首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A decreased fermentation rate due to inhibition is a significant problem for economic conversion of acid-pretreated lignocellulose hydrolysates to ethanol, since the inhibition gives rise to a requirement for separate detoxification steps. Together with acetic acid, the sugar degradation products furfural and 5-hydroxymethyl furfural are the inhibiting compounds found at the highest concentrations in hydrolysates. These aldehydes have been shown to affect both the specific growth rate and the rate of fermentation by yeast. Two strains of Saccharomyces cerevisiae with different abilities to ferment inhibiting hydrolysates were evaluated in fermentations of a dilute acid hydrolysate from spruce, and the reducing activities for furfural and 5-hydroxymethyl furfural were determined. Crude cell extracts of a hydrolysate-tolerant strain (TMB3000) converted both furfural and 5-hydroxymethyl furfural to the corresponding alcohol at a rate that was severalfold higher than the rate observed for cell extracts of a less tolerant strain (CBS 8066), thereby confirming that there is a correlation between the fermentation rate in a lignocellulosic hydrolysate and the bioconversion capacity of a strain. The in vitro NADH-dependent furfural reduction capacity of TMB3000 was three times higher than that of CBS 8066 (1,200 mU/mg protein and 370 mU/mg protein, respectively) in fed-batch experiments. Furthermore, the inhibitor-tolerant strain TMB3000 displayed a previously unknown NADH-dependent reducing activity for 5-hydroxymethyl furfural (400 mU/mg protein during fed-batch fermentation of hydrolysates). No corresponding activity was found in strain CBS 8066 (<2 mU/mg). The ability to reduce 5-hydroxymethyl furfural is an important characteristic for the development of yeast strains with increased tolerance to lignocellulosic hydrolysates.  相似文献   

2.
A decreased fermentation rate due to inhibition is a significant problem for economic conversion of acid-pretreated lignocellulose hydrolysates to ethanol, since the inhibition gives rise to a requirement for separate detoxification steps. Together with acetic acid, the sugar degradation products furfural and 5-hydroxymethyl furfural are the inhibiting compounds found at the highest concentrations in hydrolysates. These aldehydes have been shown to affect both the specific growth rate and the rate of fermentation by yeast. Two strains of Saccharomyces cerevisiae with different abilities to ferment inhibiting hydrolysates were evaluated in fermentations of a dilute acid hydrolysate from spruce, and the reducing activities for furfural and 5-hydroxymethyl furfural were determined. Crude cell extracts of a hydrolysate-tolerant strain (TMB3000) converted both furfural and 5-hydroxymethyl furfural to the corresponding alcohol at a rate that was severalfold higher than the rate observed for cell extracts of a less tolerant strain (CBS 8066), thereby confirming that there is a correlation between the fermentation rate in a lignocellulosic hydrolysate and the bioconversion capacity of a strain. The in vitro NADH-dependent furfural reduction capacity of TMB3000 was three times higher than that of CBS 8066 (1,200 mU/mg protein and 370 mU/mg protein, respectively) in fed-batch experiments. Furthermore, the inhibitor-tolerant strain TMB3000 displayed a previously unknown NADH-dependent reducing activity for 5-hydroxymethyl furfural (400 mU/mg protein during fed-batch fermentation of hydrolysates). No corresponding activity was found in strain CBS 8066 (<2 mU/mg). The ability to reduce 5-hydroxymethyl furfural is an important characteristic for the development of yeast strains with increased tolerance to lignocellulosic hydrolysates.  相似文献   

3.
Lignocellulosic biomass has considerable potential for the production of fuels and chemicals as a promising alternative to conventional fossil fuels. However, the bioconversion of lignocellulosic biomass to desired products must be improved to reach economic viability. One of the main technical hurdles is the presence of inhibitors in biomass hydrolysates, which hampers the bioconversion efficiency by biorefinery microbial platforms such as Saccharomyces cerevisiae in terms of both production yields and rates. In particular, acetic acid, a major inhibitor derived from lignocellulosic biomass, severely restrains the performance of engineered xylose‐utilizing S. cerevisiae strains, resulting in decreased cell growth, xylose utilization rate, and product yield. In this study, the robustness of XUSE, one of the best xylose‐utilizing strains, was improved for the efficient conversion of lignocellulosic biomass into bioethanol under the inhibitory condition of acetic acid stress. Through adaptive laboratory evolution, we successfully developed the evolved strain XUSAE57, which efficiently converted xylose to ethanol with high yields of 0.43–0.50 g ethanol/g xylose even under 2–5 g/L of acetic stress. XUSAE57 not only achieved twofold higher ethanol yields but also improved the xylose utilization rate by more than twofold compared to those of XUSE in the presence of 4 g/L of acetic acid. During fermentation of lignocellulosic hydrolysate, XUSAE57 simultaneously converted glucose and xylose with the highest ethanol yield reported to date (0.49 g ethanol/g sugars). This study demonstrates that the bioconversion of lignocellulosic biomass by an engineered strain could be significantly improved through adaptive laboratory evolution for acetate tolerance, which could help realize the development of an economically feasible lignocellulosic biorefinery to produce fuels and chemicals.  相似文献   

4.
To develop a suitable Saccharomyces cerevisiae industrial strain as a chassis cell for ethanol production using lignocellulosic materials, 32 wild-type strains were evaluated for their glucose fermenting ability, their tolerance to the stresses they might encounter in lignocellulosic hydrolysate fermentation and their genetic background for pentose metabolism. The strain BSIF, isolated from tropical fruit in Thailand, was selected out of the distinctly different strains studied for its promising characteristics. The maximal specific growth rate of BSIF was as high as 0.65 h−1 in yeast extract peptone dextrose medium, and the ethanol yield was 0.45 g g−1 consumed glucose. Furthermore, compared with other strains, this strain exhibited superior tolerance to high temperature, hyperosmotic stress and oxidative stress; better growth performance in lignocellulosic hydrolysate; and better xylose utilization capacity when an initial xylose metabolic pathway was introduced. All of these results indicate that this strain is an excellent chassis strain for lignocellulosic ethanol production.  相似文献   

5.
Adaptation of a xylose-utilizing genetically engineered strain of Saccharomyces cerevisiae to sugarcane bagasse hydrolysates by cultivation during 353h using medium with increasing concentrations of inhibitors, including phenolic compounds, furaldehydes and aliphatic acids, led to improved performance with respect to ethanol production. The remaining xylose concentration in the medium at the end of the cultivation was 5.2g l(-1), while it was 11gl(-1) in the feed, indicating that approximately half of the xylose was consumed. The performance of the adapted strain was compared with the parental strain with respect to its ability to ferment three bagasse hydrolysates with different inhibitor concentration. The ethanol yield after 24h of fermentation of the bagasse hydrolysate with lowest inhibitor concentration increased from 0.18gg(-1) of total sugar with the non-adapted strain to 0.38gg(-1) with the adapted strain. The specific ethanol productivity increased from 1.15g ethanol per g initial biomass per h with the non-adapted strain to 2.55gg(-1) h(-1) with the adapted strain. The adapted strain performed better than the non-adapted also in the two bagasse hydrolysates containing higher concentrations of inhibitors. The adapted strain converted the inhibitory furaldehydes 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) at a faster rate than the non-adapted strain. The xylose-utilizing ability of the yeast strain did not seem to be affected by the adaptation and the results suggest that ethanol rather than xylitol was formed from the consumed xylose.  相似文献   

6.
Development of xylose-fermenting yeast strains that are tolerant to the inhibitors present in lignocellulosic hydrolysates is crucial to achieve efficient bioethanol production processes. In this study, the importance of the propagation strategy for obtaining robust cells was studied. Addition of hydrolysate during propagation of the cells adapted them to the inhibitors, resulting in more tolerant cells with shorter lag phases and higher specific growth rates in minimal medium containing acetic acid and vanillin than unadapted cells. Addition of hydrolysate during propagation also resulted in cells with better fermentation capabilities. Cells propagated without hydrolysate were unable to consume xylose in wheat straw hydrolysate fermentations, whereas 40.3% and 97.7% of the xylose was consumed when 12% and 23% (v/v) hydrolysate, respectively, was added during propagation. Quantitative polymerase chain reaction revealed changes in gene expression, depending on the concentration of hydrolysate added during propagation. This study highlights the importance of using an appropriate propagation strategy for the optimum performance of yeast in fermentation of lignocellulosic hydrolysates.  相似文献   

7.
《PloS one》2014,9(9)
The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH.  相似文献   

8.
乙酸是木质纤维素类生物质水解液中的常见毒性抑制物,选育乙酸耐受性好的酿酒酵母菌株,有利于高效利用木质纤维素类生物质,发酵生产生物燃料和生物基化学品。目前对酿酒酵母抗逆性的研究多集中在转录水平,但对转运RNA (Transfer RNA,tRNA) 在耐受性中的作用研究较少。在对酿酒酵母抗逆性研究过程中发现,一些转运RNA基因在耐受性好的酿酒酵母菌株中转录明显上调。本文深入分析了精氨酸tRNA基因tR(ACG)D和亮氨酸tRNA基因tL(CAA)K过表达对酿酒酵母耐受木质纤维素水解液的影响。结果表明,在4.2 g/L乙酸胁迫条件下进行乙醇发酵时,过表达tL(CAA)K的菌株生长和发酵性能均优于对照酵母菌株,乙醇生产强度比对照菌株提高了29.41%,但过表达tR(ACG)D基因的菌株生长和代谢能力较对照菌株明显降低,体现了不同tRNA的不同调控作用。进一步分析发现,过表达tL(CAA)K的重组酵母菌株乙酸耐受性调控相关基因HAA1、MSN2和MSN4等胁迫耐受性相关转录因子编码基因的转录水平上调。本文的研究为选育高效利用木质纤维素资源进行生物炼制的酵母菌株提供了新的改造策略,也为进一步揭示酿酒酵母tRNA基因表达调控对抗逆性的影响提供了基础。  相似文献   

9.
能高效代谢木质纤维素水解液中的可发酵糖、同时可耐受/分解发酵抑制剂的菌种, 是利用木质纤维素为原料生产燃料乙醇技术的关键。基因组改组技术是近些年发展起来的一项新型育种技术, 该技术已运用于食品和医药行业菌种的改良。本文综述了基因组改组技术的原理、方法、特点、及其运用, 并对其在木质纤维素水解液乙醇发酵菌种选育方面的应用进行了展望。  相似文献   

10.
A major challenge associated with the fermentation of lignocellulose-derived hydrolysates is improved ethanol production in the presence of fermentation inhibitors, such as acetic and formic acids. Enhancement of transaldolase (TAL) and formate dehydrogenase (FDH) activities through metabolic engineering successfully conferred resistance to weak acids in a recombinant xylose-fermenting Saccharomyces cerevisiae strain. Moreover, hybridization of the metabolically engineered yeast strain improved ethanol production from xylose in the presence of both 30 mM acetate and 20 mM formate. Batch fermentation of lignocellulosic hydrolysate containing a mixture of glucose, fructose and xylose as carbon sources, as well as the fermentation inhibitors, acetate and formate, was performed for five cycles without any loss of fermentation capacity. Long-term stability of ethanol production in the fermentation phase was not only attributed to the coexpression of TAL and FDH genes, but also the hybridization of haploid strains.  相似文献   

11.
Metabolic profiling was carried out to investigate the interactive effects of three representative inhibitors (furfural, phenol, and acetic acid) in lignocellulosic hydrolysate on Saccharomyces cerevisiae during ethanol fermentation. Our results revealed that three inhibitors exhibited significantly synergistic effects on the growth, fermentation, and some metabolites of yeast. Acetic acid exerted the most severe effects on yeast in the combination of three inhibitors, enhancing amino acids metabolism and inhibiting central carbon metabolism. The effects on yeast cells by acetic acid were enhanced by the presence of phenol and furfural, which might be owing to the loss of membrane integrity and the inhibition on metabolism. Further investigation indicated that the combination of inhibitors also exhibited antagonistic effects mainly on threonine, cadaverine, inositol, and tryptophan, weakening or reversing the effects of individual inhibitor. It might be due to the more severe damage by the combined inhibitors, and different repairing mechanism of cells in the presence of individual and combined inhibitors. Better understanding of the synergistic and antagonistic effects of the inhibitors will be helpful for the improvement of tolerant strains and the optimization of lignocellulosic fermentation.  相似文献   

12.
In general, it is believed that fermentation by yeast under harsh industrial conditions, especially if substrates such as wood hydrolysate or lignocellulosic substrates are used, requires the use of so-called industrial strains. In order to check whether this is always true, a comparison of performance was made using two industrial strains and four commonly used laboratory strains, the haploid and diploid versions of CEN-PK and X2180, under industrially relevant stress conditions. The industrial strains were a Swedish commercial baker’s yeast strain and a strain previously isolated from an industrial bioethanol production plant using lignocellulosic substrate. Stress conditions included, apart from growth in the lignocellulosic substrate itself, elevated concentrations of glucose, NaCl, ethanol, and lactate as well as low pH. Results showed that, indeed, the strain adapted to lignocellulosic substrate also possessed the highest growth rate as well as shortest duration of the lag phase in this type of medium. However, the higher the additional stress level, the lower the difference compared to other strains, and X2180 in particular displayed a high resistance to these additional stress conditions. Furthermore, no difference in performance could be detected between the haploid or diploid versions of the laboratory strains. It might be that, at least under some circumstances, a laboratory strain such as X2180 could be an industrially attractive production organism with the advantage of facilitating the possibilities for making controlled genetic manipulations.  相似文献   

13.
The fermentation of lignocellulose-derived sugars, particularly xylose, into ethanol by the yeast Saccharomyces cerevisiae is known to be inhibited by compounds produced during feedstock pretreatment. We devised a strategy that combined chemical profiling of pretreated feedstocks, high-throughput phenotyping of genetically diverse S. cerevisiae strains isolated from a range of ecological niches, and directed engineering and evolution against identified inhibitors to produce strains with improved fermentation properties. We identified and quantified for the first time the major inhibitory compounds in alkaline hydrogen peroxide (AHP)-pretreated lignocellulosic hydrolysates, including Na+, acetate, and p-coumaric (pCA) and ferulic (FA) acids. By phenotyping these yeast strains for their abilities to grow in the presence of these AHP inhibitors, one heterozygous diploid strain tolerant to all four inhibitors was selected, engineered for xylose metabolism, and then allowed to evolve on xylose with increasing amounts of pCA and FA. After only 149 generations, one evolved isolate, GLBRCY87, exhibited faster xylose uptake rates in both laboratory media and AHP switchgrass hydrolysate than its ancestral GLBRCY73 strain and completely converted 115 g/liter of total sugars in undetoxified AHP hydrolysate into more than 40 g/liter ethanol. Strikingly, genome sequencing revealed that during the evolution from GLBRCY73, the GLBRCY87 strain acquired the conversion of heterozygous to homozygous alleles in chromosome VII and amplification of chromosome XIV. Our approach highlights that simultaneous selection on xylose and pCA or FA with a wild S. cerevisiae strain containing inherent tolerance to AHP pretreatment inhibitors has potential for rapid evolution of robust properties in lignocellulosic biofuel production.  相似文献   

14.
Yu X  Zheng Y  Dorgan KM  Chen S 《Bioresource technology》2011,102(10):6134-6140
This paper explores the use of the hydrolysate from the dilute sulfuric acid pretreatment of wheat straw for microbial oil production. The resulting hydrolysate was composed of pentoses (24.3 g/L) and hexoses (4.9 g/L), along with some other degradation products, such as acetic acid, furfural, and hydroxymethylfurfural (HMF). Five oleaginous yeast strains, Cryptococcus curvatus, Rhodotorula glutinis, Rhodosporidium toruloides, Lipomyces starkeyi, and Yarrowia lipolytica, were evaluated by using this hydrolysate as substrates. The results showed that all of these strains could use the detoxified hydrolysate to produce lipids while except R. toruloides non-detoxified hydrolysate could also be used for the growth of all of the selective yeast strains. C. curvatus showed the highest lipid concentrations in medium on both the detoxified (4.2 g/L) and non-detoxified (5.8 g/L) hydrolysates. And the inhibitory effect studies on C. curvatus indicated HMF had insignificant impacts at a concentration of up to 3 g/L while furfural inhibited cell growth and lipid content by 72.0% and 62.0% at 1 g/L, respectively. Our work demonstrates that lipid production is a promising alternative to utilize hemicellulosic sugars obtained during pretreatment of lignocellulosic materials.  相似文献   

15.
Optimal production of lignocellulosic bioethanol is hindered due to commonly faced issues with the presence of inhibitory compounds and sequentially consumed sugars in the lignocellulosic hydrolysate. Therefore, in order to find a robust fermentation approach, this study aimed at enhancing simultaneous co-assimilation of sugars, and inhibitor tolerance and detoxification. Therefore, fermentation of toxic wheat straw hydrolysate containing up to 20 g/l furfural, using the concentration-driven diffusion-based technique of reverse membrane bioreactor (rMBR) was studied. The rMBR fermentation of the hydrolysate led to complete furfural detoxification and the conversion of 87 % of sugars into ethanol at a yield of 0.48 g/g. Moreover, when the toxicity level of the hydrolysate was increased to 9 g/l of initial furfural, the system responded exceptionally by reducing 89 % of the inhibitor while only experiencing about 25 % drop in the ethanol yield. In addition, using this diffusion-based set-up in extremely inhibitory conditions (16 g/l furfural), cells could detoxify 40 % of the furfural at a high initial furfural to cell ratio of 9.5:1. The rMBR set-up applied proved that by properly synchronizing the medium condition, membrane area, and inhibitor to cell ratio, some of the shortcomings with conventional lignocellulosic fermentation can be tackled, guaranteeing a robust fermentation.  相似文献   

16.
Conversion of lignocellulosic hydrolysates to lipids using oleaginous (high lipid) yeasts requires alignment of the hydrolysate composition with the characteristics of the yeast strain, including ability to utilize certain nutrients, ability to grow independently of costly nutrients such as vitamins, and ability to tolerate inhibitors. Some combination of these characteristics may be present in wild strains. In this study, 48 oleaginous yeast strains belonging to 45 species were tested for ability to utilize carbon sources associated with lignocellulosic hydrolysates, tolerate inhibitors, and grow in medium without supplemented vitamins. Some well-studied oleaginous yeast species, as well as some that have not been frequently utilized in research or industrial production, emerged as promising candidates for industrial use due to ability to utilize many carbon sources, including Cryptococcus aureus, Cryptococcus laurentii, Hannaella aff. zeae, Tremella encephala, and Trichosporon coremiiforme. Other species excelled in inhibitor tolerance, including Candida aff. tropicalis, Cyberlindnera jadinii, Metschnikowia pulcherrima, Schwanniomyces occidentalis and Wickerhamomyces ciferrii. No yeast tested could utilize all carbon sources and tolerate all inhibitors tested. These results indicate that yeast strains should be selected based on characteristics compatible with the composition of the targeted hydrolysate. Other factors to consider include the production of valuable co-products such as carotenoids, availability of genetic tools, biosafety level, and flocculation of the yeast strain. The data generated in this study will aid in aligning yeasts with compatible hydrolysates for conversion of carbohydrates to lipids to be used for biofuels and other oleochemicals.  相似文献   

17.
Development of cell factories for conversion of lignocellulosic biomass hydrolysates into biofuels or bio-based chemicals faces major challenges, including the presence of inhibitory chemicals derived from biomass hydrolysis or pretreatment. Extensive screening of 2526 Saccharomyces cerevisiae strains and 17 non-conventional yeast species identified a Candida glabrata strain as the most 5-hydroxymethylfurfural (HMF) tolerant. Whole-genome (WG) transformation of the second-generation industrial S. cerevisiae strain MD4 with genomic DNA from C. glabrata, but not from non-tolerant strains, allowed selection of stable transformants in the presence of HMF. Transformant GVM0 showed the highest HMF tolerance for growth on plates and in small-scale fermentations. Comparison of the WG sequence of MD4 and GVM1, a diploid segregant of GVM0 with similarly high HMF tolerance, surprisingly revealed only nine non-synonymous SNPs, of which none were present in the C. glabrata genome. Reciprocal hemizygosity analysis in diploid strain GVM1 revealed AST2N406I as the only causative mutation. This novel SNP improved tolerance to HMF, furfural and other inhibitors, when introduced in different yeast genetic backgrounds and both in synthetic media and lignocellulose hydrolysates. It stimulated disappearance of HMF and furfural from the medium and enhanced in vitro furfural NADH-dependent reducing activity. The corresponding mutation present in AST1 (i.e. AST1D405I) the paralog gene of AST2, also improved inhibitor tolerance but only in combination with AST2N406I and in presence of high inhibitor concentrations. Our work provides a powerful genetic tool to improve yeast inhibitor tolerance in lignocellulosic biomass hydrolysates and other inhibitor-rich industrial media, and it has revealed for the first time a clear function for Ast2 and Ast1 in inhibitor tolerance.  相似文献   

18.
Yeast strains Y1, Y4 and Y7 demonstrated high conversion efficiencies for sugars and high abilities to tolerate or metabolize inhibitors in dilute-acid lignocellulosic hydrolysates. Strains Y1 and Y4 completely consumed the glucose within 24 h in dilute-acid lignocellulosic hydrolysate during in situ detoxification, and the maximum ethanol yields reached 0.49 g and 0.45 g ethanol/g glucose, equivalent to maximum theoretical values of 96% and 88.2%, respectively. Strain Y1 could metabolize xylose to xylitol with a yield of 0.64 g/g xylose, whereas Y4 was unable to utilize xylose as a substrate. Strain Y7 was able to consume sugars (glucose and xylose) within 72 h during hydrolysate in situ detoxification, producing a high ethanol yield (equivalent to 93.6% of the maximum theoretical value). Y1 and Y7 are the most efficient yeast strains yet reported for producing ethanol from non-detoxified dilute-acid lignocellulosic hydrolysates. These findings offer huge potential for improving the economics of bio-ethanol production from lignocellulosic hydrolysates.  相似文献   

19.
Lignocellulose hydrolysate is an abundant substrate for bioethanol production. The ideal microorganism for such a fermentation process should combine rapid and efficient conversion of the available carbon sources to ethanol with high tolerance to ethanol and to inhibitory components in the hydrolysate. A particular biological problem are the pentoses, which are not naturally metabolized by the main industrial ethanol producer Saccharomyces cerevisiae. Several recombinant, mutated, and evolved xylose fermenting S. cerevisiae strains have been developed recently. We compare here the fermentation performance and robustness of eight recombinant strains and two evolved populations on glucose/xylose mixtures in defined and lignocellulose hydrolysate-containing medium. Generally, the polyploid industrial strains depleted xylose faster and were more resistant to the hydrolysate than the laboratory strains. The industrial strains accumulated, however, up to 30% more xylitol and therefore produced less ethanol than the haploid strains. The three most attractive strains were the mutated and selected, extremely rapid xylose consumer TMB3400, the evolved C5 strain with the highest achieved ethanol titer, and the engineered industrial F12 strain with by far the highest robustness to the lignocellulosic hydrolysate.  相似文献   

20.
能够耐受纤维素预处理中抑制剂的酿酒酵母对高效、经济生产纤维素乙醇至关重要。利用诱变结合驯化工程选育了一株可耐受复合抑制剂(1.3g/L糠醛、5.3g/L乙酸及1.0g/L苯酚)的工业酿酒酵母YYJ003。在pH 4.0的含有抑制剂的培养基中,耐受菌株乙醇产率是原始菌株的7.8倍,糠醛转化速率提高了5倍。在pH 5.5的复合抑制剂条件下,YYJ003发酵时间(16h)比野生菌株发酵时间(22h)缩短6h。在pH 4.0的未脱毒的玉米秸秆水热法预处理水解液中YYJ003的乙醇产率达到0.50g/g(乙醇/葡萄糖),乙醇产速达到4.16g/(L·h),而对照菌株无乙醇产出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号