首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid method for hemoglobin chain recombination which gives a homogeneous product was developed. The method utilizes a small carboxymethylcellulose column as a medium for chain recombination and concentration of the hemoglobin. Equimolar amounts of p-hydroxymercuribenzoate derivatives of α- and β-chains were mixed with 300× molar excess of β-mercaptoethanol over the p-hydroxy mercuribenzoate groups. After 10 min of incubation in an ice bath, the mixture was adjusted to pH 5.85, and was loaded on a carboxymethylcellulose column. The column was washed with 10 mm phosphate buffer-1 mm Na2EDTA-47 mm β-mercaptoethanol, pH 5.85 and then with 10 mm phosphate buffer, pH 5.85. The hemoglobin was eluted from the column by use of 15 mm K2HPO4. The hemoglobin was homogeneous on polyacrylamide gel electrophoresis and had a visible spectrum, electrophoretic mobility, and number of -SH groups comparable to those shown by control hemoglobin.  相似文献   

2.
The α- and β-subunits of chick embryo brain tubulin have been isolated under denaturing conditions and compared with respect to their molecular weight, amino acid composition, tryptic peptide maps, amide content and isoelectric focusing properties. An 8 M-Urea-containing polyacrylamide gel system with varying acrylamide concentrations was used for calculation of the retardation coefficients (KR) of the tubulin subunits. A molecular weight of 53,000 was estimated for each subunit by comparison to KR values for standard proteins. Amide contents of approx 41% of the carboxyl groups of α-tubulin and 48% of the carboxyl groups of β-tubulin were calculated using the average PI value, the pKintrinsic for the ionizable side chains of the amino acids and the amino acid composition of each subunit. Comparative peptide maps of trypsin digested α- and β-tubulin demonstrated 16 peptides unique to each subunit and 23 peptides which comigrate. Both subunits give rise to multiple species on electrofocusing gels. The average isoelectric points for the α- and β-subunits are 5.4 and 5.2, respectively.  相似文献   

3.
The primary structure of Rose-ringed Parakeet hemoglobin β-chain was established, completing the analysis of this hemoglobin. Comparisons with other avian β-chains show variations smaller than those for the corresponding α-chains. There are 11 amino acid exchanges in relationship to the only other characterized psittaciform β-chain, and a total of 35 positions are affected by differences among all avian β-chains analyzed (versus 61 for the α-chains). At three positions, the Psittacula β-chain has residues unique to this species. Three α1β1 contacts are modified, by substitutions at positions β51, β116, and β125.  相似文献   

4.
Limited proteolysis of the α- and β-chains and deep cleavage of the αβ-subunits by the cooperative (one-by-one) mechanism was observed in the course of papain hydrolysis of cucurbitin, an 11S storage globulin from seeds of the pumpkin Cucurbita maxima. An independent analysis of the kinetics of the limited and cooperative proteolyses revealed that the reaction occurs in two successive steps. In the first step, limited proteolysis consisting of detachments of short terminal pep-tides from the α- and β-chains was observed. The cooperative proteolysis, which occurs as a pseudo-first order reaction, started at the second step. Therefore, the limited proteolysis at the first step plays a regulatory role, impacting the rate of deep degradation of cucurbitin molecules by the cooperative mechanism. Structural alterations of cucurbitin induced by limited proteolysis are suggested to generate its susceptibility to cooperative proteolysis. These alterations are tentatively discussed on the basis of the tertiary structure of the cucurbitin subunit pdb|2EVX in comparison with previously obtained data on features of degradation of soybean 11S globulin hydrolyzed by papain.  相似文献   

5.
The orientation of amino groups in the membrane in the α- and β-subunits of (Na+ + K+)-ATPase was examined by labeling with Boldon-Hunter reagent, N-succinimidyl 3-(4-hydroxy,5-[125I]iodophenyl)propionate), in right-side-out vesicles or in open membrane fragments from the thick ascending limbs of the Henles loop of pig kidney. Sealed right-side-out vesicles of basolateral membranes were separated from open membrane fragments by centrifugation in a linear metrizamide density gradient. After labeling, (Na+ + K+)-ATPase was purified using a micro-scale version of the ATP-SDS procedure. Distribution of label was analyzed after SDS-gel electrophoresis of α-subunit, β-subunit and proteolytic fragments of α-subunit. Both the α- and the β-subunit of (Na+ + K+)-ATPase are uniformly labeled, but the distribution of labeled residues on the two membrane surfaces differs markedly. All the labeled residues in the β-subunit are located on the extracellular surface. In the α-subunit, 65–80% of modified groups are localized to the cytoplasmic surface and 20–35% to the extracellular membrane surface. Proteolytic cleavage provides evidence for the random distribution of 125I-labeling within the α-subunit. The preservation of (Na+ + K+)-ATPase activity and the observation of distinct proteolytic cleavage patterns of the E1- and E2-forms of the α-subunit show that the native enzyme structure is unaffected by labeling with Bolton-Hunter reagent. Bolton-Hunter reagent was shown not to permeate into sheep erythrocytes under the conditions of the labeling experiment. The data therefore allow the conclusion that the mass distribution is asymmetric, with all the labeled amino groups in the β-subunit being on the extracellular surface, while the α-subunit exposes 2.6-fold more amino groups on the cytoplasmic than on the extracellular surface.  相似文献   

6.
The tryptic peptides from α- and β-chains of coyote (Canis latrans) hemoglobin have been isolated and their amino acid compositions determined. The compositions are identical to those previously found for dog hemoglobin in all respects except one: the αT-13 peptide of coyote has only threonine at residue 130 of the chain. This indicates only one α-chain in coyote instead of two as in dog, which has one α-chain with threonine and one α-chain with alanine at this position. The α-chain from wolf (Canis lupus) is like that from coyote in having only threonine at residue 130.  相似文献   

7.
The interaction between myosin and actin in striated muscle tissue is regulated by Ca2+ via thin filament regulatory proteins. Skeletal muscle possesses a whole pattern of myosin and tropomyosin isoforms. The regulatory effect of tropomyosin on actin-myosin interaction was investigated by measuring the sliding velocity of both actin and actin-tropomyosin filaments over fast and slow skeletal myosins using the in vitro motility assay. The actin-tropomyosin filaments were reconstructed with tropomyosin isoforms from striated muscle tissue. It was found that tropomyosins with different content of α-, β-, and γ-chains added to actin filaments affect the sliding velocity of filaments in different ways. On the other hand, the sliding velocity of filaments with the same content of α-, β-, and Γ-chains depends on myosin isoforms of striated muscle. The reciprocal effects of myosin and tropomyosin on actin-myosin interaction in striated muscle may play a significant role in maintenance of effective work of striated muscle both during ontogenesis and under pathological conditions.  相似文献   

8.
The KI values for inhibition of thermolysin activity by N-β-phenylpropionyl-aliphatic amino acids (Gly, Ala, Val, Leu, Ile) are correlated by π, the hydrophobic substituent parameter for the amino acid side chain (log KI = ?0.73π ?1.80, correlation coefficient = 0.990). By contrast, the KI values for the corresponding benzyloxycarbonyl amino acids are poorly correlated by π, but show a good correlation with the steric parameter Es(log KI = 0.880Es ? 3.086, correlation coefficient = 0.985). Binding of β-phenylpropionyl-l-alanine is associated with an acidic residue of pK 7.3 and a basic residue of pK 8.0 in the E · I complex, and appears to raise the pK of Glu-143 by 2 units. Binding of benzyloxycarbonyl-Ala and -Phe is associated with an acidic residue of pK 8.0 and two basic residues, both with pK 8.3. Three similar pK values are observed with benzyloxycarbonyl-Phe. These results are interpreted in terms of different modes of binding of β-phenylpropionyl and benzyloxycarbonyl inhibitors.  相似文献   

9.
The rates of the trinitrophenylation of the amino groups of ribonuclease A (RNAse) with the specific reagent trinitrobenzene sulfonic acid have been studied at 27°C, between pH 7.0 and 9.9. From the variation of the velocity constants with pH it has been shown that the reaction is biphasic in the sense that for each amino group two pKs have been found: one (pK = 7.3–7.52) in the range of pH between 7.0 and 8.3 and the other (pK = 9.28–9.69) in the pH range 8.5–9.9. It is pointed out that when the experimental conditions approached one another, there was agreement between the pK values obtained from titrimetric and kinetic studies. Evidence is presented from the literature concerning the validity of the pK value near 7.5 for the ε-amino groups in RNAse. The studies were repeated with performic acid oxidized RNAse and the 10 ε-amino groups were found to be monophasic with pK values between 8.01 and 8.10. The α-amino group of the N-terminal lysine was biphasic with a pK of 7.26 (pH range 7–8) and 8.13 (pH range 8.2–9.5).  相似文献   

10.
Syntheses of p-aminophenyl 1-thio-α-L- and β-L-fucopyranosides are described. 1,2,3,4-Tetra-O-acetyl-α-L-fucopyranose, on heating with p-nitrothiophenol in the presence of p-toluenesulfonic acid under diminished pressure, gave a mixture of p-nitrophenyl 2,3,4-tri-O-acetyl-1-thio-α- and β-L-fucopyranosides, which was separated by chromatography on silica gel. When the reaction was carried out in the presence of zinc chloride at atmospheric pressure, the β-anomer was the exclusive product. Deacetylation of the aryl α-L- and α-L-thiofucopyranosides with sodium methoxide, followed by catalytic hydrogenation in the presence of palladium on barium sulfate, afforded the respective aminophenyl 1-thiofucopyranosides. The aryl thiofucopyranosides thus synthesized were tested for their inhibitory activity toward clam α-L-fucosidase. The p-aminophenyl 1-thio α-L-fucopyranoside showed a competitive-type inhibition, with a Ki of 0.71mM.  相似文献   

11.
An aryl β-hexosidase was purified 800-fold from bovine liver. The purified enzyme hydrolyzed p-nitrophenyl glycosylpyranoside derivatives of β-d-galactose, β-d-glucose, β-d-xylose, β-d-mannose, and α-l-arabinose, but did not hydrolyze several other p-nitrophenyl glycosides. The enzyme also catalyzed hydrolysis of a variety of plant arylglucosides. Disaccharides, polysaccharides, glycolipids, glycoproteins, and glycosaminoglycans containing terminal nonreducing β-d-galactopyranosyl or β-d-glucopyranosyl residues were not hydrolyzed. The pH optima for the several substrates tested ranged from 7.0 to 9.5. The purified enzyme was homogeneous by disc gel electrophoresis and had a molecular weight of 41,000 by Sephadex gel filtration and 46,000 by disc gel electrophoresis performed in the presence of sodium dodecyl sulfate. The enzyme readily transferred glycosyl residues from susceptible β-galactosides or β-glucosides to other sugars; the resulting products were not hydrolyzed by the enzyme. Methyl α-d-glucopyranoside was the most efficient carbohydrate acceptor compound tested. The enzyme exhibited a Km for p-nitrophenyl β-d-galactopyranoside of 1.78 × 10?3m and for p-nitrophenyl β-d-glucopyranoside, 2.50 × 10?3m when incubations were conducted in the presence of 0.15 m methyl α-d-glucopyranoside. Aryl β-hexosidase was found in the cytosol of all mammalian livers tested, but could not be detected in liver of birds, reptiles, or fish; low levels were detected in frog liver. Analysis of bovine extracts indicated that the enzyme occurred in liver, kidney, and intestinal mucosa; it was not detected in testis, spleen, serum, or muscle.  相似文献   

12.
Fatty acids, alkyl amines, and amides of α-amino fatty acids inhibit human liver alanine aminopeptidase apparently by binding to residue binding site 1 of the active center, i.e., the N-terminal binding site. The pKi values of the acids, amines, and amides increase until the overall chain length reaches eight carbons. The pKi values are the same for members of the series with chain lengths longer than eight carbon atoms. Assuming an extended structure of the inhibitors, this site will accommodate amino acid side chains of not longer than 11.7 Å from the α-carbon to the end of the chain. Long chain amino acids inhibit by binding apparently at residue site 3. The pKi values of dl-α-amino acids from α-aminobutyric acid to α-aminodecanoic acid increase with the addition of each methylene unit. Thus, site 3 will accommodate amino acid side chains which are at least 13.0 Å from the α-carbon to the end of the chain. Methanol and other organic solvents reversibly inhibit the binding of substrates at pH 6.9 without affecting the maximum rate of catalysis. At lower pH values, the maximum rate of catalysis is lowered. Sodium chloride also inhibits substrate hydrolysis at pH 6.9 but does not affect the maximum rate of catalysis. The pKi values of fatty acids, alkyl amines, and amino acids are strongly decreased by methanol and slightly increased by sodium chloride. These data indicate that a major portion of the interactions of the enzyme with fatty acids, amines, and amino acids is of a hydrophobic nature.  相似文献   

13.
β-d-Mannosidase (β-d-mannoside mannohydrolase EC 3.2.1.25) was purified 160-fold from crude gut-solution of Helix pomatia by three chromatographic steps and then gave a single protein band (mol. wt. 94,000) on SDS-gel electrophoresis, and three protein bands (of almost identical isoelectric points) on thin-layer iso-electric focusing. Each of these protein bands had enzyme activity. The specific activity of the purified enzyme on p-nitrophenyl β-d-mannopyranoside was 1694 nkat/mg at 40° and it was devoid of α-d-mannosidase, β-d-galactosidase, 2-acet-amido-2-deoxy-d-glucosidase, (1→4)-β-d-mannanase, and (1→4)-β-d-glucanase activities, almost devoid of α-d-galactosidase activity, and contaminated with <0.02% of β-d-glucosidase activity. The purified enzyme had the same Km for borohydride-reduced β-d-manno-oligosaccharides of d.p. 3–5 (12.5mm). The initial rate of hydrolysis of (1→4)-linked β-d-manno-oligosaccharides of d.p. 2–5 and of reduced β-d-manno-oligosaccharides of d.p. 3–5 was the same, and o-nitrophenyl, methylumbelliferyl, and naphthyl β-d-mannopyranosides were readily hydrolysed. β-d-Mannobiose was hydrolysed at a rate ~25 times that of 61-α-d-galactosyl-β-d-mannobiose and 63-α-d-galactosyl-β-d-mannotetraose, and at ~90 times the rate for β-d-mannobi-itol.  相似文献   

14.
Decarboxylation of about twenty kinds of α, β and γ-amino acids in the reaction with glyoxal or ninhydrin was investigated. The decarboxylation rate of amino acids proved that steric and polar effects had important roles in the reaction.

From the data of pK2 values and decarboxylation rates of amino acids, it can be concluded that under a similar steric environment, the decarboxylation rate depends on the anion concentration of amino acids.

Besides carbon dioxide, acetaldehyde, 2-propanone and propionaldehyde were respectively detected from the reaction of β-alanine, β and γ-amino-n-butyric acids with glyoxal or ninhydrin. The decarboxylation mechanism of these amino acids seemed to take place through the corresponding β- or γ-keto acid.

Oxygen absorption was also observed from the reaction of amino acids with dicarbonyl compounds.  相似文献   

15.
β-N-Acetylaminoglucohydrolase (β-2-acetylamino-2-deoxy-D-glucoside acetylaminodeoxyglucohydrolase, EC 3.2.1.30) was extracted from malted barley and purified. The partially purified preparation was free from α-and β-glucosidase, α- and β-galactosidase, α-mannosidase and β-mannosidase. This preparation was free from α-mannosidase only after affinity chromatography with p-amino-N-acetyl-β-D-glucosaminidine coupled to Sepharose. The enzyme was active between pH 3 and 6.5 and had a pH optimum at pH 5. A MW of 92000 was obtained by sodium dodecyl sulfate-acrylamide gel electrophoresis and a sedimentation coefficient of 4.65 was obtained from sedimentation velocity experiments. β-N-Acetylaminoglucohydrolase had a Km of 2.5 × 10?4 M using the p-nitrophenyl N-acetyl β-D-glucosaminidine as the substrate.  相似文献   

16.
A water soluble polysaccharide (RAP) was isolated and purified from Radix Astragali and its structure was elucidated by monosaccharide composition, partial acid hydrolysis and methylation analysis, and further supported by FT-IR, GC-MS and 1H and 13C NMR spectra, SEM and AFM microscopy. Its average molecular weight was 1334 kDa. It was composed of Rha, Ara, Glc, Gal and GalA in a molar ratio of 0.03:1.00:0.27:0.36:0.30. The backbone consisted of 1,2,4-linked Rhap, α-1,4-linked Glcp, α-1,4-linked GalAp6Me, β-1,3,6-linked Galp, with branched at O-4 of the 1,2,4-linked Rhap and O-3 or O-4 of β-1,3,6-linked Galp. The side chains mainly consisted of α-T-Araf and α-1,5-linked Araf with O-3 as branching points, having trace Glc and Gal. The terminal residues were T-linked Araf, T-linked Glcp and T-linked Galp. Morphology analysis showed that RAP took random coil feature. RAP exhibited significant immunomodulating effects by stimulating the proliferation of human peripheral blood mononuclear cells and enhancing its interleukin production.  相似文献   

17.
We determined the complete amino acid sequences of the Erabu sea snake (Laticaudia semifasciata) hemoglobin by analyzing the intact globin chains, enzymatically digested fragments, and chemical cleavage fragments to clarify the molecular evolution and phylogenetic classification of the sea snake. The Erabu sea snake has two types of hemoglobin components, Hb-I and Hb-II, which contain different α- and β-chains. This is the second report of the complete primary structure for hemoglobin of snakes. The sequences were compared with those of other reptilian hemoglobins. Amino acids at positions critical for the structure and physiological functions of hemoglobin were loosely conserved. The requirements for binding of ATP and of diphosphoglycerate as allosteric effectors of β-globins seemed to be fulfilled.  相似文献   

18.
A competitive-labeling study of glucagon was carried out using [3H]- and [14C]-1-fluoro-2,4-dinitrobenzene to determine simultaneously the chemical properties of the α-amino and imidazole groups of the N-terminal histidine residue, and the lysine and tyrosine residues, under conditions where glucagon is in its physiologically active monomer form. The dinitrophenyl derivatives of these groups were purified by high-performance liquid chromatography which greatly simplified the separation steps of the procedure. The results showed the α-amino and tyrosine groups to have relatively normal behavior, with pK values of 7.98 and 10.22, respectively, while the lysine had a low pK of 8.46. The imidazole function had an apparent pK of 7.84, substantially higher than previous estimates. This difference may be accounted for by the effect of the charged form of the adjacent α-amino group on the nucleophilicity of the imidazole group.  相似文献   

19.
We determined the hemoglobin complete amino acid sequences of the Hiroo sea snake (Laticaudia laticuada) from the intact globin chain, enzymatically digested fragments, and chemical cleavage fragments to analyze molecular evolution for classification of the sea snake. The Hiroo sea snake has two hemoglobin components, Hb-I and Hb-II, which contain different α- and β-chains, respectively. This is the first report of the complete primary structure of a snake hemoglobin. The sequences were compared with those of other reptilian hemoglobins. Amino acid replacements at positions critical for structure and physiological role of hemoglobin were loosely conserved. The requirements for binding of ATP and of diphosphoglycerate as allosteric effectors at β-globins seemed to be fullfilled.  相似文献   

20.
We investigated the acceptor substrate specificities of marine bacterial α-(2→3)-sialyltransferase cloned from Photobacterium sp. JT-ISH-224 and α-(2→6)-sialyltransferase cloned from Photobacterium damselae JT0160 using several saccharides as acceptor substrates. After purifying the enzymatic reaction products, we confirmed their structure by NMR spectroscopy. The α-(2→3)-sialyltransferase transferred N-acetylneuraminic acid (Neu5Ac) from cytidine 5′-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) to the β-anomeric hydroxyl groups of mannose (Man) and α-Manp-(1→6)-Manp, and α-(2→6)-sialyltransferase transferred N-acetylneuraminic acid to the 6-OH groups of the non-reducing end galactose residues in β-Galp-(1→3)-GlcpNAc and β-Galp-(1→6)-GlcpNAc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号