首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Honey bee [Apis mellifera L. (Hymenoptera: Apidae)] genetic diversity may be the key to responding to novel health challenges faced by this important pollinator. In this study, we first compared colonies of four honey bee races, A. m. anatoliaca, A. mcarnica, A. m. caucasica, and A. msyriaca from Turkey, with respect to honey storage, bee population size, and defenses against varroa. The mite Varroa destructor Anderson & Trueman (Acari: Varroidae) is an important pest of honey bee colonies. There are genetic correlates with two main defenses of bees against this parasite: hygienic behavior, or removing infested brood, and grooming, which involves shaking and swiping off mites and biting them. In the second part of this study, we examined the relationship of these two types of defenses, hygiene and grooming, and their correlation with infestation rates in 32 genetically diverse colonies in a ‘common garden’ apiary. Mite biting was found to be negatively correlated with mite infestation levels.  相似文献   

2.
Queen honeybees of Apis mellifera ligustica and Apis mellifera syriaca were raised to investigate physiological and reproductive characteristics and to determine the most suitable time for queen rearing under semi‐arid conditions in Jordan. The queen rearing season as well as the origin of the queens affected the queens’ weight, acceptance, preoviposition period, volume of the spermatheca, and quantity and quality of sperm in the spermatheca. Italian bees were heavier than Syrian bees at emergence. The introduced queen acceptance rate appeared to be a genetic influence of the queen: A. m. ligustica virgin queens were accepted at a higher rate than were A. m. syriaca queens. There were large seasonal variations in the acceptance rate. Experimental bee colonies accepted their virgin queens during spring with good honey flows at a higher rate compared to the other rearing periods. The greatest mating success was achieved in May and the smallest was during July and August. The preoviposition period was shorter in the Syrian than in the Italian queens, and was longer during summer for both honeybee subspecies. The volume of the spermatheca was smaller in Syrian bees and the spermatheca had lower numbers of spermatozoa compared with Italian bees. Thus, under semi‐arid Mediterranean region conditions, it is highly recommended to raise virgin queens in the spring months only to obtain their highest quality.  相似文献   

3.
Apis mellifera syriaca exhibits a high degree of tolerance to pests and pathogens including varroa mites. This native honey bee subspecies of Jordan expresses behavioral adaptations to high temperature and dry seasons typical of the region. However, persistent honey bee imports of commercial breeder lines are endangering local honey bee population. This study reports the use of next‐generation sequencing (NGS) technology to study the A. m. syriaca genome and to identify genetic factors possibly contributing toward mite resistance and other favorable traits. We obtained a total of 46.2 million raw reads by applying the NGS to sequence A. m. syriaca and used extensive bioinformatics approach to identify several candidate genes for Varroa mite resistance, behavioral and immune responses characteristic for these bees. As a part of characterizing the functional regulation of molecular genetic pathway, we have mapped the pathway genes potentially involved using information from Drosophila melanogaster and present possible functional changes implicated in responses to Varroa destructor mite infestation toward this. We performed in‐depth functional annotation methods to identify ~600 candidates that are relevant, genes involved in pathways such as microbial recognition and phagocytosis, peptidoglycan recognition protein family, Gram negative binding protein family, phagocytosis receptors, serpins, Toll signaling pathway, Imd pathway, Tnf, JAK‐STAT and MAPK pathway, heamatopioesis and cellular response pathways, antiviral, RNAi pathway, stress factors, etc. were selected. Finally, we have cataloged function‐specific polymorphisms between A. mellifera and A. m. syriaca that could give better understanding of varroa mite resistance mechanisms and assist in breeding. We have identified immune related embryonic development (Cactus, Relish, dorsal, Ank2, baz), Varroa hygiene (NorpA2, Zasp, LanA, gasp, impl3) and Varroa resistance (Pug, pcmt, elk, elf3‐s10, Dscam2, Dhc64C, gro, futsch) functional variations genes between A. mellifera and A. m. syriaca that could be used to develop an effective molecular tool for bee conservation and breeding programs to improve locally adapted strains such as syriaca and utilize their advantageous traits for the benefit of apiculture industry.  相似文献   

4.
Varroa mite is the most destructive pest to bee colonies worldwide. In Saudi Arabia, preliminary data indicated high infestation levels in the exotic honeybee colonies; such as Apis mellifera carnica and Apis mellifera ligustica, compared to native honeybee subspecies Apis mellifera jemenitica, which may imply higher tolerance to Varroasis. In this study, fertility and reproductive rate of Varroa mite, Varroa destructor, in capped brood cells of the native honeybee subspecies were investigated and compared with an exotic honeybee subspecies, A. m. carnica. Mite fertility was almost alike (87.5% and 89.4%) in the native and craniolan colonies respectively. Similarly, results did not show significant differences in reproduction rate between both subspecies (F = 0.66, Pr > F = 0.42). Number of adult Varroa daughters per fertile mother mite was 2.0 and 2.1 for native and craniolan honeybee subspecies respectively. This may indicate that mechanisms of keeping low infestation rates in the native honeybee colonies are not associated with Varroa reproduction. Therefore, potential factors of keeping lower Varroa infestation rates in native honey bee subspecies should be further investigated.  相似文献   

5.
Carniolan honey bees (Apis mellifera carnica) are considered as an indigenous subspecies in Hungary adapted to most of the ecological and climatic conditions in this area. However, during the last decades Hungarian beekeepers have recognized morphological signs of the Italian honey bee (Apis mellifera ligustica). As the natural distribution of the honey bee subspecies can be affected by the importation of honey bee queens or by natural gene flow, we aimed at determining the genetic structure and characteristics of the local honey bee population using molecular markers. All together, 48 Hungarian and 84 foreign (Italian, Polish, Spanish, Liberian) pupae and/or workers were used for mitochondrial DNA analysis. Additionally, 53 sequences corresponding to 10 subspecies and the Buckfast hybrid were downloaded from GenBank. For the nuclear analysis, 236 Hungarian and 106 foreign honey bees were genotyped using nine microsatellites. Heterozygosity values, population‐specific alleles, FST values, principal coordinate analysis, assignment tests, structure analysis, and dendrograms were calculated. Haplotype and nucleotide diversity values showed moderate values. We found that one haplotype (H9) was dominant in Hungary. The presence of the black honey bee (Apis mellifera mellifera) was negligible, but a few individuals resembling other subspecies were identified. We proved that the Hungarian honey bee population is nearly homogeneous but also demonstrated introgression from the foreign subspecies. Both mitochondrial DNA and microsatellite analyses corroborated the observations of the beekeepers. Molecular analyses suggested that Carniolan honey bee in Hungary is slightly affected by Italian and black honey bee introgression. Genetic differences were detected between Polish and Hungarian Carniolan honey bee populations, suggesting the existence of at least two different gene pools within A. m. carnica.  相似文献   

6.
Heat stress elicits the expression of heat shock proteins (HSPs) in honey bee subspecies. These highly conserved proteins have significant role in protecting cells from thermal-induced stresses. Honey bees in subtropical regions face extremely dry and hot environment. The expression of HSPs in the nurses and foragers of indigenous (Apis mellifera jemenitica) and imported European (Apis mellifera ligustica and Apis mellifera carnica) honey bee subspecies after heat shock treatment were compared using SDS-PAGE. Hsp70 and Hsp82 were equally expressed in the nurses of all tested bee subspecies when exposed to 40 °C and 45 °C for 4 h. The forager bees exhibited differential expression of HSPs after heat stress. No HSPs was expressed in the foragers of A. m. jemenitica, and Hsp70 was expressed only in the foragers of A. m. ligustica and A. m. carnica at 40 °C. A prominent diversity in HSPs expression was also exhibited in the foragers at 45 °C with one HSP (Hsp70) in A. m. jemenitica, two HSPs (Hsp40 and Hsp70) in A. m. carnica, and three HSPs (Hsp40, Hsp60 and Hsp70) in A. m. ligustica. No HSPs was expressed in the control nurse and forager bees at any of the tested temperatures. These findings illustrated the differences in HSP expression among nurse and forager bees. It is obvious that the native foragers are more heat tolerant with least HSPs expression than exotic bee races. Further investigations will help to understand the potential role of HSPs in the adaptability, survival, and performance of bee subspecies in harsh climate of the subtropical regions.  相似文献   

7.
We present a new measure of morphological asymmetry that avoids most of the statistical problems inherent in character-by-character analysis of size or shape. The method is an application of Procrustes analysis, which computes best-fitting super-positions of configurations of landmarks to the left and right sides of a single specimen. The Procrustes method combines subtle deviations in all aspects of the landmark configuration into one net asymmetry score. Directional asymmetry is separated from fluctuating asymmetry in a simple partition of a net sum-of-squares, and geometrical details of either component can be inspected by traditional methods of multivariate statistical analysis of landmarks. We demonstrate this method in a comparison of wing venation asymmetry in male (haploid) and female (diploid) honey bees (Apis mellifera). In addition we investigate the effects of ploidy and inter-subspecies hybridization on asymmetry and wing venation abnormalities, using the subspecies A. m. mellifera, A. m. carnica, and the hybrid strain “Nigra”. Results suggest that while the haploid males showed a higher frequency of wing venation abnormalities and greater total asymmetry than the diploid females, most of the asymmetry difference between males and females was in the form of directional, not fluctuating, asymmetry. Hybrid females had a higher frequency of wing venation abnormalities than females of either subspecies, but there were no significant differences in the mean level of asymmetry among females of A. m. mellifera, A. m. carnica and hybrid Nigra. Hybrid males had higher absolute frequency of wing venation abnormalities and asymmetry than males of either subspecies. However the mean frequency of venation abnormalities did not differ significantly between Nigra and A. m. carnica males, and mean asymmetries were not significantly different between Nigra and A. m. mellifera males. We discuss the relationship which is assumed to exist between developmental stability and fluctuating asymmetry in light of our result.  相似文献   

8.
De la Rúa et al. (2013) express some concerns about the conclusions of our recent study showing that management increases genetic diversity of honey bees (Apis mellifera) by promoting admixture (Harpur et al. 2012). We provide a brief review of the literature on the population genetics of A. mellifera and show that we utilized appropriate sampling methods to estimate genetic diversity in the focal populations. Our finding of higher genetic diversity in two managed A. mellifera populations on two different continents is expected to be the norm given the large number of studies documenting admixture in honey bees. Our study focused on elucidating how management affects genetic diversity in honey bees, not on how to best manage bee colonies. We do not endorse the intentional admixture of honey bee populations, and we agree with De la Rúa et al. (2013) that native honey bee subspecies should be conserved.  相似文献   

9.
Honey bee venom toxins trigger immunological, physiological, and neurological responses within victims. The high occurrence of bee attacks involving potentially fatal toxic and allergic reactions in humans and the prospect of developing novel pharmaceuticals make honey bee venom an attractive target for proteomic studies. Using label‐free quantification, we compared the proteome and phosphoproteome of the venom of Africanized honeybees with that of two European subspecies, namely Apis mellifera ligustica and A. m. carnica. From the total of 51 proteins, 42 were common to all three subspecies. Remarkably, the toxins melittin and icarapin were phosphorylated. In all venoms, icarapin was phosphorylated at the 205Ser residue, which is located in close proximity to its known antigenic site. Melittin, the major toxin of honeybee venoms, was phosphorylated in all venoms at the 10Thr and 18Ser residues. 18Ser phosphorylated melittin—the major of its two phosphorylated forms—was less toxic compared to the native peptide.  相似文献   

10.
A highly polymorphic locus in the honey bee, Apis mellifera L., was detected with genomic probe pB178. Eighty-five alleles, consisting of Msp I and Dde I RFLPs, were found among the Old and New World bees tested. Forty-one Msp I and 43 Dde I restriction fragment patterns, or variants, were identified. Variants and alleles were discontinuously distributed in Old World European and African subspecies. Principal coordinate analysis of the genetic distances between the alleles resulted in the identification of three distinct groups corresponding to three groups of honey bee races with historically different geographical distributions: east European A. m. ligustica and A. m. caucasica ; west European A. m. mellifera ; and South African A. m. scutellata . The clustering of alleles into these groups is consistent with previous honey bee phylogeographic studies, employing other nuclear and mitochondrial DNA markers, which in part support the evolutionary history of the honey bee hypothesized by Ruttner based on morphometric and allozyme data. The majority of alleles in bees from the USA grouped with those found in east European bees, while other alleles grouped with alleles found in A. m. mellifera . While the majority of the alleles in neotropical bees grouped with or were identical to African alleles, other alleles grouped with alleles found in A. m. mellifera, A. m. ligustica , and A. m. caucasica . Clues to the ancestry of neotropical bees may be found in the identification of alleles that were identical or more similar to alleles found in South African and west European bees; evidence for west European ancestry has been suggested using other taxonomic characters that were not unique to west European bees. Both west European and African alleles were found in individual neotropical colonies, which may indicate that honey bee subspecies which evolved allopatrically have hybridized in the human-assisted extension of their original geographical ranges.  相似文献   

11.
12.
The present study analyzes the fatty acid (FA) profile of lipids isolated from Varroa destructor Anderson & Trueman, a parasitic mite of the honey bee (Apis mellifera L.), uninfected and infected worker prepupae of the Carnolian subspecies Apis mellifera carnica Pollmann, and bee bread fed to the worker brood. Significant differences are observed in the FA profiles of lipids isolated from parasites, hosts and bee bread. Parasitism by V. destructor (henceforth, varroosis) induces visible changes in the lipid profile of worker prepupae. In infected prepupae, the percentage of total saturated FAs is lower and the percentage of unsaturated FAs is higher than in uninfected insects. These differences result from significant changes in the percentages of FAs that are most abundant in the evaluated groups (i.e. C16:0, C18:1 9c, C18:2n‐6 and C18:3n‐3 FAs). In mites and in uninfected and infected prepupae, the predominant FAs are oleic acid (41.07 ± 2.26%, 42.79 ± 1.21% and 45 ± 0.20%, respectively) and palmitic acid (22.62 ± 0.87%, 39.48 ± 0.43% and 36.84 ± 0.22%, respectively). Highly significant differences in FA composition are noted between bee bread and worker brood. The results suggest specific mechanisms of FA uptake, accumulation and metabolism in the food chain of this parasitic association, beginning from the food processed by nurse bees for larval feeding, through host organisms (worker brood) to V. destructor mites.  相似文献   

13.
Honey bee societies (Apis mellifera), the ectoparasitic mite Varroa destructor, and honey bee viruses that are vectored by the mite, form a complex system of host-parasite interactions. Coevolution by natural selection in this system has been hindered for European honey bee hosts since apicultural practices remove the mite and consequently the selective pressures required for such a process. An increasing mite population means increasing transmission opportunities for viruses that can quickly develop into severe infections, killing a bee colony. Remarkably, a few subpopulations in Europe have survived mite infestation for extended periods of over 10 years without management by beekeepers and offer the possibility to study their natural host-parasite coevolution. Our study shows that two of these "natural" honey bee populations, in Avignon, France and Gotland, Sweden, have in fact evolved resistant traits that reduce the fitness of the mite (measured as the reproductive success), thereby reducing the parasitic load within the colony to evade the development of overt viral infections. Mite reproductive success was reduced by about 30% in both populations. Detailed examinations of mite reproductive parameters suggest these geographically and genetically distinct populations favor different mechanisms of resistance, even though they have experienced similar selection pressures of mite infestation. Compared to unrelated control colonies in the same location, mites in the Avignon population had high levels of infertility while in Gotland there was a higher proportions of mites that delayed initiation of egg-laying. Possible explanations for the observed rapid coevolution are discussed.  相似文献   

14.
Honey bee males and queens mate in mid air and can fly many kilometres on their nuptial flights. The conservation of native honey bees, such as the European black bee (Apis mellifera mellifera), therefore, requires large isolated areas to prevent hybridisation with other subspecies, such as A. m. ligustica or A. m. carnica, which may have been introduced by beekeepers. This study used DNA microsatellite markers to determine the mating range of A. m. mellifera in two adjacent semi-isolated valleys (Edale and Hope Valley) in the Peak District National Park, England, in order to assess their suitability for native honey bee conservation and as isolated mating locations. Three apiaries were set up in each valley, each containing 12 colonies headed by a virgin queen and 2 queenright drone producing hives. The virgin queens were allowed to mate naturally with drones from the hives we had set up and with drones from hives owned by local beekeepers. After mating, samples of worker larvae were taken from the 41 queens that mated successfully and genotyped at 11 DNA microsatellite loci. Paternity analyses were then carried out to determine mating distances and isolation. An average of 10.2 fathers were detected among the 16 worker progeny. After correction for non-detection and non-sampling errors, the mean effective mating frequency of the test queens was estimated to be 17.2, which is a normal figure for honey bees. Ninety percent of the matings occurred within a distance of 7.5 km, and fifty percent within 2.5 km. The maximal mating distance recorded was 15 km. Queens and drones did occasionally mate across the borders between the two valleys, showing that the dividing mountain ridge Losehill does not provide complete isolation. Nevertheless, in the most isolated part of Edale sixty percent of all matings were to drones from Edale hives. The large majority of observed mating distances fell within the range of Hope Valley, making this site a suitable location for the long term conservation of a breeding population of black bees.  相似文献   

15.
This study was conducted at the apiary of the Agricultural and Veterinary Training and Research Station of King Faisal University in the Al-Ahsa oasis of eastern Saudi Arabia. We performed a comparison between Carniolan (Apis mellifera carnica Pollmann) and Yemeni (Apis mellifera jemenitica Ruttner) honeybee races to determine the monthly fluctuations in foraging activity, pollen collection, colony growth and honey yield production under the environmental conditions of the Al-Ahsa oasis of eastern Saudi Arabia. We found three peaks in the flight activity of the two races, and the largest peaks occurred during September and October. Compared to Carniolan bee colonies, the performance of Yemeni bee colonies was superior in terms of stored pollen, worker and drone brood rearing, and the adult population size. The Carniolan bee colonies produced 27.77% and 27.50% more honey than the Yemeni bee colonies during the flow seasons of alfalfa and sidir, respectively, with an average increase of 27.64%. It could be concluded that the race of bees is an important factor affecting the activity and productivity of honeybee colonies. The Yemeni bee race produced more pollen, a larger brood and more bees, which exhibited a longer survival. The imported Carniolan bees can be reared in eastern Saudi Arabia, but the Yemeni bee race is still better.  相似文献   

16.
Both climatic and geographical factors play an important role for the biogeographical distribution of species. The Carpathian mountain ridge has been suggested as a natural geographical divide between the two honeybee subspecies Apis mellifera carnica and A. m. macedonica. We sampled one worker from one colony each at 138 traditional apiaries located across the Carpathians spanning from the Hungarian plains to the Danube delta. All samples were sequenced at the mitochondrial tRNALeu‐cox2 intergenic region and genotyped at twelve microsatellite loci. The Carpathians had only limited impact on the biogeography because both subspecies were abundant on either side of the mountain ridge. In contrast, subspecies differentiation strongly correlated with the various temperature zones in Romania. A. m. carnica is more abundant in regions with the mean average temperature below 9 °C, whereas A. m. macedonica honeybees are more frequent in regions with mean temperatures above 9 °C. This range selection may have impact on the future biogeography in the light of anticipated global climatic changes.  相似文献   

17.
We quantified the effects of increasing small hive beetle (Aethina tumida Murray) populations on guarding behavior of Cape honey bees (Apis mellifera capensis, an African subspecies). We found more confinement sites (prisons) at the higher (50 beetles per colony) rather than lower (25 beetles per colony) beetle density. The number of beetles per prison did not change with beetle density. There were more guard bees per beetle during evening than morning. Neither guard bee nor beetle behavior varied with beetle density or over time. Forty-six percent of all beetles were found among the combs at the low beetle density and this increased to 58% at the higher one. In neither instance were beetles causing depredation to host colonies. Within the limits of the experiment, guarding behavior of Cape honey bees is relatively unaffected by increasing beetle density (even if significant proportions of beetles reach the combs).  相似文献   

18.
Foraging behavior of Apis mellifera caucasica, A.m. carnica and A.m. syriaca in Turkey was studied for intrinsic subspecies-based differences. Models of forager flower-color fidelity, risk sensitive behavior and maximizing net gain were tested. Foragers were presented artificial flower patches containing blue, white and yellow flowers. Some bees of each subspecies showed high fidelity to yellow flowers, while others favored blue and white flowers. The degree of fidelity, however, differed among subspecies and was dependent upon which color was favored. Bees of all subspecies demonstrated risk indifferent behavior regardless of whether they favored yellow flowers or blue and white flowers. Flower handling time differed among subspecies and increased with reward quantity, and when a reward was present. Flight time between consecutive flowers also differed among honey bee subspecies. Foragers of all subspecies had a higher net gain when visiting flowers with consistent rewards.  相似文献   

19.
The infection of honey bees, Apis mellifera L. (Hymenoptera: Apidae), by the microsporidian Nosema ceranae is one of the factors related to the increase in colony losses and the decrease in honey production observed in recent years. However, these effects seem to differ depending on the climate zone. The range and prevalence of N. ceranae have increased significantly in the last decades, with different consequences in northern and southern temperate areas. The existence of various isolates of N. ceranae from distant geographical areas, which probably exhibit different degrees of virulence, could explain the different responses of the bee to the infection. The aim of this work was to compare the effects of two N. ceranae isolates from different host populations from Argentina on honey bee survival at two ages post-eclosion. Using cage experiments, we compared the development of infection of worker bees through the estimation of daily bee mortality and spore counts. Host subspecies identity analysis showed a strong similarity with Apis mellifera scutellata morphotype for the northern region, with a greater hybridization between subspecies with European origin toward the central and southern regions. Genetic characterization of isolates from the three regions indicated only the presence of N. ceranae. Infected bees survived longer than control bees, and bees infected at 5 days had a lower survival than those infected at 72 h with isolates from the three regions. These differences in survival matched the development of the N. ceranae infection, with differences in spore loads for infected bees at 5 days. Our studies showed that Nosema infection and survival varied among the different ages post emergence of workers, and both increased as the honey bee aged. These differences in susceptibility to infection could be related to the immune response of bees of different ages or to changes in the composition and succession of the intestinal microbiota throughout its ontogeny.  相似文献   

20.
This study was conducted in the Assir region of southwestern Saudi Arabia to compare the activities of honeybee colonies of indigenous Apis mellifera jemenitica (AMJ) and imported Apis mellifera carnica (AMC) during the late summer and autumn of 2009 and 2010. The results showed that the workers of the two races exhibited relatively similar forage timings throughout the period of study (August–November). The highest numbers of foraged workers were recorded at 6:00 am, 10:00 am and 6:00 pm, while the lowest numbers were recorded at 8:00 am, 12:00 pm and 4:00 pm. Although foraging activity was negatively affected by decreased temperature, AMJ was more resistant to cold than AMC. In the first season, the smallest amount of worker brood rearing was recorded in August, and the highest amount of rearing occurred in November in both races. In the second season, the smallest amount of brood was observed in October, and the largest amount of brood was observed in November. Brood rearing and pollen collecting was significantly (P < 0.05) higher in AMJ compared with AMC, while AMC stored significantly (P < 0.05) more honey than AMJ during the tested periods. In AMJ colonies, a positive significant correlation was observed between the area of the sealed worker brood and stored pollen, while a negative but nonsignificant correlation was observed between the area of the sealed worker brood and surplus honey. In the AMC colonies, a positive significant correlation was observed between the area of the sealed brood and the stored pollen and surplus honey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号