首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence phase shift and demodulation methods were used in the analysis of excited-state reactions and to investigate solvent relaxation around fluorophores in viscous solvents. The chosen samples illustrate the results expected for fluorophores bound to biological macromolecules. These moderately simple samples served to test the theoretical predictions described in the preceding paper (J.R. Lakowicz and A.B. Balter, Biophys. Chem. 16 (1982) 99.) and to illustrate the characteristic features of phase-modulation data expected from samples which display time-dependent spectral shifts. The excited-stale protonation of acridine and exciplex formation between anthracene and diethylaniline provided examples of one-step reactions in which the lifetimes of the initially excited and the reacted species were independent of emission wavelength. Using these samples we demonstrated the following: (I) Wavelength-dependent phase shift and demodulation values can be used to prove the occurrence of an excited-state process. Proof is obtained by observation of phase angles (φ) larger than 90° or by measurement of ratios of m/cos φ > 1, where m is the modulation of the emission relative to that of the excitation. (2) For a two-state process the individual emission spectra of each state can be calculated from the wavelength-dependent phase and modulation data. (3) The phase difference or demodulation factor between the initially excited and the reacted states reveals directly the fluorescence lifetime of the product of the reaction. (4) Phase-sensitive detection of fluorescence can be used to prove that the lifetimes of both the initially excited and the reacted states are independent of emission wavelength. (5) If steady-state spectra of the individual species are known, then phase-sensitive emission spectra can be used to measure the lifetimes of the individual components irrespective of the extent of spectral overtap. (6) Spectral regions of constant lifetime can be identified by the ratios of phase-sensitive emission spectra. In addition, we examined 6-propionyl-2-dimethylaminonaphthalene(PRODAN) and N-acetyl-l-tryptophanamide (NATA) in viscous solvents where the solvent relaxation times were comparable to the fluorescence lifetimes. Using PRODAN in n-butanol we used m/cos φ measurements, relative to the blue edge of the emission, to demonstrate that solvent relaxation requires more than a single step. For NATA in propylene glycol we used phase-sensitive detection of fluorescence to directly record the emission spectra of the initially excited and the solvent relaxed states. These measurements can be easily extended to fluorophores which are bound to proteins and membranes and are likely to be useful in studies of the dynamic properties of biopolymers.  相似文献   

2.
We examined the impacts of macrophyte beds dominated by a canopy-forming (Myriophyllum sibiricum) and a meadow-forming (Chara canescens) species on bottom shear stress (τ) and resuspension in shallow Lake Christina, Minnesota (U.S.A.). Studies were conducted in late summer, 1998, when macrophyte biomass levels exceeded 200 g m?2, and in early summer, 2000, when biomass was greatly reduced (<20 g m?2) in both plant beds. The critical shear stress (τc) of sediments, measured experimentally in the laboratory, was low (1.4 dynes cm?2) indicating potential for resuspension in the absence of macrophytes. During 1998, turbidity was low at the M. sibiricum and Chara station, rarely increasing when calculated bottom τ (calculated from wave theory assuming no biomass obstruction) exceeded τsub c sub, indicating that both beds reduced sediment resuspension at high biomass levels. In situτ (estimated τ), measured via gypsum sphere dissolution, did not exceed τc above the sediment interface in either bed during 1998. In contrast, sediment resuspension occurred in both beds during similar high winds in 2000. However, estimated τ was lower than calculated bottom τ, suggesting that at low biomass, macrophytes were having some impact on τ.  相似文献   

3.
Procedures are described for the treatment of phase and modulation lifetime data in fluorescent systems having multiexponential decay. All computer procedures (called FIT programs) arise from the lifetime resolution theory for phase-modulation measurements (Weber, G (1981) J. Phys. Chem. 85, 949–953). The programs most successful in resolving heterogeneous lifetimes use a Monte Carlo approach in which phase and modulation lifetime data at three modulation frequencies are simultaneously utilized. These programs are shown to have more utility than the final closed form procedure presented by Weber (1981). The FIT routines are simple and require little computer time while yielding excellent results. To illustrate the applicability of these programs, defined binary (carbazole and pyrene) and ternary systems (carbazole, pyrene and POPOD) were examined. In most cases, the resolved lifetimes were within 5% of the independently measured value and the fractional fluorescence contributions were within 10% of that expected. These results demonstrate that phase-modulation measurements analyzed by appropriate computer programs are capable of solving for lifetimes in both binary and, in selected cases, ternary systems. An example is given from the recent literature (Dalbey, R., Weiel, J. and Yount, R.G. (1983) Biochemistry 22, 4696–4706) in which the above programs allowed the resolution of both binary and ternary lifetimes of a dansyl label on myosin, where Förster energy transfer was occuring. These lifetimes] were used to quantify changes in distances between two activity-related thiols on myosin upon the addition of Mg-ATP or its analogs.  相似文献   

4.
The wild-type lac repressor of Escherichia coli is a tetrameric protein which contains two tryptophanyl residues per subunit at positions 190 and 209. Solute perturbation studies of the tryptophan fluorescence of the repressor were performed using a polar but uncharged quencher, acrylamide, to prevent possible bias caused by ionic quenchers. The results indicate that the two tryptophan residues have different accessibilities to the quencher. In addition, contrary to a previous report, the accessibility of these tryptophan residues is not altered by isopropyl-β-d-thiogalactoside (IPTG) binding to the repressor. Similar studies with mutant lac repressor containing only a single tryptophan either at positions 190 or 209 suggest that tryptophan 209 is located in a region which is perturbed by inducer binding. That the two tryptophanyl residues have heterogeneous environments was further confirmed by nanosecond fluorescence spectroscopy which showed the wild-type lac repressor exhibiting two excited-state lifetimes, τ1 = 5.3 ns and τ2 = 10 ns. In the presence of 10?3m IPTG, only a single lifetime of 6 ns was observed for the wild-type repressor suggesting that the inducer perturbs the tryptophan residue with the longer lifetime but not the one with the shorter lifetime. This is in accord with the observation that the mutant repressor containing only tryptophan 190 (the Tyr-209 repressor) has a single lifetime of 4.5 ns which is not altered by IPTG binding. The surprising finding that the mutant repressor which contains only tryptophan 209 (the Tyr-190 repressor) shows two excited-state lifetimes has been interpreted to indicate that the repressor either does not exhibit fourfold symmetry in its subunit arrangement or is present in two different conformational states.  相似文献   

5.
Structure–dynamics interrelationships are important in understanding protein function. We have explored the empirical relationship between rotational correlation times (τc and the solvent accessible surface areas (SASA) of 75 proteins with known structures. The theoretical correlation between SASA and τc through the equation SASA = Krτc (2/3) is also considered. SASA was determined from the structure, τc calc was determined from diffusion tensor calculations, and τc expt was determined from NMR backbone13 C or 15N relaxation rate measurements. The theoretical and experimental values of τc correlate with SASA with regression analyses values of Kr as 1696 and 1896 m2s-(2/3), respectively, and with corresponding correlation coefficients of 0.92 and 0.70.  相似文献   

6.
We aim to develop a quantitative viability method that distinguishes individual quiescent from dead cells and is measured in time (ns) as a referenceable, comparable quantity. We demonstrate that fluorescence lifetime imaging of an anionic, fluorescent membrane voltage probe fulfills these requirements for Streptococcus mutans. A random forest machine-learning model assesses whether individual S. mutans can be correctly classified into their original populations: stationary phase (quiescent), heat killed and inactivated via chemical fixation. We compare the results to intensity using three models: lifetime variables (τ1, τ2 and p1), phasor variables (G, S) or all five variables, with the five variable models having the most accurate classification. This initial work affirms the potential for using fluorescence lifetime of a membrane voltage probe as a viability marker for quiescent bacteria, and future efforts on other bacterial species and fluorophores will help refine this approach.  相似文献   

7.
M.D. Il&#x;ina  A.Yu. Borisov 《BBA》1981,637(3):540-545
The fluorescence of chlorophyll (Chl) a in 0.007–0.1% Triton X-100 was investigated by a phase-shift technique. The Chl a concentrations varied from 0.7 to 25 μM. Parallel measurements of fluorescence lifetime (τ) and quantum yield (ψ) were made. It was concluded that homogeneous energy transfer takes place at detergent concentrations above 0.025%: (i) the transfer between uniform molecules of the pigment solubilized in Triton X-100 micelles, when τ and ψ are constant; (ii) the transfer towards the quenching centers, resulting in a proportional decrease in τ and ψ. At a Triton X-100 concentration of about 0.025% the Chl a emission becomes heterogeneous. It is evident from the disproportional decrease in τ and ψ (greater in ψ than in τ) and also from the rise of the fluorescence at 730–750 nm. As the Triton X-100 concentration becomes lower than the critical one (0.021%), the number of micelles drops abruptly and Chl a forms colloid particles in the aqueous medium. This manifests itself as a decrease in τ and as a certain stabilization of ψ. Having analyzed the complex pattern of the τ/ψ ratio, we concluded that under these conditions more than 90% of Chl a is in a weakly fluorescent form (τ < 30 ps) and about 1% is in an aggregated state fluorescing at 732 nm with τ about 0.7 ns.  相似文献   

8.
I Moya 《BBA》1974,368(2):214-227
Lifetime and yield of chlorophyll fluorescence in vivo: Their relationship in different models of photosynthetic unitsWe have used phase fluorimetry to measure the relation between fluorescence lifetime (τ) and yield (Ф) of chlorophyll during the induction phase of photosynthesis in isolated chloroplasts and in vivo. This relationship is usually non-linear, curving slightly toward negative values of τ, and does not extrapolate to zero. In the discussion we examine the conditions which might give rise to curvature and a non-zero intercept. A model of connected photosynthetic units, characterized by an intersystem frequency of energy exchange, T, can account for the concavity of the experimental curves when 0.6 ? T ? 1 ns?1.Two hypotheses are suggested to account for the non-zero intercept: the occurrence of sensitized fluorescence emission, or the existence in the initial fluorescence of a constant fraction independent of System II.  相似文献   

9.
The single-strand helix-coil transition in various oligo- and polyadenylates is characterized by means of an improved cable temperature-jump technique. In all the polymers studied {poly(rA), poly(dA), poly[A(m2′)] and poly[A(e2′)]} helix-coil relaxation is observed in the time range from 30 to 1000 nsec. Relaxation-time constants observed at wavelengths λ<280 nm (τα) are different from those found at λ >280 nm (τβ), indicating the presence of more than two conformational states. The time constants τα increase in the series poly(dA), poly[A(m2′)], constants τβα is approximately 2.5, except in poly(dA) where τβα ≈ 9. Relaxation measurements with r(A)n- oligomers show a decrease in conformational mobility with increasing chain length. The relaxation curves also demonstrate that “internal” residues have lower reaction rates than residues at the ends of the oligomer chain. Measurement in D2O reveal a solvent isotope effect for τα of +87% for poly(rA), and of +53% for poly(dA), whereas no isotope effect is found in τβ. The absence of “slow” relaxation processes in the model compound 9,9′ -trimethylenebisadenine shows that the relatively low rate of the single-strand helix-coil transitions is due to the coupling of base stacking with the folding of the sugar–phosphate chain. The absence of a seprate relaxation process (corresponding to τβ) in 9,9′-trimethylenebisadenine, as well as in the dinucleotides ApC and CpA, suggests that this relaxation process is dependent upon the presence of both the sugar–phosphate chain and of adjacent adenine bases. The experimental data provide evidence that there is more than one ordered conformation in various single-stranded oligo- and polyadenylates and that the transition between these conformations is influenced by the sugar conformation.  相似文献   

10.
The fluorescence anisotropy of a general rigid body is formally the sum of five exponentials. We show that, to a high degree of approximation, there are relationships between the five time constants. As we define the time constants here, τ1 ? τ5, τ2 ? τ3, and τ1?1 + 3τ4?1 ? 4τ2?1. In practical cases, at most only three exponentials will be observed, and, of these, only two are independent. Using a numerical integration procedure, Perrin's equations for the rotational and translational diffusion of a general ellipsoid are solved. Rotational friction coefficients, frictional ratio, rotational relaxation times, and the five exponential terms in the fluorescence anisotropy are tabulated as functions of the axial ratios of the ellipsoid. In principle, the three axes of a general ellipsoid may be determined by a simultaneous measurement of the anisotropy and the linear diffusion constant. We examine, and illustrate, the effect of experimental error on such a determination.  相似文献   

11.
Stopped-flow studies on calcium binding to calmodulin showed that under pseudo first order conditions the reaction was complete within 2.5 milliseconds. The time course for calcium dissociation from the native protein showed a single kinetic phase (τ1?1 = 10S?1) while that from the dansylated derivative revealed a second slower kinetic phase (τ1?1 = 10S?1, τ2?1 = 0.31S?1) that accounted for about one-half of the total fluorescence decrease. Therefore the dansyl derivative of calmodulin may provide a useful tool for studying conformational changes in the protein not reflected by the active site tyrosines.  相似文献   

12.
We have measured the fluorescence decay of N-phenyl-1-naphthylamine using the phase-modulation method, in several solvent systems and egg phosphatidylcholine vesicles. The decay is monoexponential in pure solvents (both polar and non-polar) of low viscosity. In polar viscous solvents or in non-polar solvents containing an added polar solute, the decay is heterogeneous and emission wavelength dependent. In such cases, dielectric relaxation and/or excited-state complexing give rise to a shift of the emission spectrum on the nanosecond time scale. Emission-wavelength-dependent decay was also observed when N-phenyl-1-naphthylamine was bound to egg phosphatidylcholine vesicles. From these results as well as the position of the emission spectral maximum, we conclude that N-phenyl-1-naphthylamine probes the ester-carbonyl region of the phospholipid acyl chains, where it undergoes an excited-state reaction. This result contradicts the often made assumption that N-phenyl-1-naphthylamine probes the deeper hydrocarbon region of the bilayer.  相似文献   

13.
Ismael Moya  Raphael Garcia 《BBA》1983,722(3):480-491
A new method for decomposing fluorescence emission spectra into their elementary components, based on the simultaneous recording of fluorescence intensity and lifetime vs. the emission wavelength, has been applied to the spectra of algal cells at liquid nitrogen temperature. A model of Gaussian components fits both τ(λ) and F(λ) spectra with the same parameters. The fluorescence lifetimes have been measured by phase fluorimetry at two modulation frequencies: 29 and 139 MHz. The final Gaussian decomposition is able to describe both the 29 and 139 MHz spectra. The following conclusions concerning the fluorescence spectra of Chlorella cells at 77 K can be drawn. These conclusions are also valid with minor changes for the other examined species. (1) An overlapping of different emitting bands occurs in all the spectra; therefore, a direct lifetime reading from phase delay measurement necessitates measurements being made at several frequencies. (2) At the Fmax fluorescence level, the lifetime values of the two emissions usually associated with variable fluorescence are 0.53 ns (for B′1; λ peak 688 nm), and 1.46 ns (for B′2; λ peak 698 nm); these lifetimes are shorter than those we have measured at room temperature (approx. 1.8 ns). (3) Superimposed on B′1 and B′2 and with approximatively the same peak location, two long-lifetime components (B″1, 4.8 ns; B″2, 5.6 ns) are present. Two hypotheses can be proposed to explain these emissions: (i) the long-lifetime components arise from subsets of chlorophyll a disconnected from the functional antenna by the cooling process; and (ii) charge recombination in reaction centers leads to delayed fluorescence. (4) In the λ > 710 nm region, two main bands are required to describe the so-called Photosystem I emission: B3 (0.8 ns; λ peak 715 nm) and B4 (3.3 ns; λ peak 724 nm). The former band, usually unresolved in the amplitude fluorescence spectra, is a specific finding from lifetime measurements and has been associated with the antenna core of Photosystem I. No additional information has been obtained for B4. A supplementary small band (B5, 0.40 ns; λ peak ? 740 nm) is necessary to take into account the frequency effect and the τ(λ) decrease in the λ > 740 nm spectral range.  相似文献   

14.
Abstract

Interconversion between energetically favored molecular conformations must proceed through less favored intermediate states. Thus, a knowledge of the nucleotide furanose ring conformations, other than the crystallographically well-determined ones, are of interest in investigating nucleotide conformational energies and dynamics. The sugar ring flexibility affects the conformation and dynamics of the monomer and determines the range of feasible nucleic acid secondary and tertiary structures. We have generated furanose geometries for varying amplitudes of pucker over its entire range of pseudorotation by making use of a ring closure procedure and the empirical dependence of endocyclic bond lengths and bond angles on sugar pucker. Atomic coordinates are tabulated here for the furanose ring at pseudorotation phase angle intervals of 9° for the average amplitude (τm) of pucker of 39° as well as for decreased (20° and 30°) and increased (44°) values of τm. However, the coordinates for any values of P and τm can be readily calculated.  相似文献   

15.
Anthocyanins are flavonoid pigments that accumulate in most seed plants. They are synthesized in the cytoplasm but accumulate inside the vacuoles. Anthocyanins are pigmented at the lower vacuolar pH, but in the cytoplasm they can be visualized based on their fluorescence properties. Thus, anthocyanins provide an ideal system for the development of new methods to investigate cytoplasmic pools and association with other molecular components. We have analyzed the fluorescence decay of anthocyanins by fluorescence lifetime imaging microscopy (FLIM), in both in vitro and in vivo conditions, using wild‐type and mutant Arabidopsis thaliana seedlings. Within plant cells, the amplitude‐weighted mean fluorescence lifetime (τm) correlated with distinct subcellular localizations of anthocyanins. The vacuolar pool of anthocyanins exhibited shorter τm than the cytoplasmic pool. Consistently, lowering the pH of anthocyanins in solution shortened their fluorescence decay. We propose that FLIM is a useful tool for understanding the trafficking of anthocyanins and, potentially, for estimating vacuolar pH inside intact plant cells.  相似文献   

16.
17.
Steady state and time resolved fluorescence spectroscopy, combined with molecular modeling computations, have been used to explore the interactions of two therapeutically important flavonoids, fisetin (3,7,3′,4′-OH-flavone) and 3-hydroxyflavone (3-HF), with normal human hemoglobin (HbA). Distinctive ‘two color’ fluorescence signatures and fairly high fluorescence anisotropy (r = 0.12-0.28) of fisetin and 3-HF reveal their specific interactions with HbA. Binding constants estimated from the fluorescence studies were ≈ 4.00 × 104 M− 1 and 9.83 × 103 M− 1 for fisetin and 3-HF respectively. Specific interactions with HbA were further confirmed from flavonoid-induced static quenching of the protein tryptophan fluorescence as indicated by: (a) bimolecular quenching constant Kq ? diffusion controlled limit (b) closely matched values of Stern-Volmer quenching constant and binding constant (c) τo/τ ≈ 1 (where τo and τ are the unquenched and quenched tryptophan fluorescence lifetimes respectively). Molecular docking and electrostatic surface potential calculations reveal contrasting binding modes of fisetin and 3-HF with HbA.  相似文献   

18.
Nicolae Moise  Ismaël Moya 《BBA》2004,1657(1):33-46
The relationship between the fluorescence lifetime (τ) and yield (Φ) obtained in phase and modulation fluorometry at 54 MHz during the chlorophyll fluorescence induction in dark-adapted leaves under low actinic light has been investigated. Three typical phases have been identified: (i) linear during the OI photochemical rise, (ii) convex curvature during the subsequent IP thermal rise, and (iii) linear during the PS slow decay. A similar relationship has been obtained in the fluorescence induction for the fluorescence yield measured at 685 nm plotted versus the fluorescence yield measured at 735 nm. A spectrally resolved analysis shows that the curvature of the τ-Φ relationship is not due to chlorophyll fluorescence reabsorption effects. Several other hypotheses are discussed and we conclude that the curvature of the τ-Φ relationship is due to a variable and transitory nonphotochemical quenching. We tentatively propose that this quenching results from a conformational change of a pigment-protein complex of Photosystem II core antenna during the IP phase and could explain both spectral and temporal transitory changes of the fluorescence. A variable blue shift of the 685 nm peak of the fluorescence spectrum during the IP phase has been observed, supporting this hypothesis.  相似文献   

19.
To investigate fluorescence lifetime spectroscopy in tissue-like scattering, measurements of phase modulation as a function of modulation frequency were made using two fluorescent dyes exhibiting single exponential decay kinetics in a 2% intralipid solution. To experimentally simulate fluorescence multiexponential decay kinetics, we varied the concentration ratios of the two dyes, 3,3-diethylthiatricarbocyanine iodide and indocynanine green (ICG), which exhibit distinctly different lifetimes of 1.33 and 0.57 ns, respectively. The experimental results were then compared with values predicted using the optical diffusion equation incorporating 1) biexponential decay, 2) average of the biexponential decay, as well as 3) stretched exponential decay kinetic models to describe kinetics owing to independent and quenched relaxation of the two dyes. Our results show that while all kinetic models could describe phase-modulation data in nonscattering solution, when incorporated into the diffusion equation, the kinetic parameters failed to likewise predict phase-modulation data in scattering solutions. We attribute the results to the insensitivity of phase-modulation measurements in nonscattering solutions and the inaccuracy of the derived kinetic parameters. Our results suggest the high sensitivity of phase-modulation measurements in scattering solutions may provide greater opportunities for fluorescence lifetime spectroscopy.  相似文献   

20.
Pierre Sebban  Ismaël Moya 《BBA》1983,722(3):436-442
Fluorescence lifetime spectra of Rhodopseudomonas sphaeroides chromatophores have been measured at room temperature by phase fluorimetry at 82 MHz in order to investigate the heterogeneity of the emission. The total fluorescence was decomposed into two main components. A constant component, Fc, centered at 865 nm, represents about 50% of the total emission from dark-adapted chromatophores (Fo) and has a lifetime of 0.55 ns. A variable component is centered at 890 nm. Upon closing the reaction centers, 5-fold increases take place in both emission yield and lifetime of this component. In the dark-adapted state, its lifetime is about 50 ps and its contribution to the total fluorescence is 70% at 890 nm. In the presence of sodium dithionite, a long-lifetime component (τD ? 4 ns) is observed. This probably arises from radical pair recombination between P+ and I? (P, the primary electron donor, is a dimer of bacteriochlorophyll; I, the primary electron acceptor, is a molecule of bacteriopheophytin). Its spectrum is nearly identical to that of the variable component. This emission seems to be present also under nonreducing conditions, although with a much weaker intensity than when the electron acceptor quinone is prereduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号