‐off between feeding demands and predation risk in a poorly known link of the littoral foodweb.  相似文献   

11.
Animal species differ considerably in their response to predation risks. Interspecific variability in prey behaviour and morphology can alter cascading effects of predators on ecosystem structure and functioning. We tested whether species‐specific morphological defenses may affect responses of leaf litter consuming invertebrate prey to sit‐and‐wait predators, the odonate Cordulegaster boltonii larvae, in aquatic food webs. Partly or completely blocking the predator mouthparts (mandibles and/or extensible labium), thus eliminating consumptive (i.e. lethal) predator effects, we created a gradient of predator‐prey interaction intensities (no predator < predator – no attack < predator – non‐lethal attacks < lethal predator). A field experiment was first used to assess both consumptive and non‐consumptive predator effects on leaf litter decomposition and prey abundances. Laboratory microcosms were then used to examine behavioural responses of armored and non‐armored prey to predation risk and their consequences on litter decomposition. Results show that armored and non‐armored prey responded to both acute (predator – non‐lethal attacks) and chronic (predator – no attack) predation risks. Acute predation risk had stronger effects on litter decomposition, prey feeding rate and prey habitat use than predator presence alone (chronic predation risk). Predator presence induced a reduction in feeding activity (i.e. resource consumption) of both prey types but a shift to predator‐free habitat patches in non‐armored detritivores only. Non‐consumptive predator effects on prey subsequently decreased litter decomposition rate. Species‐specific prey morphological defenses and behaviour should thus be considered when studying non‐consumptive predator effects on prey community structure and ecosystem functioning.  相似文献   

12.
Finke DL  Denno RF 《Oecologia》2006,149(2):265-275
The ability of predators to elicit a trophic cascade with positive impacts on primary productivity may depend on the complexity of the habitat where the players interact. In structurally-simple habitats, trophic interactions among predators, such as intraguild predation, can diminish the cascading effects of a predator community on herbivore suppression and plant biomass. However, complex habitats may provide a spatial refuge for predators from intraguild predation, enhance the collective ability of multiple predator species to limit herbivore populations, and thus increase the overall strength of a trophic cascade on plant productivity. Using the community of terrestrial arthropods inhabiting Atlantic coastal salt marshes, this study examined the impact of predation by an assemblage of predators containing Pardosa wolf spiders, Grammonota web-building spiders, and Tytthus mirid bugs on herbivore populations (Prokelisia planthoppers) and on the biomass of Spartina cordgrass in simple (thatch-free) and complex (thatch-rich) vegetation. We found that complex-structured habitats enhanced planthopper suppression by the predator assemblage because habitats with thatch provided a refuge for predators from intraguild predation including cannibalism. The ultimate result of reduced antagonistic interactions among predator species and increased prey suppression was enhanced conductance of predator effects through the food web to positively impact primary producers. Behavioral observations in the laboratory confirmed that intraguild predation occurred in the simple, thatch-free habitat, and that the encounter and capture rates of intraguild prey by intraguild predators was diminished in the presence of thatch. On the other hand, there was no effect of thatch on the encounter and capture rates of herbivores by predators. The differential impact of thatch on the susceptibility of intraguild and herbivorous prey resulted in enhanced top-down effects in the thatch-rich habitat. Therefore, changes in habitat complexity can enhance trophic cascades by predator communities and positively impact productivity by moderating negative interactions among predators.  相似文献   

13.
14.
Trophic cascades may purportedly be more common in aquatic than terrestrial food webs, but herbivory on freshwater vascular plants has historically been considered low. Water lilies are an exception, suffering severe grazing damage by leaf beetles. To test whether a central prediction of cascade models—that predator effects propagate downwards to plants—operates in a macrophyte-based food web, we experimentally manipulated predation pressure on a key herbivore of water lilies in the littoral zone of a lake in Michigan, USA. Field experiments comprised combinations of caging treatments to alter the number of predators (larvae of the ladybird beetle Coleomegilla maculata) that hunt the grazers of the macrophytes (larvae of the leaf beetles Galerucella nymphaeae) on the leaves of the water lily Nuphar advena. Predatory larvae of the ladybird beetles significantly reduced grazing damage to water-lily leaves by 35–43%. The predators reduced plant damage chiefly via density-mediated effects, when lower densities of grazers translated to significant declines in plant damage. Plant damage caused by the surviving herbivores was less than predicted from individual grazing rates under predator-free conditions. This suggests that trait-mediated effects may possibly also operate in this cascade. The observed strong effect of predators on a non-adjacent trophic level concurs with an essential component of the trophic cascade model, and the cascade occurred at the ecotone between aquatic and terrestrial habitats: Nuphar is an aquatic macrophyte with emergent and floating leaves, whereas both beetle species are semi-terrestrial and use the dry, emergent and floating leaves of the water lily as habitat. Also, the cascade is underpinned by freshwater macrophytes—a group for which trophic processes have often been underappreciated in the past.  相似文献   

15.
Differential herbivory and/or differential plant resistance or tolerance in sun and shade environments may influence plant distribution along the light gradient. Embothrium coccineum is one of the few light-demanding tree species in the temperate rainforest of southern South America, and seedlings are frequently attacked by insects and snails. Herbivory may contribute to the exclusion of E. coccineum from the shade if 1) herbivory pressure is greater in the shade, which in turn can result from shade plants being less resistant or from habitat preferences of herbivores, and/or 2) consequences of damage are more detrimental in the shade, i.e., shade plants are less tolerant. We tested this in a field study with naturally established seedlings in treefall gaps (sun) and forest understory (shade) in a temperate rainforest of southern Chile. Seedlings growing in the sun sustained nearly 40% more herbivore damage and displayed half of the specific leaf area than those growing in the shade. A palatability test showed that a generalist snail consumed ten times more leaf area when fed on shade leaves compared to sun leaves, i.e., plant resistance was greater in sun-grown seedlings. Herbivore abundance (total biomass) was two-fold greater in treefall gaps compared to the forest understory. Undamaged seedlings survived better and showed a slightly higher growth rate in the sun. Whereas simulated herbivory in the shade decreased seedling survival and growth by 34% and 19%, respectively, damaged and undamaged seedlings showed similar survival and growth in the sun. Leaf tissue lost to herbivores in the shade appears to be too expensive to replace under the limiting light conditions of forest understory. Following evaluations of herbivore abundance and plant resistance and tolerance in contrasting light environments, we have shown how herbivory on a light-demanding tree species may contribute to its exclusion from shade sites. Thus, in the shaded forest understory, where the seedlings of some tree species are close to their physiological tolerance limit, herbivory could play an important role in plant establishment.  相似文献   

16.
Social prey species respond to predation risk by modifying habitat selection and grouping behaviour. These responses may depend on both actual predation risk (predator probability of occurrence) and/or on perceived predation risk associated with habitat structure. Other factors like food availability and co-occurrence with other species may also affect habitat selection and group formation. We analyse habitat selection and grouping behaviour (group size and cohesion) of lesser rhea (Rhea pennata subsp. pennata), a ratite endemic of South America inhabiting steppe shrublands and grasslands, in relation to actual (puma probability of occurrence) and perceived (habitat structure: openness, visibility) predation risk, co-occurrence with other herbivore species and forage availability in the Chilean Patagonia. We used data from 9 sampling seasons in 5 years. Results show that habitat selection, group size and cohesion in lesser rhea were mainly driven by variables associated with perceived predation risk and by co-occurrence with other herbivores both during breeding and non–breeding season. As expected, lesser rhea preferred open habitats (vegas and grasslands) that allow a behaviour of ‘watch and run’ to avoid predation and formed larger groups in them. Moreover, lesser rhea positively selected year-round habitats where livestock occur, forming large groups during non–breeding season there. Group size and co-occurrence with other herbivores significantly decreased group cohesion, suggesting a reduction of perceived predation risk. Therefore, lesser rhea seems to take advantage of forming mixed interspecific groups to reduce predation risk. These results suggest that lesser rhea habitat selection and grouping behaviour are preferentially driven by factors related to perceived predation risk than by actual predator occurrence or food availability.  相似文献   

17.
Prey modify their behaviour to avoid predation, but dilemmas arise when predators vary in hunting style. Behaviours that successfully evade one predator sometimes facilitate exposure to another predator, forcing the prey to choose the lesser of two evils. In such cases, we need to quantify behavioural strategies in a mix of predators. We model optimal behaviour of Atlantic cod Gadus morhua larvae in a water column, and find the minimal vulnerability from three common predator groups with different hunting modes; 1) ambush predators that sit‐and‐wait for approaching fish larvae; 2) cruising invertebrates that eat larvae in their path; and 3) fish which are visually hunting predators. We use a state‐dependent model to find optimal behaviours (vertical position and swimming speed over a diel light cycle) under any given exposure to the three distinct modes of predation. We then vary abundance of each predator and quantify direct and indirect effects of predation. The nature and strength of direct and indirect effects varied with predator type and abundance. Larvae escaped about half the mortality from fish by swimming deeper to avoid light, but their activity level and cumulative predation from ambush predators increased. When ambush invertebrates dominated, it was optimal to be less active but in more lit habitats, and predation from fish increased. Against cruising predators, there was no remedy. In all cases, the shift in behaviour allowed growth to remain almost the same, while total predation were cut by one third. In early life stages with high and size‐dependent mortality rates, growth rate can be a poor measure of the importance of behavioural strategies.  相似文献   

18.
We quantified predation pressure on first instar nymphs of a stick insect in predator‐exclusion experiments in the forest of Barro Colorado Island, Panamá. After considering intrinsic mortality (19%) and potential emigration (negligible), we estimated that 54 percent of the nymphs died due to predation in a two‐week period. Predation on nymphs was highest at night and may explain the low abundance of Metriophasma diodes in the understory.  相似文献   

19.
Norman Owen‐Smith 《Oikos》2015,124(11):1417-1426
Simple models coupling the dynamics of single predators to single prey populations tend to generate oscillatory dynamics of both predator and prey, or extirpation of the prey followed by that of the predator. In reality, such oscillatory dynamics may be counteracted by prey refugia or by opportunities for prey switching by the predator in multi‐prey assemblages. How these mechanisms operate depends on relative prey vulnerability, a factor ignored in simple interactive models. I outline how compositional, temporal, demographic and spatial heterogeneities help explain the contrasting effects of top predators on large herbivore abundance and population dynamics in species‐rich African savanna ecosystems compared with less species‐diverse northern temperate or subarctic ecosystems. Demographically, mortality inflicted by predation depends on the relative size and life history stage of the prey. Because all animals eventually die and are consumed by various carnivores, the additive component of the mortality inflicted is somewhat less than the predation rate. Prey vulnerability varies annually and seasonally, and between day and night. Spatial variation in the risk of predation depends on vegetation cover as well as on the availability of food resources. During times of food shortage, herbivores become prompted to occupy more risky habitats retaining more food. Predator concentrations dependent on the abundance of primary prey species may restrict the occurrence of other potential prey species less resistant to predation. The presence of multiple herbivore species of similar size in African savannas allows the top predator, the lion, to shift its prey selection flexibly dependent on changing prey vulnerability. Hence top–down and bottom–up influences on herbivore populations are intrinsically entangled. Models coupling the population dynamics of predators and prey need to accommodate the changing influences of prey demography, temporal variation in environmental conditions, and spatial variation in the relative vulnerability of alternative prey species to predation. Synthesis While re‐established predators have had major impacts on prey populations in northern temperate regions, multiple large herbivore species typically coexist along with diverse carnivores in African savanna ecosystems. In order to explain these contrasting outcomes, certain functional heterogeneities must be recognised, including relative vulnerability of alternative prey, temporal variation in the risk of predation, demographic differences in susceptibility to predation, and spatial contrasts in exposure to predation. Food shortfalls prompt herbivores to exploit more risky habitats, meaning that top–down and bottom–up influences on prey populations are intrinsically entangled. Models coupling the interactive dynamics of predator and prey populations need to incorporate these varying influences on relative prey vulnerability.  相似文献   

20.
Although there is growing evidence that silicon (Si)‐based plant defenses effectively reduce both the palatability and digestibility of leaves, and thus impact nutrient assimilation by insect herbivores, much less is known about how this is affected by extrinsic and intrinsic factors. For example, do herbivores exhibit compensatory feeding on poor‐quality diets with Si or are Si defenses less effective in agroecosystems where high N availability increases plant quality? To investigate the interactive effects of N and Si on insect feeding, we conducted insect performance and compensatory feeding bioassays using maize, Zea mays L. (Poaceae), and the true armyworm, Pseudeletia unipuncta Haworth (Lepidoptera: Noctuidae). In the performance assay, the addition of Si alone resulted in increased larval mortality compared with the controls, likely because early instars with poorly developed mandibles could not feed effectively. However, larvae fed on plants treated with both Si and N survived better than on plants treated with Si only, although pupal mass did not differ between treatments. In our compensatory assay, Si addition reduced maize consumption, but increased both armyworm approximate digestibility and N assimilation efficiency, suggesting that enhanced post‐ingestion feeding physiology, rather than compensatory food intake, could have accounted for the lack of Si effects on pupal weight. Overall, our results demonstrate that, similar to other chemical and mechanical defenses, the effectiveness of plant Si defense is influenced by plant nutrient status and consumer compensatory ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号