首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electric field pulses induce a substantial increase of the light scattering intensity of double-helical DNA. The relative change of light scattering and also the reciprocal relaxation time constants under electric field pulses increase with increasing nucleotide concentration. These observations, together with a large difference between dichroism orientation time constants and light scattering time constants under electric field pulses, demonstrate that the main part of the light scattering effect is due not to field-induced orientation but to interactions between DNA helices. From the concentration dependence of the light scattering time constants we obtain, according to an isodesmic reaction model, association rate constants in the range 3 × 1010 M?1 helices s?1 for DNA with approx. 300 base-pairs. These values are at the limit of a diffusion-controlled DNA association and do not show any dependence upon the field strength. The dissociation rate constants kd decrease strongly with increasing field strength E and thus demonstrate that the interactions between the helices are induced by the electric field. This conclusion is consistent with independent measurements which do not reveal any DNA association at zero field strength. The observed linear relation between log(kd) and E2 suggests a field-induced reaction driven by dipole changes. According to this interpretation the change of dipole moment should be in the range of approx. 1400 debye. The dissociation rates for DNA helices with approx. 300 to approx. 800 base-pairs strongly increase with increasing sail concentration (measured in the range 1–5 mM ionic strength), whereas the association rate constants remain virtually unchanged. Measurements of the linear dichroism in the same range of DNA chain length demonstrate that for long field pulses of e.g., 40 μs, the amplitude approaches a maximum value and then decreases. The dichroism relaxation curves observed after long field pulses exhibit a component with a positive dichroism and an increased decay time. These observations suggest the formation of a DNA aggregate with an unusual arrangement of the bases.  相似文献   

2.
An extension to polyelectrolyte solutions of Onsager's field-dissociation relation for weak electrolytes can be derived in a simple way. It is found that, except in the limit of zero ionic strength, a strong applied electric field prevents counterion condensation from proceeding to completion. The extent of incompleteness initially varies linearly with the applied field. The field-dissociation relation can easily be incorporated into the theory of ionic effects on the stability of ordered polynucleotide Structures, whereupon a dependence of the stability on field strength emerges. An explicit calculation for a cooperative transition of the DNA melting type is presented, and it is concluded that for sufficiently low ionic strengths, a field of the order of 10 kVcm may be able to induce, melting by lowering the Tm by a few degrees. The threshold effect found experimentally by Pörschke, and particularly the observed linear dependence of the threshold field on the logarithm of the ionic strength, appears here as a simple-consequence of the linear increase of the stabilization free energy with the logarithm of ionic strength.  相似文献   

3.
The kinetics of electron transfer between the isolated enzymes of cytochrome c1 and cytochrome c have been investigated using the stopped-flow technique. The reaction between ferrocytochrome c1 and ferricytochrome c is fast; the second-order rate constant (k1) is 3.0 · 107 M?1 · s?1 at low ionic strength (I = 223 mM, 10°C). The value of this rate constant decreases to 1.8 · 105 M?1 · s?1 upon increasing the ionic strength to 1.13 M. The ionic strength dependence of the electron transfer between cytochrome c1 and cytochrome c implies the involvement of electrostatic interactions in the reaction between both cytochromes. In addition to a general influence of ionic strength, specific anion effects are found for phosphate, chloride and morpholinosulphonate. These anions appear to inhibit the reaction between cytochrome c1 and cytochrome c by binding of these anions to the cytochrome c molecule. Such a phenomenon is not observed for cacodylate. At an ionic strength of 1.02 M, the second-order rate constants for the reaction between ferrocytochrome c1 and ferricytochrome c and the reverse reaction are k1 = 2.4 · 105 M?1 · s?1 and k?1 = 3.3 · 105 M?1 · s?1, respectively (450 mM potassium phosphate, pH 7.0, 1% Tween 20, 10°C). The ‘equilibrium’ constant calculated from the rate constants (0.73) is equal to the constant determined from equilibrium studies. Moreover, it is shown that at this ionic strength, the concentrations of intermediary complexes are very low and that the value of the equilibrium constant is independent of ionic strength. These data can be fitted into the following simple reaction scheme: cytochrome c2+1 + cytochrome c3+ai cytochrome c3+1 + cytochrome c2+.  相似文献   

4.
D Porschke 《Biopolymers》1985,24(10):1981-1993
Electric-field pulses of e.g. 20 kV/cm and 100 μs induce a strong decrease in the scattered light intensity of DNA condensed by spermine. Analysis of this effect demonstrates that the decrease of the scattered light intensity results from decondensation of DNA. The decondensation reaction requires an electric-field strength exceeding a threshold value. Complete decondensation can be achieved at field strength that are only slightly higher than the threshold value. The decondensation process is strongly accelerated at high electric-field strengths. At 30 kV/cm, the decondensation time constant is ~8 μs, corresponding to an acceleation factor of 105 relative to the field-free decondensation reaction. The dependence of the time constants on the electric-field strength suggests that the field-induced decondensation is due to a dissociation field effect. The condensation process observed after electric-field pulses at low concentrations of DNA and spermine shows a characteristic induction period, which strongly depends on the spermine concentration. This induction period reflects the time required for the binding of spermine to DNA, until the degree of binding is sufficiently high for the condensation reaction. The fast dissociation of condensed DNA by electric-field pulses together with a relatively long lifetime of the free DNA results in a reaction cycle resembling a hysteresis loop.  相似文献   

5.
An essentially new application of chronoamperometry is presented for the determination of homogeneous second-order rate constants for the reactions between small molecule reductants and redox proteins. The first part of the work is a comparison between stopped-flow kinetics and chronoamperometric kinetics for the reaction of ferrous-EDTA with horse cytochrome c. The reaction was demonstrated to be first order in both ferrous-EDTA and cytochrome c and the effect of ionic strength was also studied. All of the chronoamperometric results compared well with the stopped-flow work which had been done previously. Chronoamperometry was then used to study several other reactions which have not been previously examined, including the reaction of ferrous-diethylenetriamine pentaacetic acid with cytochrome c. The reaction was slower than the ferrous-EDTA reaction but was more sensitive to ionic strength because of the greater charge (?3) on the complex. The second study was the reaction of ferrous-EDTA with Rhodospirillum rubrum cytochrome c2 as a function of ionic strength. This novel application of chronoamperometry to small molecule-redox protein reactions represent a new and relatively easy alternative to anaerobic stopped-flow kinetics.  相似文献   

6.
1. The occurrence of an optimal ionic strength for the steady-state activity of isolated cytochrome aa3 can be attributed to two opposite effects: upon lowering of the ionic strength the affinity between cytochrome c and cytochrome aa3 increases, whereas in the lower ionic strength region the formation of a less active cytochrome c-aa3 complex limits the ferrocytochrome c association to the low affinity site.2. At low ionic strength, the reduction of cytochrome c-aa3 complex by ferrocytochrome c1 proceeds via non-complex-bound cytochrome c. Under these conditions the positively charged cytochrome c provides the electron transfer between the negatively charged cytochromes c1 and aa3.3. Polylysine is found to stimulate the release of tightly bound cytochrome c from the cytochrome c-aa3 complex. This property points to the existence of negative cooperativity between the two binding sites. We suggest that the stimulation is not restricted to polylysine, but also occurs with cytochrome c.4. Dissociation rates of both high and low affinity sites on cytochrome aa3 were determined indirectly. The dissociation constants, calculated on the basis of pre-steady-state reaction rates at an ionic strength of 8.8 mM, were estimated to be 0.6 nM and 20 μM for the high and low affinity site, respectively.  相似文献   

7.
(1) Using the pulse-radiolysis and stopped-flow techniques, the reactions of iron-free (porphyrin) cytochrome c and native cytochrome c with cytochrome aa3 were investigated. The porphyrin cytochrome c anion radical (generated by reduction of porphyrin cytochrome c by the hydrated electron) can transfer its electron to cytochrome aa3. The bimolecular rate constant for this reaction is 2·107 M?1·s?1 (5 mM potassium phosphate, 0.5% Tween 20, pH 7.0, 20°C). (2) The ionic strength dependence of the cytochrome c-cytochromeaa3 interaction was measured in the ionic strength range between 40 and 120 mM. At ionic strengths below 30 mM, a cytochrome c-cytochrome aa3 complex is formed in which cytochrome c is no longer reducible by the hydrated electron. A method is described by which the contributions of electrostatic forces to the reaction rate can be determined. (3) Using the stopped-flow technique, the effect of the dielectric constant (?) of the reaction medium on the reaction of cytochrome c with cytochrome aa3 was investigated. With increasing ? the second-order rate constant decreased.  相似文献   

8.
Dietmar Prschke 《Biopolymers》1976,15(10):1917-1928
Single-stranded polynucleotides are used as model systems for the investigation of conformational changes induced by electric fields. It is demonstrated that the single-strand helix–coil transition in poly(A), poly(dA), and poly(C) can be induced by application of high electric fields. The transition is measured by UV absorbance using polarized light at an angle of 54.8° with respect to the vector of the electric field and by electrodichroism. A linear increase of the absorbance, reflecting the helix-to-coil transition, is observed at increasing field strength. When ions are added to the polymer, electric fields do not induce conformation changes, unless a threshold value of the electric field strength E0 is exceeded. At field strengths above this threshold, the degree of transition is a linear function of the increase in field strength. The threshold values E0 show a linear increase with the logarithm of the ion concentration. Bivalent ions cause thresholds at much lower ion concentrations than mo-novalent ions. The shielding efficiency of ions is correlated to the binding affinity of these ions to the polymer. The conformation changes induced by the field and the existence of thresholds can be explained on the basis of dissociation field effects. Similar threshold effects may be expected for other macromolecules as well as for membrane structures and may be important in the regulation of bioelectricity.  相似文献   

9.
10.
The linear dichroism (LD) has been measured for DNA molecules 239–164,000 base pairs long oriented in shear flow over a large range of velocity gradients (30–3,000 s ?1) and ionic strengths (2–250 mM). At very low gradients, the degree of DNA orientation increases quadratically with the applied shear as predicted by the Zimm theory [J. Zimm, (1956) Chemical Physics, Vol. 24, p. 269]. At higher gradients, the orientation of fragments ≥ 7 kilobase pairs (kbp) increases linearly with increasing shear, whereas the orientation of fragments ≥ 15 kbp shows a more complicated dependence. In general, the orientation decreases with increasing ionic strength throughout the studied ionic strength interval, owing to a decrease in the persistence length of the DNA. The effect is most dramatic at ionic strengths below 10 mM, and is more pronounced for longer DNA fragments. For fragments ≥ 15 kbp and velocity gradients ≥ 100 s?1, the orientation can be adequately described by the empirical relation: LDr= –(k1-G)/(k2 + G), where k1is a linear function of the square root of the ionic strength and k2 depends on the DNA contour length. Since the DNA persistence length can be represented as a linear function of the reciprocal square root of the ionic strength [D. Porschke, (1991) Biophysical Chemistry, Vol. 40, p. 169], extrapolation of the empirical relation provides information about the stiffness of the DNA fibers. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Liposome dispersions obtained from the mixture of gemini surfactants of the type alkane-α,ω-diyl-bis(alkyldimethylammonium bromide) and helper lipid DOPC create complexes with DNA showing a regular inner microstructure, identified by small angle X-ray diffraction as condensed lamellar phase (Lαc). In addition to the Lαc phase, a coexisting lamellar phase LB was also identified in the complexes formed, with periodicities in the range ~ 8.8-5.7 nm, at ionic strengths corresponding to 50-200 mM NaCl. The periodicities of LB phase did not correspond to those identified in liposome dispersion without DNA using small angle neutron scattering. The observed phase separation is shown to depend on the interplay between the surface charge density of cationic liposomes, ionic strength and method of complex preparation. The effect of ionic strength on complex formation was studied by isothermal titration calorimetry and zeta potential measurements. High ionic strength reduces the fraction of bound DNA in the complexes, and the isoelectric point is attained at a ratio of DNA/gemini surfactant which is lower than the one that can be estimated by calculation based on nominal charges of CLs and DNA.  相似文献   

12.
C Marion  B Roux  M Hanss 《Biopolymers》1983,22(11):2353-2366
The rotational relaxation tiem τ3 of DNA molecules (Mw ? 5 × 106) in solution has been determined by the transient electric birefringence method. The analysis of the birefringence decay makes it possible to study only the higher-molecular-weight fraction, the molecules being considered as rigid elongated particles in a short time scale. A marked concentration dependence of the relaxation time has been observed for DNA in low ionic strengths. Above a critical concentration c*, τ3 increases with the DNA concentration, c. The value of c* increases with the ionic strength. For 10?3 ionic strength (with NaCl), c* is about 10 μg/mL; then we observe the same strong concentration dependence of rotational relaxation times as recently reported for rodlike M-13 viruses [Maguire, J. F., McTague, J. P. & Rondelez, F. (1980) Phys. Rev. Lett. 45 , 1891–1894]. These results may be discussed in terms of the Doi-Edwards theory for rotational relaxation time of rigid macromolecules [Doi, M. (1975) J. Phys. 36 , 607–611; Doi, M. & Edwards, S. F. (1978) J. Chem. Soc. Faraday Trans. 74 , 918–932] and the critical concentration above which the interactions between the molecules begin to appear allows determining the corresponding molecular length. We observe a very good agreement between the DNA lengths obtained from the c* values and by using the infinite dilution value of τ3 and Broersma's equation. Therefore, only highly diluted solutions can be used if intrinsic molecular properties based on the rotational diffusion of high-molecular-weight elongated molecules are studied.  相似文献   

13.
14.
S.P.J. Brooks  P. Nicholls 《BBA》1982,680(1):33-43
Citrate and other polyanion binding to ferricytochrome c partially blocks reduction by ascorbate, but at constant ionic strength the citrate-cytochrome c complex remains reducible; reduction by TMPD is unaffected. At a constant high ionic strength citrate inhibits the cytochrome c oxidase reaction competitively with respect to cytochrome c, indicating that ferrocytochrome c also binds citrate, and that the citrateferrocytochrome c complex is rejected by the binding site at high ionic strength. At lower ionic strengths, citrate and other polyanions change the kinetic pattern of ferrocytochrome c oxidation from first-order towards zero-order, indicating preferential binding of the ferric species, followed by its exclusion from the binding site. The turnover at low cytochrome c concentrations is diminished by citrate but not the Km (apparent non-competitive inhibition) or the rate of cytochrome a reduction by bound cytochrome c. Small effects of anions are seen in direct measurements of binding to the primary site on the enzyme, and larger effects upon secondary site binding. It is concluded that anion-cytochrome c complexes may be catalytically competent but that the redox potentials and/or intramolecular behaviour of such complexes may be affected when enzyme-bound. Increasing ionic strength diminishes cytochrome c binding not only by decreasing the ‘association’ rate but also by increasing the ‘dissociation’ rate for bound cytochrome c converting the ‘primary’ (T) site at high salt concentrations into a site similar kinetically to the ‘secondary’ (L) site at low ionic strength. A finite Km of 170 μM at very high ionic strength indicates a ratio of KMK0M of about 5000. It is proposed that anions either modify the E10 of cytochrome c bound at the primary (T) site or that they perturb an equilibrium between two forms of bound c in favour of a less active form.  相似文献   

15.
(1) In the pH range between 5.0 and 8.0, the rate constants for the reaction of ferrocytochrome c with both the high- and low-affinity sites on cytochrome aa3 increase by a factor of approx. 2 per pH unit. (2) The pre-steady-state reaction between ferrocytochrome c and cytochrome aa3 did not cause a change in the pH of an unbuffered medium. Furthermore, it was found that this reaction and the steady-state reaction are equally fast in H2O and 2H2O. From these results it was concluded that no protons are directly involved in a rate-determining reaction step. (3) Arrhenius plots show that the reaction between ferrocytochrome c and cytochrome aa3 requires a higher enthalpy of activation at temperatures below 20°C (15–16 kcal/mol) as compared to that at higher temperature (9 kcal/mol). We found no effect of ionic strength on the activation enthalpy of the pre-steady-state reaction, nor on that of the steady-state reaction. This suggests that ionic strength does not change the character of these reactions, but merely affects the electrostatic interaction between both cytochromes.  相似文献   

16.
A systematic study of several variables affecting band width and resolution in polyacrylamide gel electrophoresis (PAGE) has been carried out. This makes it possible to determine resolution, number of theoretical plates, and an apparent diffusion coefficient in PAGE. Measurement of band position yields a linear relationship between logarithm of electrophoretic mobility and gel concentration when other variables are held constant. Similarly, measurement of band width yields a linear relationship between the logarithm of the dispersion coefficient (D′) and gel concentration. This makes it possible to extrapolate to 0 gel concentration and to obtain as estimate of a free dispersion coefficient (D0) which is usually one or two orders of magnitude greater than the free diffusion coefficient (D20,w). D′ depends on protein concentration (which is a function of sample load and time), on ionic strength (I), and on duration of electrophoresis (dependent on field strength which in turn depends on ionic strength and current). Since these several variables introduce nonlinear and interrelated correction factors, extrapolation to “infinite ionic strength,” “zero concentration,” and “infinite time” becomes difficult although it is potentially feasible at both the experimental and the theoretical level, and thus it may be possible to determine diffusion coefficients in PAGE on microgram amounts of material without the need for preliminary purification. Alternatively, PAGE in a nonsieving, anticonvectant gel at high ionic strength and for long duration may be able to provide an estimate of D20,w. The results also support the validity of previously developed approximations for the relationship between band width and gel concentration, and for the relationship between band dispersion and electrophoretic mobility.  相似文献   

17.
This investigation concerns the effect of certain physical factors—viscosity, dielectric constant, ionic strength, and temperature of the medium—on the reaction of hydrogen peroxide and ferrocytochrome c in the presence of the enzyme horse-radish peroxidase. From study of the effects of viscosity and dielectric constant, it was concluded that the reaction between the secondary complex of hydrogen peroxide and enzyme on the one hand and ferrocytochrome c on the other is controlled by diffusion in media of high viscosity and by electrostatic effects at low viscosities. With respect to ionic strength, the data at pH 4.7 indicated a dipole-dipole interreaction. The temperature dependence of the over-all reaction had a Q10 of 1.25.  相似文献   

18.
Margareta R.A. Blomberg  Pia Ädelroth 《BBA》2018,1859(11):1223-1234
Cytochrome c oxidases (CcO) reduce O2 to H2O in the respiratory chain of mitochondria and many aerobic bacteria. In addition, some species of CcO can also reduce NO to N2O and water while others cannot. Here, the mechanism for NO-reduction in CcO is investigated using quantum mechanical calculations. Comparison is made to the corresponding reaction in a “true” cytochrome c-dependent NO reductase (cNOR). The calculations show that in cNOR, where the reduction potentials are low, the toxic NO molecules are rapidly reduced, while the higher reduction potentials in CcO lead to a slower or even impossible reaction, consistent with experimental observations. In both enzymes the reaction is initiated by addition of two NO molecules to the reduced active site, forming a hyponitrite intermediate. In cNOR, N2O can then be formed using only the active-site electrons. In contrast, in CcO, one proton-coupled reduction step most likely has to occur before N2O can be formed, and furthermore, proton transfer is most likely rate-limiting. This can explain why different CcO species with the same heme a3-Cu active site differ with respect to NO reduction efficiency, since they have a varying number and/or properties of proton channels. Finally, the calculations also indicate that a conserved active site valine plays a role in reducing the rate of NO reduction in CcO.  相似文献   

19.
Controllable selective synthesis strategy of polymerizable N-acyl and O-acylpropranolol vinyl derivatives was developed by enzyme-catalyzed acylation of propranolol using divinyl dicarboxylates with different carbon chain length as acyl donor. The influence of parameters including enzyme, solvents and chain length of acyl donor on the reaction was investigated in detail. Lipase AY30 in diisopropyl ether demonstrated high selectivity towards the amino group of propranolol, while lipase M from Mucor javanicus in dioxane acylated selectively the hydroxyl group of propranolol. N-Acylpropranolol (3a3c) and O-acylpropranolol vinyl (4a4c) derivatives were obtained successfully, and can be used for preparing functional macromolecular prodrugs of beta-blockers drugs. N-(Vinyladipoyl)propranolol (NVAP) was copolymerized with methyl methacrylate (MMA) using AIBN as initiator. The obtained polymeric prodrug was characterized with IR, NMR and GPC. The poly(NVAP-co-MMA) has Mn of 3.23 × 104, and Mw/Mn of 1.66.  相似文献   

20.
Ascorbate-reduced horse heart cytochrome c reduces photo-oxidized bacterial reaction centres with a second-order rate constant of (5–8) · 108 M?1 · s?1 at an ionic strength of 50 mM. In the absence of cytochrome c, the cytochrome c1 in the ubiquinol:cytochrome c oxidoreductase is oxidized relatively slowly (k = 3.3 · 105 M?1 · s?1). Ferrocytochrome c binds specifically to ascorbate-reduced reductase, with a Kd of 0.6 μM, and only the free cytochrome c molecules are involved in the rapid reduction of photo-oxidized reaction centres. The electron transfer between ferricytochrome c and ferrocytochrome c1 of the reductase is rapid, with a second-order rate constant of 2.1 · 108 M?1 · s?1 at an ionic strength of 50 mM. The rate of electron transfer from the Rieske iron-sulphur cluster to cytochrome c1 is even more rapid. The cytochrome b of the ubiquinol:cytochrome c oxidoreductase can be reduced by electrons from the reaction centres through two pathways: one is sensitive to antimycin and the other to myxothiazol. The amount of cytochrome b reduced in the absence of antimycin is dependent on the redox potential of the system, but in no case tested did it exceed 25% of the amount of photo-oxidized reaction centres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号