首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biophysical journal》2020,118(11):2680-2693
Proteins in photosynthetic membranes can organize into patterned arrays that span the membrane’s lateral size. Attractions between proteins in different layers of a membrane stack can play a key role in this ordering, as was suggested by microscopy and fluorescence spectroscopy and demonstrated by computer simulations of a coarse-grained model. The architecture of thylakoid membranes, however, also provides opportunities for interlayer interactions that instead disfavor the high protein densities of ordered arrangements. Here, we explore the interplay between these opposing driving forces and, in particular, the phase transitions that emerge in the periodic geometry of stacked thylakoid membrane disks. We propose a lattice model that roughly accounts for proteins’ attraction within a layer and across the stromal gap, steric repulsion across the lumenal gap, and regulation of protein density by exchange with the stroma lamellae. Mean-field analysis and computer simulation reveal rich phase behavior for this simple model, featuring a broken-symmetry striped phase that is disrupted at both high and low extremes of chemical potential. The resulting sensitivity of microscopic protein arrangement to the thylakoid’s mesoscale vertical structure raises intriguing possibilities for regulation of photosynthetic function.  相似文献   

2.
The rhizarian amoeba Paulinella chromatophora harbors two photosynthetically active organelles of cyanobacterial origin that have been acquired independently of classic primary plastids. Because their acquisition did take place relatively recently, they are expected to provide new insight into the ancient cyanobacterial primary endosymbiosis. During the process of Paulinella endosymbiont-to-organelle transformation, more than 30 genes have been transferred from the organelle to the host nuclear genome via endosymbiotic gene transfer (EGT). The article discusses step-by-step protein import of EGT-derived proteins into Paulinella photosynthetic organelles with the emphasis on the nature of their targeting signals and the final passage of proteins through the inner organelle membrane. The latter most probably involves a simplified Tic translocon composed of Tic21- and Tic32-like proteins as well as a Hsp70-based motor responsible for pulling of imported proteins into the organelle matrix. Our results indicate that although protein translocation across the inner membrane of Paulinella photosynthetic organelles seems to resemble the one in classic primary plastids, the transport through the outer membrane does not. The differences could result from distinct integration pathways of Paulinella photosynthetic organelles and primary plastids with their respective host cells.  相似文献   

3.
Recent progress in molecular phylogenetics has proven that photosynthetic eukaryotes acquired plastids via primary and secondary endosymbiosis and has given us information about the origin of each plastid. How a photosynthetic endosymbiont became a plastid in each group is, however, poorly understood, especially for the organisms with secondary plastids. Investigating how a nuclear-encoded plastid protein is targeted into a plastid in each photosynthetic group is one of the most important keys to understanding the evolutionary process of symbiogenetic plastid acquisition and its diversity. For organisms which originated through primary endosymbiosis, protein targeting into plastids has been well studied at the molecular level. For organisms which originated through secondary endosymbiosis, molecular-level studies have just started on the plastid-targeted protein-precursor sequences and the targeting pathways of the precursors. However, little information is available about how the proteins get across the inner two or three envelope membranes in organisms with secondary plastids. A good in vitro protein-import system for isolated plastids and a cell transformation system must be established for each group of photosynthetic eukaryotes in order to understand the mechanisms, the evolutionary processes and the diversity of symbiogenetic plastid acquisitions in photosynthetic eukaryotes.  相似文献   

4.
The assembly of the photosynthetic apparatus requires the import of numerous cytosolically synthesised proteins and their correct targeting into or across the thylakoid membrane. Biochemical and genetic studies have revealed the operation of several targeting pathways for these proteins, some of which are used for thylakoid lumen proteins whereas others are utilised by membrane proteins. Some pathways can be traced back to the prokarytoic ancestors of chloroplasts but at least one pathway appears to have arisen in response to the transfer of genes from the organelle to the nucleus. In this article we review recent findings in this field that point to the operation of a mechanistically unique protein translocase in both plastids and bacteria, and we discuss emerging data that reconcile the remarkable variety of targeting pathways with the natures of the substrate precursor proteins.  相似文献   

5.
The biogenesis of the lumenal 16 kDa protein of the photosynthetic oxygen-evolving complex was analysed using an assay for the import of proteins by isolated thylakoids. The precursor protein is imported with high efficiency in the light in both the presence and absence of stromal extract. Import is almost completely blocked in the dark or if the uncoupler nigericin is present in the light. The data indicate that transport across the thylakoid membrane is driven by a proton motive force in which the proton gradient is the dominant component, and that the full precursor protein can be transported across the thylakoid membrane without prior cleavage by the stromal processing peptidase.  相似文献   

6.
The assembly of the photosynthetic apparatus requires the translocation of numerous proteins from the cytosol, initially into the stroma and thereafter into or across the thylakoid membrane. Recent studies have shown that proteins are transported into this membrane by a variety of mechanisms, some of which are derived from a cyanobacterial-type ancestor, whereas others have evolved in response to the more complex transport pathway used by cytosolically synthesized chloroplast proteins. It is now apparent that some of the targeting pathways are used exclusively by hydrophobic thylakoid membrane proteins; here we review recent progress in our understanding of the biogenesis of this important class of protein.  相似文献   

7.
AtToc159 is a GTP-binding chloroplast protein import receptor. In vivo, atToc159 is required for massive accumulation of photosynthetic proteins during chloroplast biogenesis. Yet, in mutants lacking atToc159 photosynthetic proteins still accumulate, but at strongly reduced levels whereas non-photosynthetic proteins are imported normally: This suggests a role for the homologues of atToc159 (atToc132, -120 and -90). Here, we show that atToc90 supports accumulation of photosynthetic proteins in plastids, but is not required for import of several constitutive proteins. Part of atToc90 associates with the chloroplast surface in vivo and with the Toc-complex core components (atToc75 and atToc33) in vitro suggesting a function in chloroplast protein import similar to that of atToc159. As both proteins specifically contribute to the accumulation of photosynthetic proteins in chloroplasts they may be components of the same import pathway.  相似文献   

8.
9.
Protein translocation across the inner envelope of plastids is mediated by the TIC (translocon at the inner envelope membrane of chloroplasts) protein translocation machinery. Tic20 has been shown to function as a central component of TIC machinery. The Arabidopsis genome encodes four Tic20 homologous proteins, AtTic20-I, AtTic20-II, AtTIC20-IV and AtTic20-V, among which only AtTic20-I has been extensively characterized and demonstrated to be essential for protein import into chloroplasts. AtTic20-I is more closely related to AtTic20-IV than to AtTic20-II or AtTic20-V, whereas AtTic20-II and AtTic20-V show higher similarities to each other than to AtTic20-I or AtTic20-IV. Here, we show that AtTic20-IV is expressed mainly in roots whereas AtTic20-I is more abundant in shoots than in roots. Although AtTic20-IV is dispensable for viability in the wild-type background, interestingly, expression of AtTic20-IV is markedly elevated in both shoots and roots in the tic20-I knockout mutant that exhibits severe albino and seedling-lethal phenotypes. The albino tic20-I seedlings do not accumulate any of the photosynthetic proteins analyzed, but the plastids can still import non-photosynthetic housekeeping proteins. This residual import ability of the tic20-I mutant can be attributed to partial compensation by the elevated expression of AtTic20-IV, since a double knockout mutant of AtTic20-I and AtTic20-IV exhibits more severe embryonic lethality. Further overexpression of AtTic20-IV in the tic20-I mutant can only marginally rescue the accumulation of photosynthetic proteins in the albino seedlings. These data demonstrate an absolute requirement of at least one of the two closely related Tic20 proteins in protein translocation across the inner envelope of plastids and also suggest their distinct substrate preferences.  相似文献   

10.
The mobility of photosynthetic proteins represents an important factor that affects light-energy conversion in photosynthesis. The specific feature of photosynthetic proteins mobility can be currently measured in vivo using advanced microscopic methods, such as fluorescence recovery after photobleaching which allows the direct observation of photosynthetic proteins mobility on a single cell level. The heterogeneous organization of thylakoid membrane proteins results in heterogeneity in protein mobility. The thylakoid membrane contains both, protein-crowded compartments with immobile proteins and fluid areas (less crowded by proteins), allowing restricted diffusion of proteins. This heterogeneity represents an optimal balance as protein crowding is necessary for efficient light-energy conversion, and protein mobility plays an important role in the regulation of photosynthesis. The mobility is required for an optimal light-harvesting process (e.g., during state transitions), and also for transport of proteins during their synthesis or repair. Protein crowding is then a key limiting factor of thylakoid membrane protein mobility; the less thylakoid membranes are crowded by proteins, the higher protein mobility is observed. Mobility of photosynthetic proteins outside the thylakoid membrane (lumen and stroma/cytosol) is less understood. Cyanobacterial phycobilisomes attached to the stromal side of the thylakoid can move relatively fast. Therefore, it seems that stroma with their active enzymes of the Calvin–Benson cycle, are a more fluid compartment in comparison to the rather rigid thylakoid lumen. In conclusion, photosynthetic protein diffusion is generally slower in comparison to similarly sized proteins from other eukaryotic membranes or organelles. Mobility of photosynthetic proteins resembles restricted protein diffusion in bacteria, and has been rationalized by high protein crowding similar to that of thylakoids.  相似文献   

11.
The 33- and 23-kDa proteins of the photosynthetic oxygen-evolving complex are synthesized in the cytosol as larger precursors and transported into the thylakoid lumen via stromal intermediate forms. We have investigated the energetics of protein transport across the thylakoid membrane using import assays that utilize either intact chloroplasts or isolated thylakoids. We have found that the light-driven import of the 23-kDa protein into isolated thylakoids is almost completely inhibited by electron transport inhibitors or by the ionophore nigericin but not by valinomycin. These compounds have similar effects in chloroplast import assays: precursors of both the 33- and 23-kDa proteins are imported and processed to intermediate forms in the stroma, but transport into the thylakoid lumen is blocked when electron transport is inhibited or nigericin is present. These results indicate that the transport of these proteins across the thylakoid membrane requires a protonmotive force and that the dominant component in this respect is the proton gradient and not the electrical potential.  相似文献   

12.
Fang Z  Mi F  Berkowitz GA 《Plant physiology》1995,108(4):1725-1734
Transport studies identified a K+ channel protein in preparations of purified spinach (Spinacea oleracea) thylakoid membrane. This protein was solubilized from native membranes and reconstituted into artificial proteoliposomes with maintenance of functional integrity. A 33-kD thylakoid polypeptide was identified as a putative component of this thylakoid protein. This identification was made using an antibody raised against a synthetic peptide representing a highly conserved region of K+ channel proteins. K+ channel activity co-migrated with the immunoreactive 33-kD polypeptide when solubilized thylakoid membrane protein was fractionated on a Suc density gradient. The antibody was used to immunoprecipitate the 33-kD polypeptide. Physiological function of this thylakoid membrane protein was elucidated by measuring photosynthetic electron transport of thylakoid preparations in the presence and absence of a K+ channel blocker. Results indicated that K+ efflux from the thylakoid lumen through this channel protein is required for the optimization of photosynthetic capacity. The effect this protein has on photosynthetic capacity is likely due to the requirement for K+ efflux from the thylakoid lumen to charge-balance light-induced proton pumping across this membrane.  相似文献   

13.
The thylakoid membrane, located inside the chloroplast, requires proteins transported across it for plastid biogenesis and functional photosynthetic electron transport. The chloroplast Tat translocator found on thylakoids transports proteins from the plastid stroma to the thylakoid lumen. Previous studies have shown that the chloroplast Tat pathway is independent of NTP hydrolysis as an energy source and instead depends on the thylakoid transmembrane proton gradient to power protein translocation. Because of its localization on the same membrane as the proton motive force-dependent F(0)F(1) ATPase, we believed that the chloroplast Tat pathway also made use of the thylakoid electric potential for transporting substrates. By adjusting the rate of photosynthetic proton pumping and by utilizing ionophores, we show that the chloroplast Tat pathway can also utilize the transmembrane electric potential for protein transport. Our findings indicate that the chloroplast Tat pathway is likely dependent on the total protonmotive force (PMF) as an energy source. As a protonmotive-dependent device, certain predictions can be made about structural features expected to be found in the Tat translocon, specifically, the presence of a proton well, a device in the membrane that converts electrical potential into chemical potential.  相似文献   

14.
Electron transfer processes are vital elements of energy transduction pathways in living cells. More than a half century of research has produced a remarkably detailed understanding of the factors that regulate these 'currents of life'. We review investigations of Ru-modified proteins that have delineated the distance- and driving-force dependences of intra-protein electron-transfer rates. We also discuss electron transfer across protein-protein interfaces that has been probed both in solution and in structurally characterized crystals. It is now clear that electrons tunnel between sites in biological redox chains, and that protein structures tune thermodynamic properties and electronic coupling interactions to facilitate these reactions. Our work has produced an experimentally validated timetable for electron tunneling across specified distances in proteins. Many electron tunneling rates in cytochrome c oxidase and photosynthetic reaction centers agree well with timetable predictions, indicating that the natural reactions are highly optimized, both in terms of thermodynamics and electronic coupling. The rates of some reactions, however, significantly exceed timetable predictions: it is likely that multistep tunneling is responsible for these anomalously rapid charge transfer events.  相似文献   

15.
In flowering plants, photosystem I (PSI) mediates electron transport across the thylakoid membrane and contains at least 14 proteins. The availability of co-suppression and/or mutant lines deficient for individual PSI polypeptides in Arabidopsis thaliana allows one to assign functions to PSI subunits. We have performed cluster analysis on an extensive set of data on PSI polypeptide levels in ten different PSI mutants. This type of analysis serves to group proteins that exhibit similar changes in amount in different genotypes, and also identifies genotypes which show similar PSI compositions. The interdependence of levels of PSI-C, -D and -E, of -H and -L, and of Lhca2 and 3, which was previously proposed based on the study of single genotypes or on cross-linking experiments, was confirmed by our analyses. In addition, the levels of the lumenal subunits F and N are found to be interdependent. The incorporation of photosynthetic parameters into the cluster analysis revealed that the level of photosynthetic state transitions correlates with the abundance of PSI-H in all 8 genotypes tested, supporting the hypothesis that PSI-H serves as a docking site for LHCII during state transitions.  相似文献   

16.
Photosynthetic nitrogen use efficiency (PNUE, photosynthetic capacity per unit leaf nitrogen) is one of the most important factors for the interspecific variation in photosynthetic capacity. PNUE was analysed in two evergreen and two deciduous species of the genus Quercus. PNUE was lower in evergreen than in deciduous species, which was primarily ascribed to a smaller fraction of nitrogen allocated to the photosynthetic apparatus in evergreen species. Leaf nitrogen was further analysed into proteins in the water‐soluble, the detergent‐soluble, and the detergent‐insoluble fractions. It was assumed that the detergent‐insoluble protein represented the cell wall proteins. The fraction of nitrogen allocated to the detergent‐insoluble protein was greater in evergreen than in deciduous leaves. Thus the smaller allocation of nitrogen to the photosynthetic apparatus in evergreen species was associated with the greater allocation to cell walls. Across species, the fraction of nitrogen in detergent‐insoluble proteins was positively correlated with leaf mass per area, whereas that in the photosynthetic proteins was negatively correlated. There may be a trade‐off in nitrogen partitioning between components pertaining to productivity (photosynthetic proteins) and those pertaining to persistence (structural proteins). This trade‐off may result in the convergence of leaf traits, where species with a longer leaf life‐span have a greater leaf mass per area, lower photosynthetic capacity, and lower PNUE regardless of life form, phyllogeny, and biome.  相似文献   

17.
Temperature and nutrient supply are key factors that control phytoplankton ecophysiology, but their role is commonly investigated in isolation. Their combined effect on resource allocation, photosynthetic strategy, and metabolism remains poorly understood. To characterize the photosynthetic strategy and resource allocation under different conditions, we analyzed the responses of a marine cyanobacterium (Synechococcus PCC 7002) to multiple combinations of temperature and nutrient supply. We measured the abundance of proteins involved in the dark (RuBisCO, rbcL) and light (Photosystem II, psbA) photosynthetic reactions, the content of chlorophyll a, carbon and nitrogen, and the rates of photosynthesis, respiration, and growth. We found that rbcL and psbA abundance increased with nutrient supply, whereas a temperature-induced increase in psbA occurred only in nutrient-replete treatments. Low temperature and abundant nutrients caused increased RuBisCO abundance, a pattern we observed also in natural phytoplankton assemblages across a wide latitudinal range. Photosynthesis and respiration increased with temperature only under nutrient-sufficient conditions. These results suggest that nutrient supply exerts a stronger effect than temperature upon both photosynthetic protein abundance and metabolic rates in Synechococcus sp. and that the temperature effect on photosynthetic physiology and metabolism is nutrient dependent. The preferential resource allocation into the light instead of the dark reactions of photosynthesis as temperature rises is likely related to the different temperature dependence of dark-reaction enzymatic rates versus photochemistry. These findings contribute to our understanding of the strategies for photosynthetic energy allocation in phytoplankton inhabiting contrasting environments.  相似文献   

18.
Using a bioinformatic approach, we analyzed the correspondence in genetic distance matrices between all possible pairwise combinations of 82 photosynthetic genes in 10 species of cyanobacteria. Our analysis reveals significant correlations between proteins linked in a conserved gene order and between structurally identified interacting protein scaffolds that coordinate the binding of cofactors involved in photosynthetic electron transport. Analyses of amino acid substitution rates suggest that the tempo of evolution of genes encoding core metabolic processes in the photosynthetic apparatus is highly constrained by protein-protein, protein-lipid, and protein-cofactor interactions (collectively called "protein interactions"). These interactions are critical for energy transduction, primary charge separation, and electron transport and effectively act as an internal selection pressure governing the conservation of clusters of photosynthetic genes in oxygenic prokaryotic photoautotrophs. Consequently, although several proteins within the photosynthetic apparatus are biophysically and physiologically inefficient, selection has not significantly altered the genes encoding these essential proteins over billions of years of evolution. In effect, these core proteins have become "frozen metabolic accidents."  相似文献   

19.
20.
Photoregulation in prokaryotes   总被引:3,自引:0,他引:3  
The spectroscopic identification of sensory rhodopsin I by Bogomolni and Spudich in 1982 provided a molecular link between the light environment and phototaxis in Halobacterium salinarum, and thus laid the foundation for the study of signal transducing photosensors in prokaryotes. In recent years, a number of new prokaryotic photosensory receptors have been discovered across a broad range of taxa, including dozens in chemotrophic species. Among these photoreceptors are new classes of rhodopsins, BLUF-domain proteins, bacteriophytochromes, cryptochromes, and LOV-family photosensors. Genetic and biochemical analyses of these receptors have demonstrated that they can regulate processes ranging from photosynthetic pigment biosynthesis to virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号