首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

It is difficult to elucidate the metabolic and regulatory factors causing lipidome perturbations.

Objectives

This work simplifies this process.

Methods

A method has been developed to query an online holistic lipid metabolic network (of 7923 metabolites) to extract the pathways that connect the input list of lipids.

Results

The output enables pathway visualisation and the querying of other databases to identify potential regulators. When used to a study a plasma lipidome dataset of polycystic ovary syndrome, 14 enzymes were identified, of which 3 are linked to ELAVL1—an mRNA stabiliser.

Conclusion

This method provides a simplified approach to identifying potential regulators causing lipid-profile perturbations.
  相似文献   

2.

Background

Paracoccidioidomycosis is a neglected tropical fungal infection with great predilection for adult men, indicating the participation of female hormone estrogen in preventing paracoccidioidomycosis development in women. Estrogen has an immunologic effect leading to polarization toward the Th2 immune response, which favors the disease evolution.

Objectives

To evaluate estrogen and progesterone receptors in oral paracoccidioidomycosis lesions and to verify any association with tissue fungi counting in women and men.

Methods

Thirty-two cases of chronic oral paracoccidioidomycosis were included. Immunohistochemical analyses for anti-estrogen receptor-α, anti-progesterone receptor and anti-Paracoccidioides brasiliensis antibodies were performed. The differences between women and men and the relations among the immunomarkers for each gender were also evaluated.

Results

A significant positive correlation was observed between estrogen receptor-α and the amount of fungi in women. In addition, estrogen receptor-α was mildly expressed in the inflammatory cells of female patients, while progesterone receptor was expressed in both genders, with similar expression between women and men. Moreover, fungi counting revealed no differences between genders.

Conclusions

Estrogen receptor-α was expressed only in women and showed a positive correlation with the amount of fungi in oral paracoccidioidomycosis, while progesterone receptor was observed in both genders and exhibited no correlation with estrogen receptor-α or fungi counting.
  相似文献   

3.

Background

Cord blood lipids are potential disease biomarkers. We aimed to determine if their concentrations were affected by delayed blood processing.

Method

Refrigerated cord blood from six healthy newborns was centrifuged every 12 h for 4 days. Plasma lipids were analysed by liquid chromatography/mass spectroscopy.

Results

Of 262 lipids identified, only eight varied significantly over time. These comprised three dihexosylceramides, two phosphatidylserines and two phosphatidylethanolamines whose relative concentrations increased and one sphingomyelin that decreased.

Conclusion

Delay in separation of plasma from refrigerated cord blood has minimal effect overall on the plasma lipidome.
  相似文献   

4.

Introduction

In-situ detection and in particular comprehensive analysis of small molecule metabolites (SMMs, m/z?<?500) using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) remain a challenge, mainly due to ion suppression effects from more abundant molecules in tissue section like lipids.

Objective

A strategy based on organic washes to remove most ionization-suppressing lipids from tissue section was firstly explored for improved analysis of SMMs by MALDI MSI.

Methods

The tissue sections after rinse with different organic solvents were analyzed by MALDI MSI, and the results were compared for the optimized washing conditions.

Results

The rinse with chloroform for 15 s at ??20 °C significantly removed most glycerophospholipids and glycerolipids from tissue section. Consequentially, ATP-related energy metabolites, amino acids and derivatives, glucose derivatives, glycolysis pathway metabolites and other SMMs were able to be well-visualized with enhanced ion intensity and good reproducibility. The organic washes-based MALDI MSI was applied to the metabolic pathway analysis in rat brain following status epilepticus (SE) model, which was, as far as we know, the first report about in-situ detection of a broad range of metabolites in the model of SE by MALDI MSI technique. The alterations of cyclic adenosine monophosphate (cyclic AMP), inosine, glutamine, glutathione, taurine and spermine during SE were observed.

Conclusion

A simple organic washing protocol enables comprehensive analysis of tissue SMMs in MALDI MSI by removing ionization-suppressing lipids. The application in the SE model indicates that MALDI MSI analysis potentially provides new insight for understanding the disease mechanism.
  相似文献   

5.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

6.

Introduction

Intrahepatic cholestasis of pregnancy (ICP) is a common maternal liver disease; development can result in devastating consequences, including sudden fetal death and stillbirth. Currently, recognition of ICP only occurs following onset of clinical symptoms.

Objective

Investigate the maternal hair metabolome for predictive biomarkers of ICP.

Methods

The maternal hair metabolome (gestational age of sampling between 17 and 41 weeks) of 38 Chinese women with ICP and 46 pregnant controls was analysed using gas chromatography–mass spectrometry.

Results

Of 105 metabolites detected in hair, none were significantly associated with ICP.

Conclusion

Hair samples represent accumulative environmental exposure over time. Samples collected at the onset of ICP did not reveal any metabolic shifts, suggesting rapid development of the disease.
  相似文献   

7.

Introduction

Sleep plays an important role in cardiometabolic health. The sleep-wake cycle is partially driven by the endogenous circadian clock, which governs a range of metabolic pathways. The association between sleep and cardiometabolic health may be mediated by alterations of the human metabolome.

Objectives

To better understand the biological mechanism underlying the association between sleep and health, we examined human plasma metabolites in relation to sleep duration and sleep timing.

Methods

Using an untargeted approach, 329 fasting plasma metabolites were measured in 277 Chinese participants. We measured sleep timing (midpoint between bedtime and wake up time) using repeated time-use surveys (4 weeks during 1 year) and previous night sleep duration from questionnaires completed before sample donation.

Results

We found 64 metabolites that were associated with sleep timing with a false discovery rate of 0.2 or lower, after adjusting for potential confounders. Notably, we found that later sleep timing was associated with higher levels of multiple metabolites in amino acid metabolism, including branched chain amino acids and their gamma-glutamyl dipeptides. We also found widespread associations between sleep timing and numerous metabolites in lipid metabolism, including bile acids, carnitines and fatty acids. In contrast, previous night sleep duration was not associated with plasma metabolites in our study.

Conclusion

Sleep timing was associated with a large number of metabolites across a variety of biochemical pathways. Some metabolite associations are consistent with a relationship between late chronotype and adverse effects on cardiometabolic health.
  相似文献   

8.

Introduction

The immunosuppressive therapy with everolimus (ERL) after heart transplantation is characterized by a narrow therapeutic window and a substantial variability in dose requirement. Factors explaining this variability are largely unknown.

Objectives

Our aim was to evaluate factors affecting ERL metabolism and to identify novel metabolites associated with the individual ERL dose requirement to elucidate mechanisms underlying ERL dose response variability.

Method

We used liquid chromatography coupled with mass spectrometry for quantification of ERL metabolites in 41 heart transplant patients and evaluated the effect of clinical and genetic factors on ERL pharmacokinetics. Non-targeted plasma metabolic profiling by ultra-performance liquid chromatography and high resolution quadrupole-time-of-flight mass spectrometry was used to identify novel metabolites associated with ERL dose requirement.

Results

The determination of ERL metabolites revealed differences in metabolite patterns that were independent from clinical or genetic factors. Whereas higher ERL dose requirement was associated with co-administration of sodium-mycophenolic acid and the CYP3A5 expressor genotype, lower dose was required for patients receiving vitamin K antagonists. Global metabolic profiling revealed several novel metabolites associated with ERL dose requirement. One of them was identified as lysophosphatidylcholine (lysoPC) (16:0/0:0). Subsequent targeted analysis revealed that high levels of several lysoPCs were significantly associated with higher ERL dose requirement.

Conclusion

For the first time, this study describes distinct ERL metabolite patterns in heart transplant patients and detected potentially new drug–drug interactions. The global metabolic profiling facilitated the discovery of novel metabolites associated with ERL dose requirement that might represent new clinically valuable biomarkers to guide ERL therapy.
  相似文献   

9.

Introduction

Aqueous–methanol mixtures have successfully been applied to extract a broad range of metabolites from plant tissue. However, a certain amount of material remains insoluble.

Objectives

To enlarge the metabolic compendium, two ionic liquids were selected to extract the methanol insoluble part of trunk from Betula pendula.

Methods

The extracted compounds were analyzed by LC/MS and GC/MS.

Results

The results show that 1-butyl-3-methylimidazolium acetate (IL-Ac) predominantly resulted in fatty acids, whereas 1-ethyl-3-methylimidazolium tosylate (IL-Tos) mostly yielded phenolic structures. Interestingly, bark yielded more ionic liquid soluble metabolites compared to interior wood.

Conclusion

From this one can conclude that the application of ionic liquids may expand the metabolic snapshot.
  相似文献   

10.

Introduction

Untargeted and targeted analyses are two classes of metabolic study. Both strategies have been advanced by high resolution mass spectrometers coupled with chromatography, which have the advantages of high mass sensitivity and accuracy. State-of-art methods for mass spectrometric data sets do not always quantify metabolites of interest in a targeted assay efficiently and accurately.

Objectives

TarMet can quantify targeted metabolites as well as their isotopologues through a reactive and user-friendly graphical user interface.

Methods

TarMet accepts vendor-neutral data files (NetCDF, mzXML and mzML) as inputs. Then it extracts ion chromatograms, detects peak position and bounds and confirms the metabolites via the isotope patterns. It can integrate peak areas for all isotopologues automatically.

Results

TarMet detects more isotopologues and quantify them better than state-of-art methods, and it can process isotope tracer assay well.

Conclusion

TarMet is a better tool for targeted metabolic and stable isotope tracer analyses.
  相似文献   

11.

Introduction

Due to dangers associated with potential accidents from nuclear energy and terrorist threats, there is a need for high-throughput biodosimetry to rapidly assess individual doses of radiation exposure. Lipidomics and metabolomics are becoming common tools for determining global signatures after disease or other physical insult and provide a “snapshot” of potential cellular damage.

Objectives

The current study assesses changes in the nonhuman primate (NHP) serum lipidome and metabolome 7 days following exposure to ionizing radiation (IR).

Methods

Serum sample lipids and metabolites were extracted using a biphasic liquid–liquid extraction and analyzed by ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry. Global radiation signatures were acquired in data-independent mode.

Results

Radiation exposure caused significant perturbations in lipid metabolism, affecting all major lipid species, including free fatty acids, glycerolipids, glycerophospholipids and esterified sterols. In particular, we observed a significant increase in the levels of polyunsaturated fatty acids (PUFA)-containing lipids in the serum of NHPs exposed to 10 Gy radiation, suggesting a primary role played by PUFAs in the physiological response to IR. Metabolomics profiling indicated an increase in the levels of amino acids, carnitine, and purine metabolites in the serum of NHPs exposed to 10 Gy radiation, suggesting perturbations to protein digestion/absorption, biological oxidations, and fatty acid β-oxidation.

Conclusions

This is the first report to determine changes in the global NHP serum lipidome and metabolome following radiation exposure and provides information for developing metabolomic biomarker panels in human-based biodosimetry.
  相似文献   

12.

Introduction

Metritis is an uterine pathology that causes economic losses for the dairy industry. It is associated with lower reproductive efficiency, increased culling rates, decreased milk production and increased veterinary costs.

Objectives

To gain a more detailed view of the urine metabolome and to detect metabolite signature in cows with metritis. In addition, we aimed to identify early metabolites which can help to detect cows at risk to develop metritis in the future.

Methods

We used nuclear magnetic resonance spectroscopy starting at 8 and 4 weeks prior to the expected day of parturition, during the week of diagnosis of metritis, and at 4 and 8 weeks after diagnosis of metritis in Holstein dairy cows.

Results

At 8 weeks before parturition, pre-metritic cows had a total of 30 altered metabolites. Interestingly, 28 of them increased in urine when compared with control cows (P?<?0.05). At 4 weeks before parturition, 34 metabolites were altered. At the week of diagnosis of metritis a total of 20 metabolites were altered (P?<?0.05). The alteration continued at 4 and 8 weeks after diagnosis.

Conclusions

The metabolic fingerprints in the urine of pre-metritic and metritic cows point toward excretion of multiple amino acids, tricarboxylic acid cycle metabolites and monosaccharides. Combination of galactose, leucine, lysine and panthotenate at 8 weeks before parturition might serve as predictive biomarkers for metritis.
  相似文献   

13.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

14.

Introduction

Improving feed utilization in cattle is required to reduce input costs, increase production, and ultimately improve sustainability of the beef cattle industry. Characterizing metabolic differences between efficient and non-efficient animals will allow stakeholders to identify more efficient cattle during backgrounding.

Objectives

This study used an untargeted metabolomics approach to determine differences in serum metabolites between animals of low and high residual feed intake.

Methods

Residual feed intake was determined for 50 purebred Angus steers and 29 steers were selected for the study steers based on low versus high feed efficiency. Blood samples were collected from steers and analyzed using untargeted metabolomics via mass spectrometry. Metabolite data was analyzed using Metaboanalyst, visualized using orthogonal partial least squares discriminant analysis, and p-values derived from permutation testing. Non-esterified fatty acids, urea nitrogen, and glucose were measured using commercially available calorimetric assay kits. Differences in metabolites measured were grouped by residual feed intake was measured using one-way analysis of variance in SAS 9.4.

Results

Four metabolites were found to be associated with differences in feed efficiency. No differences were found in other serum metabolites, including serum urea nitrogen, non-esterified fatty acids, and glucose.

Conclusions

Four metabolites that differed between low and high residual feed intake have important functions related to nutrient utilization, among other functions, in cattle. This information will allow identification of more efficient steers during backgrounding.
  相似文献   

15.

Introduction

Natural products from culture collections have enormous impact in advancing discovery programs for metabolites of biotechnological importance. These discovery efforts rely on the metabolomic characterization of strain collections.

Objective

Many emerging approaches compare metabolomic profiles of such collections, but few enable the analysis and prioritization of thousands of samples from diverse organisms while delivering chemistry specific read outs.

Method

In this work we utilize untargeted LC–MS/MS based metabolomics together with molecular networking to inventory the chemistries associated with 1000 marine microorganisms.

Result

This approach annotated 76 molecular families (a spectral match rate of 28 %), including clinically and biotechnologically important molecules such as valinomycin, actinomycin D, and desferrioxamine E. Targeting a molecular family produced primarily by one microorganism led to the isolation and structure elucidation of two new molecules designated maridric acids A and B.

Conclusion

Molecular networking guided exploration of large culture collections allows for rapid dereplication of know molecules and can highlight producers of uniques metabolites. These methods, together with large culture collections and growing databases, allow for data driven strain prioritization with a focus on novel chemistries.
  相似文献   

16.

Background and aims

Pollen is essential for successful plant reproduction and critical for plant-pollinator mutualisms, as pollen is essential larval nutrition. However, we understand very little about the chemical constituents of pollen leading us to this exploratory study characterizing plant and beehive pollen.

Methods

We performed a metabolomics assay of canola flower pollen and beehive pollen.

Results and discussion

The metabolome of canola pollen is affected by irrigation showing differences in lipids and non-polar secondary metabolites. Metabolome of beehive pollen is affected by plant source showing differences in pentose sugars, myo-inositol and furanose. Further research is needed to document the nutritional bases of plant-pollinator mutualism.
  相似文献   

17.

Introduction

Quantification of tetrahydrofolates (THFs), important metabolites in the Wood–Ljungdahl pathway (WLP) of acetogens, is challenging given their sensitivity to oxygen.

Objective

To develop a simple anaerobic protocol to enable reliable THFs quantification from bioreactors.

Methods

Anaerobic cultures were mixed with anaerobic acetonitrile for extraction. Targeted LC–MS/MS was used for quantification.

Results

Tetrahydrofolates can only be quantified if sampled anaerobically. THF levels showed a strong correlation to acetyl-CoA, the end product of the WLP.

Conclusion

Our method is useful for relative quantification of THFs across different growth conditions. Absolute quantification of THFs requires the use of labelled standards.
  相似文献   

18.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

19.

Introduction

Lung cancer continues to be the leading cause of cancer-related mortality worldwide. Early detection has proven essential to extend survival. Genomic and proteomic advances have provided impetus to the effort dedicated to detect and diagnose the disease at an earlier stage. Recently, the study of metabolites associated with tumor formation and progression has inaugurated the era of cancer metabolomics to aid in this effort.

Objectives

This review summarizes recent work regarding novel metabolites with the potential to serve as biomarkers for early lung tumor detection, evaluation of disease progression, and prediction of patient outcomes.

Method

We compare the metabolite profiling of cancer patients with that of healthy individuals, and the metabolites identified in tissue and biofluid samples and their usefulness as lung cancer biomarkers. We discuss metabolite alterations in tumor versus paired non-tumor lung tissues, as well as metabolite alterations in different stages of lung cancers and their usefulness as indicators of disease progression and overall survival. We evaluate metabolite dysregulation in different types of lung cancers, and those associated with lung cancer versus other lung diseases. We also examine metabolite differences between lung cancer patients and smokers/risk-factor individuals.

Result

Although an extensive list of metabolites has been evaluated to distinguish between these cases, refinement of methods is further required for adequate patient diagnosis and treatment.

Conclusion

We conclude that with technological advancement, metabolomics may be able to replace more invasive and costly diagnostic procedures while also providing the means to more effectively tailor treatment to patient-specific tumors.
  相似文献   

20.

Introduction

In some fish species, it is difficult to distinguish mature females from immature females or females that have already spawned via appearance or other convenient methods. Few studies have investigated plasma metabolite profiling for the prediction of fish maturation.

Objectives

We investigated the comprehensive metabolic profiles of plasma among immature females and mature females ready to spawn, as well as already spawned breeders of blunt snout bream (Megalobrama amblycephala). The purpose of this study was to screen out potential biomarkers for sexually mature female M. amblycephala compared to immature female individuals and already spawned breeders.

Methods

Three groups were set up in this study, which included 1-year-old immature females, 2-year-old sexually mature females ready to spawn and successfully spawned females of M. amblycephala. Plasma samples were collected to investigate comprehensive metabolic profiles through UPLC-MS/MS based on a metabolomics analysis method.

Results

According to multivariate and univariate statistical analysis, plasma metabolite profiles of the three groups were clearly separated. The differential plasma metabolites from three hormone related pathways including the GnRH signaling pathway, steroid hormone biosynthesis and steroid biosynthesis, were analyzed. A total of 29 metabolites were identified as differential biomarkers associated with the female maturation status.

Conclusion

The identified potential biomarkers could be useful in separating mature M. amblycephala from immature individuals or ovulation-induced female individuals, which would allow for more effective artificial breeding. The results may contribute to a better understanding of the maturation mechanisms of fish in the aspect of metabolomics.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号