首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Water proton nuclear magnetic spin-lattice relaxation rates are reported as a function of magnetic field strength for aqueous solutions of manganese tetrakis(4-sulfophenyl)porphine complexes. The manganese(III) complex displays relaxation that is remarkably independent of temperature at low magnetic field and a magnetic field dependence that is characteristic of the electron spin relaxation rates, making a contribution to the correlation time that dominates the electron-nuclear coupling. The manganese(II) complex is much more effective in relaxing water protons, but the usual models of first coordination sphere and outer-sphere relaxation fail to account for the magnitude and the magnetic field dependence of the relaxation rates. The data suggest that the delocalization of the electron density into the ligand system provides an increase in the effectiveness of what may be called the outer-sphere paths for water proton relaxation.  相似文献   

2.
Summary Measurements of the water proton spin-lattice relaxation rate for aqueous solutions of the palindromic dodecamer, d(CGCGAATTCGCG)2, are reported as a function of the magnetic field strength. The magnitude of the relaxation rates at low magnetic field strengths and the shape of the relaxation dispersion curve permit assessment of the number of water molecules which may be considered bound to the DNA for a time equal to or longer than the rotational correlation time of the duplex. The data are examined using limiting models that arbitrarily use the measured rotational correlation time of the polynucleotide complex as a reference point for the water molecule lifetime. If it is assumed that water molecules are bound at DNA sites for times as long as or longer than the rotational correlation time of the duplex, then the magnitude of the relaxation rates at low field require that there may be only two or three such water sites. However, if the lifetime constraints is relaxed, and we assume that the number of water molecules bound to the DNA is more nearly the number identified in the X-ray structures, then the average water molecule lifetime is on the order of 1 ns. Measurements of 1H NOESY spectra demonstrate that some water molecules must have lifetimes sufficiently long that negative Overhauser effects are observed. Taken together, these results suggest a distribution of water molecule lifetimes in which most of the DNA-bound water molecule lifetimes are shorter than the rotational correlation time of the duplex, but where some have lifetimes of at least 1 ns under these concentrated conditions.Abbreviations DNA deoxyribonucleic acid - NOE nuclear Overhauser enhancement - NOESY nuclear Overhauser enhancement spectroscopy  相似文献   

3.
Dielectric relaxation data covering a temperature range from above room temperature to below the glass transition for 40% (w/w) and 75% (w/w) glucose/water solutions in the frequency range between 5 and 13 MHz are presented. These data are used to obtain correlation times for the dielectric relaxation in the viscous liquid and the glass and are compared with correlation times determined from deuterium nuclear spin relaxation times [J. Chem. Phys., 110 (1999) 3472-3483]. The two sets of results have the same temperature dependence, but differ in magnitude by a factor of 3, implying that the relaxation is a small-step rotational diffusion. Both the structural relaxation (alpha process) and the slow beta process are present. In the 40% glucose/water sample, there is a dielectric relaxation attributable to the ice that forms at low temperature. It is shown that the reciprocal of the viscosity, the correlation time derived from the dielectric relaxation, and the dc conductivity have a similar dependence on temperature.  相似文献   

4.
N J Tao  S M Lindsay  A Rupprecht 《Biopolymers》1988,27(10):1655-1671
We have measured the dispersion of phonon line widths between frequencies of about 2 and 10 GHz in DNA films at relative humidities between 0 and 95%. The results show that the relaxation mode of the primary hydration shell retains its basic characteristics even in samples with very high water content. A modified mode coupling model is used to include both the collective nature of the sound wave and to describe the change in hydration explicitly. It enables us to describe the coupling between the phonons and the water relaxation mode at various water contents, and allows us to extract values for the primary shell relaxation time and coupling constants over the range of hydration studied. The primary shell relaxation time (~ 40 ps) and coupling parameters remain nearly constant over the entire range of hydration. We have reanalyzed our earlier Brillouin data (taken as a function of temperature) in terms of two relaxation processes (primary plus a secondary shell contribution of about 2 ps at room temperature). This new analysis indicates that both processes follow a simple Arrhenius behavior with activation energies of 5 kcal mole?1 for the primary relaxation and 7 kcal mole?1 for the secondary relaxation. We also observe a rather broad central mode that can be fitted by a Lorentzian, and that may arise from direct (as opposed to coupled-mode) scattering from the primary relaxation mode.  相似文献   

5.
Water proton spin-lattice relaxation is studied in dilute solutions of bovine serum albumin as a function of magnetic field strength, oxygen concentration, and solvent deuteration. In contrast to previous studies conducted at high protein concentrations, the observed relaxation dispersion is accurately Lorentzian with an effective correlation time of 41 +/- 3 ns when measured at low proton and low protein concentrations to minimize protein aggregation. Elimination of oxygen flattens the relaxation dispersion profile above the rotational inflection frequency, nearly eliminating the high field tail previously attributed to a distribution of exchange times for either whole water molecules or individual protons at the protein-water interface. The small high-field dispersion that remains is attributed to motion of the bound water molecules on the protein or to internal protein motions on a time scale of order one ns. Measurements as a function of isotope composition permit separation of intramolecular and intermolecular relaxation contributions. The magnitude of the intramolecular proton-proton relaxation rate constant is interpreted in terms of 25 +/- 4 water molecules that are bound rigidly to the protein for a time long compared with the rotational correlation time of 42 ns. This number of bound water molecules neglects the possibility of local motions of the water in the binding site; inclusion of these effects may increase the number of bound water molecules by 50%.  相似文献   

6.
Proton nuclear magnetic resonance relaxation measurements were made over the range 4.7--220 MHz for aqueous solutions of hog kidney diamine oxidase. The values of 1/T1 give rise in two distinct dispersions, at 16 and 75 MHz, whereas 1/T2 displays a minimum at 20 MHz. The temperature dependence of relaxation rates in all cases yield apparent activation energies less than 0.6 kcal/mol. These data indicate to us that the two Cu(II) ions of diamine oxidase are intrinsically different in terms of their electronic relaxation characteristics and hence, chemical environments. Low field limits of the two electronic relaxation times are 2 and 10 ns, with one of these correlation times being frequency dependent. The value of the frequency-dependent electronic relaxation time is governed by interactions that are modulated by a process having a correlation time of 5 ps.  相似文献   

7.
The magnetic spin-lattice relaxation rates of solvent water nuclei are known to increase upon addition of diamagnetic solute protein. This enhancement of the relaxation rate is a function of magnetic field, and the orientational relaxation time of the protein molecules can be deduced from analysis of the field-dependent relaxation rates. Although the nature of the interactions that convey information about the dynamics of protein motion to the solvent molecules is not established, it is known that there is a contribution to the relaxation rates of solvent protons that plays no role in the relaxation of solvent deuterons and 17O nuclei. We show here that the additional interaction arises from a cross-relaxation process between solvent and solute protons. We introduce a heuristic three-parameter model in which protein protons and solvent protons are considered as two separate thermodynamic systems that interact across the protein-solvent interface. The three parameters are the intrinsic relaxation rates of each system and a cross-relaxation term. The sign of the latter term must always be positive, for all values of magnetic field, in order for magnetization energy to flow from the hotter to the cooler system. We find that the magnetic field-dependence of the cross-relaxation contribution is much like that of the remaining solvent proton relaxation, i.e., about the same as the deuteron relaxation field dependence. This finding is not compatible with the predictions of expressions for the cross-relaxation that have been used by other authors, but not applied to data over a wide range of magnetic field strength. The model predicts that the relaxation behavior of both the protein protons and the solvent protons is the sum of two exponentials, the relative contributions of which would vary with protein concentration and solvent isotopic composition in a fashion suggestive of the presence of two classes of protein protons, when there is in reality only one. This finding has immediate implications for the interpretation of published proton relaxation rates in complex systems such as tissues; these data should be reexamined with cross-relaxation taken into account.  相似文献   

8.
Summary In this communication a new NMR experiment for the safe observation and quantification of water-protein exchange phenomena is presented. It combines a water-selective pulse, offering chemical shift-based separation, and the off-resonance ROESY dynamic filter, which permits the elimination of the unwanted intramolecular dipolar cross relaxation of protein protons. Moreover, pulsed field gradients are used for the suppression of radiation damping and the solvent signal. The straightforward incorporation of this sequence in heteronuclear experiments is demonstrated for the case of the DNA-binding domain of the alcohol regulator protein.  相似文献   

9.
Roberts MF  Cui Q  Turner CJ  Case DA  Redfield AG 《Biochemistry》2004,43(12):3637-3650
Phosphorus-spin longitudinal relaxation rates of the DNA duplex octamer [d(GGAATTCC)](2) have been measured from 0.1 to 17.6 T by means of conventional and new field-cycling NMR methods. The high-resolution field-cycling method is identical to a conventional relaxation experiment, except that after preparation the sample is moved pneumatically from its usual position at the center of the high-resolution magnet upward to a lower field above its normal position and then returned to the center for readout after it has relaxed for the programmed relaxation delay at the low field. This is the first measurement of all longitudinal relaxation rates R(1) of a nuclear species in a macromolecule over virtually the entire accessible magnetic field range. For detailed analysis, three magnetic field regions can be delineated: (i) dipolar relaxation dominates at fields below 2 T, (ii) chemical shift anisotropy (CSA) relaxation is roughly constant from 2 to 6 T, and (iii) a square-law increasing dependence is seen at fields higher than approximately 6 T due to internal motion CSA relaxation. The analysis provides a rotational correlation time (tau(r) = 4.1 +/- 0.3 ns) for the duplex at both 1.5 and 0.25 mM concentrations (of duplex) at 22 degrees C. For comparison, extraction of tau(r) in the conventional way from the ratio of T(1)/T(2) at 14 T yields 3.2 ns. The tau(r) discrepancy disappears when we exclude the contribution of internal motion from the R(1) in the ratio. The low-field dipolar relaxation provides a weighted inverse sixth power sum of the distances from the phosphorus to the protons responsible for relaxation. This average is similar for all phosphates in the octamer and similar to that in previous B-DNA structures (its inverse sixth root is about 2.40 A for two different concentrations of octamer). The CSA relaxation at intermediate field provides an estimate of the order parameter squared, S(c)(2), for each phosphorus. S(c)(2) is about 0.7-1, clearly different for different phosphate linkages in the octamer duplex. The increasing R(1) at high fields reflects CSA relaxation due to internal motions, for which a correlation time, tau(hf), can be approximately extracted with the aid of additional measurements at 14.0 and 17.6 T. We conclude that tau(hf) values are relatively large, in the range of about 150 ps. Insight into the motions leading to this correlation time was gained by a 28 ns molecular dynamics simulation of the molecule. S(2) and tau(s) (corresponding to tau(hf)) predicted by this simulation were in good agreement with the experimental values from the field-cycling data. Both the effect of Mg(2+) on the dynamic parameters extracted from (31)P relaxation rates and the field dependence of relaxation rates for several protons of the octamer were measured. High-resolution field cycling opens up the possibility of monitoring residue-specific dipolar interactions and dynamics for the phosphorus nuclei of diverse oligonucleotides.  相似文献   

10.
A new 31P NMR method is used to probe the cytoplasmic viscosity of human erythrocytes. The method is based on observing two-spin order relaxation of the 31P atom of the hypophosphite ion. This method is superior to our previous method, using the longitudinal relaxation time of the ion, because random field effects such as intermolecular dipole-dipole relaxation can be separated from intramolecular relaxation. This allows a more accurate determination of the effective reorientational correlation time from the measured intramolecular relaxation because it is now unaffected by random field effects. The new method also provides a means by which to estimate the random field effects. Both two-spin order and proton-decoupled T1 measurements were conducted on hypophosphite in water solutions at various temperatures, glycerol solutions of various viscosities, and in erythrocyte samples of various cell volumes. The results show that the effective reorientational correlation time of the hypophosphite ion varies from 7.2 to 15.2 ps in the cytoplasm of cells ranging in volume from 102 to 56 fl cells.  相似文献   

11.
Hydration of oxidized rubredoxin (Fe(III)(S-Cys)(4) center) was investigated by (1)H and (17)O relaxation measurements of bulk water as a function of the applied magnetic field (nuclear magnetic relaxation dispersion). Oxidized rubredoxin showed an increased water (1)H relaxation profile with respect to the diamagnetic gallium derivative or reduced species. Analysis of the data shows evidence of exchangeable proton(s) approximately 4.0-4.5 A from the metal ion, the exchange time being longer than 10(-10) s and shorter than 10(-5) s. The correlation time for the proton-electrons interaction is 7 x 10(-11) s and is attributed to the effective electron relaxation time. Its magnitude is consistent with the large signal linewidths of the protein donor nuclei, observed in high resolution NMR spectra. For reduced rubredoxin, such correlation time is proposed to be smaller than 10(-11) s. (17)O relaxation measurements suggest the presence of at least one long-lived protein-bound water molecule. Analogous relaxation measurements were performed on the C6S rubredoxin variant, whose iron(III) center has been previously shown to be coordinated to three cysteine residues and a hydroxide ion above pH 6. (1)H nuclear magnetic relaxation dispersion profiles indicate increased hydration with respect to the wild-type.  相似文献   

12.
A comparison of 17O and 2H NMR relaxation rates of water in lysozyme solutions as a function of concentration, pH/pD, and magnetic field suggests that only 17O monitors directly the hydration of lysozyme in solution. NMR measurements are for the first time extended to 11.75 T. Lysozyme hydration data are analyzed in terms of an anisotropic, dual-motion model with fast exchange of water between the "bound" and "free" states. The analysis yields 180 mol "bound" water/mol lysozyme and two correlation times of 7.4 ns ("slow") and 29 ps ("fast") for the bound water population at 27 degrees C and pH 5.1, in the absence of salt, assuming anisotropic motions of water with an order parameter value for bound water of 0.12. Under these conditions, the value of the slow correlation time of bound water (7.4 ns) is consistent with the value of 8 ns obtained by frequency-domain fluorescence techniques for the correlation time associated with the lysozyme tumbling motion in solutions without salt. In the presence of 0.1 M NaCl the hydration number increases to 290 mol/mol lysozyme at pD 4.5 and 21 degrees C. The associated correlation times at 21 degrees C in the presence of 0.1 M NaCl are 4.7 ns and 15.5 ps, respectively. The value of the slow correlation time of 4.7 ns is consistent with the calculated value (4.9 ns) for the lysozyme monomer tumbling in solution. The systematic deviations of the relaxation rates, estimated with the single-exponential approximation, from the theoretical, multiexponential nuclear (I' + 1/2) spin relaxation are evaluated at various frequencies for 17O (I = 5/2) with the first-order, linear approximation (25). All NMR relaxation data for hydrated lysozymes are affected by protein activity and are sensitive both to the ionization of protein side chains and to the state of protein aggregation.  相似文献   

13.
We report an extension of the recently published PMDSC method that permitted synchronous determination of heat capacity and expansibility when using slow, defined pressure formats in a DSC scan. Here we applied continuously opposing pressure changes that are fast compared to the time constants of the DSC instrument to study relaxation kinetics of phospholipids. Investigations of multilamellar vesicles of DPPC or DSPC in water revealed for both lipids relaxation times of about 30 s at the maximum of the main transition peak and about 15 s at the maximum of the pretransition. The relaxation times in the transition range are proportional to heat capacity of main- and pretransition. The molecular origin of the relaxation processes appears to stem from pressure-induced water fluxes between the interbilayer region and the bulk water phase.  相似文献   

14.
Careful experiments on the measurement of the intensity of the deuterium NMR signal for 2-H2 O in muscle and in its distillate were performed, and they showed that all 2-H2 O muscle is "NMR visible". The spin-lattice relaxation time (T1) of the water protons in the muscle and liver of mice and in egg white has been studied at six frequencies ranging from 4.5 to 6.0 MHz over the temperature range of +37 to --70 degrees C. T1 values of deuterons in 2H2 O of gastrocnemius muscle and liver of mice have been measured at three frequencies (4.5, 9.21 and 15.35 MHz) over the temperature range of +37 to --20 degrees C. Calculations on T1 for both proton and deuteron have been made and compared with the experimental data. It is suggested that the reduction of the T1 values compared to pure water and the frequency dependence of T1 are due to water molecules in the hydration layer of the macromolecules, and that the bulk of water molecules in the biological tissues and egg white undergoes relaxation like ordinary liquid water.  相似文献   

15.
We summarize the results of several of our recent studies on the dielectric properties of protein solutions, tissues, and nonionic microemulsions at microwave frequencies extending to 18 GHz. The data in all cases are analyzed using the Maxwell mixture theory to determine the dielectric properties of the suspending water and the amount and dielectric properties of the water of hydration associated with the suspended phase. The dielectric data from the protein solutions and tissues are broadly consistent with the results of previous studies at UHF frequencies; they indicate hydration values in the range of 0.4–0.6 g water/g protein. There is evidence of a dielectric relaxation process occurring at low-GHz frequencies that can be attributed in part to dielectric relaxation of the “bound” water in the system. The remaining solvent water appears to have dielectric properties close to, if not precisely the same as, those of pure water. The average relaxation frequency of the suspending water in the microemulsions is reduced from that of pure water, evidently reflecting an average of that of the water of hydration (~5–6 GHz) and that of pure water. This reduced average relaxation frequency implies an increased average viscosity of the water and (by Walden's rule) accounts for the unexpectedly low ionic conductivity of the preparations.  相似文献   

16.
17.
We observed low-frequency Raman spectra of tetragonal lysozyme crystals and DNA films, with varying water content of the samples. The spectra are fitted well by sums of relaxation modes and damped harmonic oscillators in the region from approximately 1 cm(-1) to 250 cm(-1). The relaxation modes are due to crystal water, and the distribution of relaxation times is determined. In wet samples, the relaxation time of a small part of the water molecules is a little longer than that of bulk water. The relaxation time of a considerable part of the crystal water, which belongs mainly to the secondary hydration shell, is an order of magnitude longer than that of bulk water. Furthermore, the relaxation time of some water molecules in the primary hydration shell of semidry samples is shorter than we expected. Thus we have shown that low-frequency Raman measurements combined with properly oriented samples can give specific information on the dynamics of hydration water in the ps range. On the other hand, we concluded, based on polarized Raman spectra of lysozyme crystals, that the damped oscillators correspond to essentially intramolecular vibrational modes.  相似文献   

18.
Dielectric dispersion measurements were made on aqueous solutions of a triple-helical polysaccharide schizophyllan over a wide concentration range 10-50 wt % at -45 to +30 degrees C. In the solution state, three different water structures with the different relaxation times tau were found, namely, bound water (taul), structured water (taus), and loosely structured water (tauls) in addition to free water (tauP). Structured water is less mobile and loosely structured water is nearly as mobile as free water, but bound water with taul is much less mobile, thus taul > taus > tauls greater, similar tauP. The order-disorder transition accompanies the conversion between structured water and loosely structured water. However, the species with taus remains even in the disordered state and constitutes part of bound water in the entire temperature range. In the frozen state, in addition to bulk water formed by partial melting, two mobile species existed, which were assigned to liquidlike bound water and found to be a continuation of bound water in the solution state. These relaxation time data are discussed in connection with the entropy levels of the four structures deduced from heat capacity data (cf. Yoshiba, K.; et al. Biomacromolecules 2003, 4, 1348-1356).  相似文献   

19.
The observation of the spin-echo decay in a long time domain has revealed that there exist at least three different fractions of non- (or slowly) exchanging water in the rat gastrocnemius muscle. These fractions of water are characterized with different nuclear magnetic resonance (NMR) relaxation times and are identified with the different parts of tissue water. The water associated with the macromolecules was found to be approximately 8% of the total tissue water and not to exchange rapidly with the rest of the intracellular water. The transverse relaxation time (T2) of the myoplasm is 45 ms which is roughly a 40-fold reduction from that of a dilute electrolyte solution. This fraction of water accounts for 82% of the tissue water. The reduced relaxation time is shown neither to be caused by fast exchange between the hydration and myoplasmic water nor by the diffusion of water across the local magnetic field gradients which arise from the heterogeneity in the sample. About 10% of the tissue water was resolved to be associated with the extracellular space, the relaxation time of which is approximately four times that of the myoplasm. Mathematical treatments of the proposed mechanisms which may be responsible for the reduction of tissue water relaxation times are given in this paper. The results of our study are consistent with the notion that the structure and/or motions of all or part of the cellular water are affected by the macromolecular interface and this causes a change in the NMR relaxation rates.  相似文献   

20.
Sonic absorption spectra of solutions of human serum albumin (SA) in water and in aqueous phosphate buffer systems have been measured between 0.2 and 2000 MHz at different temperatures (15-35 degrees C), pH values (1.8-12.3), and protein concentrations (1-40 g/L). Several spectra, indicating relaxation processes in the whole frequency range, have been found. The spectra at neutral pH could be fitted well with an analytical function consisting of the asymptotic high frequency absorption and two relaxation contributions, a Debye-type relaxation term with discrete relaxation time and a term with asymmetric continuous distribution of relaxation times. Both relaxation contributions were observed in water and in buffer solutions and increased with protein concentration. The contribution represented by a Debye-type term is practically independent of temperature and was attributed to cooperative conformational changes of the polypeptide chain featuring a relaxation time of about 400 ns. The distribution of the relaxation times corresponding to the second relaxation contribution was characterized by a short time cutoff, between about 0.02 and 0.4 ns depending on temperature, and a long time tail extending to microseconds. Such relaxation behavior was interpreted in terms of solute-solvent interactions reflecting various hydration layers of HSA molecules. At acid and alkaline pH, an additional Debye-type contribution with relaxation time in the range of 30-100 ns exists. It seems to be due to proton transfer reactions of protein side-chain groups. The kinetic and thermodynamic parameters of these processes have been estimated from these first measurements to indicate the potential of acoustic spectra for the investigation of the elementary kinetics of albumin processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号