首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

(5R?) and (5S?) diastereomers of 1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxyhydantoin (5-OH-dHyd) and 1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxy-5-methylhydantoin (5-OH-5-Me-dHyd) are major oxidation products of 2′-deoxycytidine and thymidine respectively. If not repaired, when present in cellular DNA, these base lesions may be processed by DNA polymerases that induce mutagenic and cell lethality processes.

Methods

Synthetic oligonucleotides that contained a unique 5-hydroxyhydantoin (5-OH-Hyd) or 5-hydroxy-5-methylhydantoin (5-OH-5-Me-Hyd) nucleobase were used as probes for repair studies involving several E. coli, yeast and human purified DNA N-glycosylases. Enzymatic reaction mixtures were analyzed by denaturing polyacrylamide gel electrophoresis after radiolabeling of DNA oligomers or by MALDI-TOF mass spectrometry measurements.

Results

In vitro DNA excision experiments carried out with endo III, endo VIII, Fpg, Ntg1 and Ntg2, show that both base lesions are substrates for these DNA N-glycosylases. The yeast and human Ogg1 proteins (yOgg1 and hOgg1 respectively) and E. coli AlkA were unable to cleave the N-glycosidic bond of the 5-OH-Hyd and 5-OH-5-Me-Hyd lesions. Comparison of the kcat/Km ratio reveals that 8-oxo-7,8-dihydroguanine is only a slightly better substrate than 5-OH-Hyd and 5-OH-5-Me-Hyd. The kinetic results obtained with endo III indicate that 5-OH-Hyd and 5-OH-5-Me-Hyd are much better substrates than 5-hydroxycytosine, a well known oxidized pyrimidine substrate for this DNA N-glycosylase.

Conclusions

The present study supports a biological relevance of the base excision repair processes toward the hydantoin lesions, while the removal by the Fpg and endo III proteins are effected at better or comparable rates to that of the removal of 8-oxoGua and 5-OH-Cyt, two established cellular substrates.

General significance

The study provides new insights into the substrate specificity of DNA N-glycosylases involved in the base excision repair of oxidized bases, together with complementary information on the biological role of hydantoin type lesions.  相似文献   

2.
Two genes of Saccharomyces cerevisiae, NTG1 and NTG2, encode proteins with a significant sequence homology to the endonuclease III of Escherichia coli. The Ntg1 and Ntg2 proteins were overexpressed in E.coli and purified to apparent homogeneity. The substrate specificity of Ntg1 and Ntg2 proteins for modified bases in oxidatively damaged DNA was investigated using gas chromatography/isotope-dilution mass spectrometry. The substrate used was calf-thymus DNA exposed to gamma-radiation in N2O-saturated aqueous solution. The results reveal excision by Ntg1 and Ntg2 proteins of six pyrimidine-derived lesions, 5-hydroxy-6-hydrothymine, 5-hydroxy-6-hydrouracil, 5-hydroxy-5-methylhydantoin, 5-hydroxyuracil, 5-hydroxycytosine and thymine glycol, and two purine-derived lesions, 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 4,6-diamino-5-formamidopyrimidine from gamma-irradiated DNA. In contrast, Ntg1 and Ntg2 proteins do not release 8-hydroxyguanine or 8-hydroxyadenine from gamma-irradiated DNA. The Ntg1 and Ntg2 proteins also release 2, 6-diamino-4-hydroxy-5-N-methylformamido-pyrimidine from damaged poly(dG-dC).poly(dG-dC). Excision was measured as a function of enzyme concentration and time. Furthermore, kinetic parameters were determined for each lesion. The results show that kinetic constants varied among the different lesions for the same enzyme. We also investigated the capacity of the Ntg1 and Ntg2 proteins to cleave 34mer DNA duplexes containing a single 8-OH-Gua residue mispaired with each of the four DNA bases. The results show that the Ntg1 protein preferentially cleaves a DNA duplex containing 8-OH-Gua mispaired with a guanine. Moreover, the Ntg1 protein releases free 8-OH-Gua from 8-OH-Gua/Gua duplex but not from duplexes containing 8-OH-Gua mispaired with adenine, thymine or cytosine. In contrast, the Ntg2 protein does not incise duplexes containing 8-OH-Gua mispaired with any of the four DNA bases. These results demonstrate that substrate specificities of the Ntg1 and Ntg2 proteins are similar but not identical and clearly different from that of the endonuclease III of E.coli and its homologues in Schizosaccharomyces pombe or human cells.  相似文献   

3.
Escherichia coli endonuclease III (endo III) is the key repair enzyme essential for removal of oxidized pyrimidines and abasic sites. Although two homologues of endo III, Ntgl and Ntg2, were found in Saccharomyces cerevisiae, they do not significantly contribute to repair of oxidative DNA damage in vivo. This suggests that an additional activity(ies) or a regulatory pathway(s) involved in cellular response to oxidative DNA damage may exist in yeast. The pso3-1 mutant of S. cerevisiae was previously shown to be specifically sensitive to toxic effects of hydrogen peroxide (H2O2) and paraquat. Here, we show that increased DNA double strand breakage is very likely the basis of sensitivity of the pso3-1 mutant cells to H2O2. Our results, thus, indicate an involvement of the Pso3 protein in protection of yeast cells from oxidative stress presumably through its ability to prevent DNA double strand breakage. Furthermore, complementation of the repair defects of the pso3-1 mutant cells by E. coli endo III has been examined. It has been found that expression of the nth gene in the pso3-1 mutant cells recovers survival, decreases mutability and protects yeast genomic DNA from breakage following H2O2 treatment. This might suggest some degree of functional similarity between Pso3 and Nth.  相似文献   

4.
Reactive oxygen and nitrogen species generated either as products of aerobic metabolism or as a consequence of environmental mutagens, oxidatively modify DNA. Formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease III (endo III) or their functional mammalian homologues repair 7,8-dihydro-8-oxoguanine (8-oxoG) and damaged pyrimidines, respectively, to curb the deleterious effects of oxidative DNA alterations. A single bout of physical exercise can induce oxidative DNA damage. However, its effect on the activity of repair enzymes is not known. Here we report that the activity of a functional homolog of Fpg, human 8-oxoG DNA glycosylase (hOGG1), is increased significantly, as measured by the excision of 32P labeled damaged oligonucleotide, in human skeletal muscle after a marathon race. The AP site repair enzyme did not change significantly. Despite the large individual differences among the six subjects measured, data suggest that a single-bout of aerobic exercise increases the activity of hOGG1 which is responsible for the excision of 8-oxoG. The up-regulation of DNA repair enzymes might be an important part of the regular exercise induced adaptation process.  相似文献   

5.
Saccharomyces cerevisiae possesses two functional homologues (Ntg1p and Ntg2p) of the Escherichia coli endonuclease III protein, a DNA base excision repair N-glycosylase with a broad substrate specificity directed primarily against oxidatively damaged pyrimidines. The substrate specificities of Ntg1p and Ntg2p are similar but not identical, and differences in their amino acid sequences as well as inducibility by DNA damaging agents suggest that the two proteins may have different biological roles and subcellular locations. Experiments performed on oligonucleotides containing a variety of oxidative base damages indicated that dihydrothymine, urea, and uracil glycol are substrates for Ntg1p and Ntg2p, although dihydrothymine was a poor substrate for Ntg2p. Vectors encoding Ntg1p-green fluorescent protein (GFP) and Ntg2p-GFP fusions under the control of their respective endogenous promoters were utilized to observe the subcellular targeting of Ntg1p and Ntg2p in S. cerevisiae. Fluorescence microscopy of pNTG1-GFP and pNTG2-GFP transformants revealed that Ntg1p localizes primarily to the mitochondria with some nuclear localization, whereas Ntg2p localizes exclusively to the nucleus. In addition, the subcellular location of Ntg1p and Ntg2p confers differential sensitivities to the alkylating agent MMS. These results expand the known substrate specificities of Ntg1p and Ntg2p, indicating that their base damage recognition ranges show distinct differences and that these proteins mediate different roles in the repair of DNA base damage in the nucleus and mitochondria of yeast.  相似文献   

6.
We have analyzed the recognition by various repair endonucleases of DNA base modifications induced by three oxidants, viz. [4-(tert-butyldioxycarbonyl)benzyl]triethylammonium chloride (BCBT), a photochemical source of tert-butoxyl radicals, disodium salt of 1,4-etheno-2,3-benzodioxin-1,4-dipropanoic acid (NDPO(2)), a chemical source of singlet oxygen, and riboflavin, a type-I photosensitizer. The base modifications induced by BCBT, which were previously shown to be mostly 7,8-dihydro-8-oxoguanine (8-oxoGua) residues, were recognized by Fpg and Ogg1 proteins, but not by endonuclease IIII, Ntg1 and Ntg2 proteins. In the case of singlet oxygen induced damage, 8-oxoGua accounted for only 35% of the base modifications recognized by Fpg protein. The remaining Fpg-sensitive modifications were not recognized by Ogg1 protein and relatively poor by endonuclease III, but they were relatively good substrates of Ntg1 and Ntg2. In the case of the damage induced by photoexcited riboflavin, the fraction of Fpg-sensitive base modifications identified as 8-oxoGua was only 23%. In contrast to the damage induced by singlet oxygen, the remaining lesions were not only recognized by Ntg1 and Ntg2 proteins and (relatively poor) by endonuclease III, but also by Ogg1 protein. The analysis of the mutations observed after transfection of modified plasmid pSV2gpt into Escherichia coli revealed that all agents induced near exclusively GC-->TA and GC-->CG transversions, the numbers of which were correlated with the numbers of 8-oxoGua residues and Ntg-sensitive modifications, respectively. In conclusion, both singlet oxygen and the type-I photosensitizer riboflavin induce predominantly oxidative guanine modifications other than 8-oxoGua, which most probably give rise to GC-->CG transversions and in which eukaryotic cells are substrates of Ntg1 and Ntg2 proteins.  相似文献   

7.
Endonuclease III from Escherichia coli is the prototype of a ubiquitous DNA repair enzyme essential for the removal of oxidized pyrimidine base damage. The yeast genome project has revealed the presence of two genes in Saccharomyces cerevisiae, NTG1 and NTG2, encoding proteins with similarity to endonuclease III. Both contain the highly conserved helix-hairpin-helix motif, whereas only one (Ntg2) harbors the characteristic iron-sulfur cluster of the endonuclease III family. We have characterized these gene functions by mutant and enzyme analysis as well as by gene expression and intracellular localization studies. Targeted gene disruption of NTG1 and NTG2 produced mutants with greatly increased spontaneous and hydrogen peroxide-induced mutation frequency relative to the wild type, and the mutation response was further increased in the double mutant. Both enzymes were found to remove thymine glycol and 2, 6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (faPy) residues from DNA with high efficiency. However, on UV-irradiated DNA, saturating concentrations of Ntg2 removed only half of the cytosine photoproducts released by Ntg1. Conversely, 5-hydroxycytosine was removed efficiently only by Ntg2. The enzymes appear to have different reaction modes, as judged from much higher affinity of Ntg2 for damaged DNA and more efficient borhydride trapping of Ntg1 to abasic sites in DNA despite limited DNA binding. Northern blot and promoter fusion analysis showed that NTG1 is inducible by cell exposure to DNA-damaging agents, whereas NTG2 is constitutively expressed. Ntg2 appears to be a nuclear enzyme, whereas Ntg1 was sorted both to the nucleus and to the mitochondria. We conclude that functions of both NTG1 and NTG2 are important for removal of oxidative DNA damage in yeast.  相似文献   

8.
Saccharomyces cerevisiae possesses two Escherichia coli endonuclease III homologs, NTG1 and NTG2, whose gene products function in the base excision repair pathway and initiate removal of a variety of oxidized pyrimidines from DNA. Although the glycosylase activity of these proteins has been well studied, the in vivo importance of the AP lyase activity has not been determined. Previous genetic studies have suggested that the AP lyase activities of Ntg1p and Ntg2p may be major contributors in the initial processing of abasic sites. We conducted a biochemical characterization of the AP lyase activities of Ntg1p and Ntg2p via a series of kinetic experiments. Such studies were designed to determine if Ntg1p and Ntg2p prefer specific bases located opposite abasic sites and whether these lesions are processed with a catalytic efficiency similar to Apn1p, the major hydrolytic AP endonuclease of yeast. Our results indicate that Ntg1p and Ntg2p are equally effective in processing four types of abasic site-containing substrates. Certain abasic site substrates were processed with greater catalytic efficiency than others, a situation similar to Apn1p processing of such substrates. These biochemical studies strongly support an important biological role for Ntg1p and Ntg2p in the initial processing of abasic sites and maintenance of genomic stability.  相似文献   

9.
DNA repair is a basic biological process providing for the stability and integrity of the genome. Disturbed repair results in premature aging, autoimmune and cardiological disorders, tumorigenesis, etc. Data on enzymes which play key roles in repairing DNA with lesions generated by reactive oxygen species are reviewed. The substrate specificity, mechanism of catalysis, structure of the active center, and specific structural and functional features are described for Escherichia coli mono- and bifunctional DNA glycosylases (endonuclease III, Fpg, MutY, endonuclease VIII, AlkA, MutT) and their prokaryotic and eukaryotic homologs (Ntg1, Ntg2, yOgg1, yOgg2, hOgg1, hOgg2, mOgg1, rOgg1, hMTH, hMYH, MAG, ADPG, and ANPG) which are involved in base excision repair.  相似文献   

10.
The removal of oxidative damage from Saccharomyces cerevisiae DNA is thought to be conducted primarily through the base excision repair pathway. The Escherichia coli endonuclease III homologs Ntg1p and Ntg2p are S. cerevisiae N-glycosylase-associated apurinic/apyrimidinic (AP) lyases that recognize a wide variety of damaged pyrimidines (H. J. You, R. L. Swanson, and P. W. Doetsch, Biochemistry 37:6033-6040, 1998). The biological relevance of the N-glycosylase-associated AP lyase activity in the repair of abasic sites is not well understood, and the majority of AP sites in vivo are thought to be processed by Apn1p, the major AP endonuclease in yeast. We have found that yeast cells simultaneously lacking Ntg1p, Ntg2p, and Apn1p are hyperrecombinogenic (hyper-rec) and exhibit a mutator phenotype but are not sensitive to the oxidizing agents H2O2 and menadione. The additional disruption of the RAD52 gene in the ntg1 ntg2 apn1 triple mutant confers a high degree of sensitivity to these agents. The hyper-rec and mutator phenotypes of the ntg1 ntg2 apn1 triple mutant are further enhanced by the elimination of the nucleotide excision repair pathway. In addition, removal of either the lesion bypass (Rev3p-dependent) or recombination (Rad52p-dependent) pathway specifically enhances the hyper-rec or mutator phenotype, respectively. These data suggest that multiple pathways with overlapping specificities are involved in the removal of, or tolerance to, spontaneous DNA damage in S. cerevisiae. In addition, the fact that these responses to induced and spontaneous damage depend upon the simultaneous loss of Ntg1p, Ntg2p, and Apn1p suggests a physiological role for the AP lyase activity of Ntg1p and Ntg2p in vivo.  相似文献   

11.
Back JH  Chung JH  Park YI  Kim KS  Han YS 《DNA Repair》2003,2(5):455-470
Damaged DNA strands are repaired by base excision (BER) in organisms, a process initiated by repair enzymes, which include DNA glycosylases and endonucleases. We expressed and characterized two putative endonuclease genes from Methanobacterium thermoautotrophicum, Mt0764 and Mt1010, encoding homologues of endonuclease III (endo III) and endonuclease IV (endo IV) of Escherichia coli. The Mt0764 and Mt1010 proteins showed endo III activity by removing thymine glycol from DNA strand and AP endonuclease activity, respectively. The Mt0764 protein not only cleaved the oligonucleotide duplex, containing a thymine glycol/adenine pair efficiently, but also showed activity on the 8-oxoguanine-containing oligonucleotide duplex. In this study, we report upon the stimulation of endo III activity by endo IV using two recombinant proteins (Mt1010 and Mt0764) from M. thermoautotrophicum. Mt1010 stimulated the DNA glycosylase activity of Mt0764 for DNA substrates containing 8-oxoguanine residues and increasing the formation of the Mt0764 protein-DNA complex. The interaction between Mt1010 and Mt0764 was observed by using an in vitro binding assay. These results suggest that association between endo III and endo IV may occur in vivo, and this contributes to efficient base excision repair for the oxidative damage of DNA.  相似文献   

12.
DNA damaging agents are a constant threat to genomes in both the nucleus and the mitochondria. To combat this threat, a suite of DNA repair pathways cooperate to repair numerous types of DNA damage. If left unrepaired, these damages can result in the accumulation of mutations which can lead to deleterious consequences including cancer and neurodegenerative disorders. The base excision repair (BER) pathway is highly conserved from bacteria to humans and is primarily responsible for the removal and subsequent repair of toxic and mutagenic oxidative DNA lesions. Although the biochemical steps that occur in the BER pathway have been well defined, little is known about how the BER machinery is regulated. The budding yeast, Saccharomyces cerevisiae is a powerful model system to biochemically and genetically dissect BER. BER is initiated by DNA N-glycosylases, such as S. cerevisiae Ntg1. Previous work demonstrates that Ntg1 is post-translationally modified by SUMO in response to oxidative DNA damage suggesting that this modification could modulate the function of Ntg1. In this study, we mapped the specific sites of SUMO modification within Ntg1 and identified the enzymes responsible for sumoylating/desumoylating Ntg1. Using a non-sumoylatable version of Ntg1, ntg1ΔSUMO, we performed an initial assessment of the functional impact of Ntg1 SUMO modification in the cellular response to DNA damage. Finally, we demonstrate that, similar to Ntg1, the human homologue of Ntg1, NTHL1, can also be SUMO-modified in response to oxidative stress. Our results suggest that SUMO modification of BER proteins could be a conserved mechanism to coordinate cellular responses to DNA damage.  相似文献   

13.
14.
Escherichia coli Nth protein (endonuclease III) is a DNA glycosylase with a broad substrate specificity for pyrimidine derivatives. We discovered novel substrates of E. coli Nth protein using gas chromatography/isotope-dilution mass spectrometry and DNA samples, which were damaged by gamma-irradiation or by H(2)O(2)/Fe(III)-EDTA/ascorbic acid. These were 4, 6-diamino-5-formamidopyrimidine, 5,6-dihydroxyuracil, and 5, 6-dihydroxycytosine. The first compound was recognized for the first time as a purine-derived substrate of the enzyme. We also investigated kinetics of excision of a multitude of modified bases from three damaged DNA substrates. Excision of modified bases was determined as a function of enzyme concentration, incubation time, and substrate concentration. Excision followed Michaelis-Menten kinetics. Kinetic parameters were determined for the following modified bases: 4,6-diamino-5-formamidopyrimidine, cis- and trans-thymine glycols, 5-hydroxycytosine, cis- and trans-uracil glycols, 5-hydroxyuracil, 5-hydroxy-5-methylhydantoin, alloxan, 5, 6-dihydroxycytosine, 5,6-dihydroxyuracil, 5-hydroxy-6-hydrothymine, and 5-hydroxy-6-hydrouracil. The results show that three newly discovered substrates were excised by the enzyme with a preference similar to excision of its known major substrates such as thymine glycol and 5-hydroxycytosine. Excision kinetics significantly depended on the nature of the damaged DNA substrates in agreement with previous results on other DNA glycosylases. Specificity constants (k(cat)/K(M)) of E. coli Nth protein were compared to those of its previously investigated functional homologues such as human and Schizosaccharomyces pombe Nth proteins and Saccharomyces cerevisiae Ntg1 and Ntg2 proteins. This comparison shows that significant differences exist with respect to substrate specificity and kinetic parameters despite extensive structural conservation among the Nth homologues.  相似文献   

15.
Collura A  Kemp PA  Boiteux S 《DNA Repair》2012,11(3):294-303
In Saccharomyces cerevisiae, inactivation of base excision repair (BER) AP endonucleases (Apn1p and Apn2p) results in constitutive phosphorylation of Rad53p and delay in cell cycle progression at the G2/M transition. These data led us to investigate genetic interactions between Apn1p, Apn2p and DNA damage checkpoint proteins. The results show that mec1 sml1, rad53 sml1 and rad9 is synthetic lethal with apn1 apn2. In contrast, apn1 apn2 rad17, apn1 apn2 ddc1 and apn1 apn2 rad24 triple mutants are viable, although they exhibit a strong Can(R) spontaneous mutator phenotype. In these strains, high Can(R) mutation rate is dependent upon functional uracil DNA N-glycosylase (Ung1p) and mutation spectra are dominated by AT to CG events. The results point to a role for Rad17-Mec3-Ddc1 (9-1-1) checkpoint clamp in the prevention of mutations caused by abasic (AP) sites linked to incorporation of dUTP into DNA followed by the excision of uracil by Ung1p. The antimutator role of the (9-1-1) clamp can either rely on its essential function in the induction of the DNA damage checkpoint or to another function that specifically impacts DNA repair and/or mutagenesis at AP sites. Here, we show that the abrogation of the DNA damage checkpoint is not sufficient to enhance spontaneous mutagenesis in the apn1 apn2 rad9 sml1 quadruple mutant. Spontaneous mutagenesis was also explored in strains deficient in the two major DNA N-glycosylases/AP-lyases (Ntg1p and Ntg2p). Indeed, apn1 apn2 ntg1 ntg2 exhibits a strong Ung1p-dependent Can(R) mutator phenotype with a spectrum enriched in AT to CG, like apn1 apn2 rad17. However, genetic analysis reveals that ntg1 ntg2 and rad17 are not epistatic for spontaneous mutagenesis in apn1 apn2. We conclude that under normal growth conditions, dUTP incorporation into DNA is a major source of AP sites that cause high genetic instability in the absence of BER factors (Apn1p, Apn2p, Ntg1p and Ntg2p) and Rad17-Mec3-Ddc1 (9-1-1) checkpoint clamp in yeast.  相似文献   

16.
8-Methyl-2'-deoxyguanosine (8-medGuo) has been shown to be a major stable alkylation product of 2'-deoxyguanosine induced by methyl radical attack on DNA. Moreover, by using primer extension assays, the latter DNA modification has recently been reported to be a miscoding lesion by generating G to C and G to T transversions and deletions in vitro. However, no data have been reported up to now, concerning the processing of this C8-alkylated nucleoside by the DNA repair machinery. Therefore, we have investigated the capability of excision of 8-methylguanine (8-meGua) site specifically incorporated into oligonucleotide substrates by several bacterial, yeast and mammalian DNA N-glycosylases. The results show that the 3-methyladenine (3-meAde) DNA glycosylase II (AlkA protein) from Escherichia coli is the only DNA N-glycosylase tested able to remove 8-meGua from double-stranded DNA fragments. Moreover, the activity of AlkA for 8-meGua varied markedly depending on the opposite base in DNA, being the highest with Adenine and Thymine and the lowest with Cytosine and Guanine. The removal of 8-meGua by AlkA protein was compared to that of 7-methylguanine (7-meGua) and hypoxanthine (Hx). The rank of damage as a substrate for AlkA being 7-meGua>8-meGua>Hx. In contrast, the human 3-meAde DNA N-glycosylase (Mpg) is not able to release 8-meGua paired with any of the four DNA bases. We also show that, DNA N-glycosylases involved in the removal of oxidative damage, such as Fpg or Nth proteins from E. coli, Ntg1, Ntg2 or Ogg1 proteins of Saccharomyces cerevisiae, or human Ogg1 do not release 8-meGua placed opposite any of the four DNA bases. Furthermore, HeLa and Chinese hamster ovary (CHO) cell free protein extracts do not show any cleavage activity at 8-meGua paired with adenine or cytosine, which suggests the absence of base excision repair (BER) of this lesion in mammalian cells.  相似文献   

17.
In Saccharomyces cerevisiae, inactivation of the two DNA N-glycosylases Ntg1p and Ntg2p does not result in a spontaneous mutator phenotype, whereas simultaneous inactivation of Ntglp, Ntg2p and Radlp or Rad14p, both of which are involved in nucleotide excision repair (NER), does. The triple mutants rad1 ntg1 ntg2 and rad14 ntg1 ntg2 show 15- and 22-fold increases, respectively, in spontaneous forward mutation to canavanine resistance (CanR) relative to the wild-type strain (WT). In contrast, neither of these triple mutants shows an increase in the incidence of Lys+ revertants of the lys1-1 ochre allele. Furthermore, the rad1 ntg1 ntg2 mutant is hypersensitive to the lethal effect of H2O2 relative to WT, rad1 and ntg1 ntg2 mutant strains. Moreover, the rad1 ntg1 ntg2 strain is hypermutable (CanR and Lys+) upon exposure to H2O2, relative to WT, rad1 and ntg1 ntg2 strains. Mutagen sensitivity and enhanced mutagenesis in the rad1 ntg1 ntg2 triple mutant, relative to the other strains tested, were also observed upon exposure to oxidizing agents such as tertbutylhydroperoxide and menadione. In contrast, the sensitivity of the rad1 ntg1 ntg2 triple mutant to gamma-irradiation does not differ from that of the WT. However, the triple mutant shows an increase in the frequency of Lys+ revertants recovered after gamma-irradiation. The results reported in this study demonstrate that base excision repair (BER) mediated by Ntglp and Ntg2p acts synergistically with NER to repair endogenous or induced lethal and mutagenic oxidative DNA damage in yeast. The substrate specificity of Ntg1 p and Ntg2p, and the spectrum of lesions induced by the DNA-damaging agents used, strongly suggest that oxidized DNA bases, presumably oxidized pyrimidines, represent the major targets of this repair pathway.  相似文献   

18.
Emphasis was placed in this work on the assessment of biological features of 2,2,4-triaminooxazolone, a major one-electron and ·OH-mediated oxidation product of guanine. For this purpose, two oligonucleotides that contain a unique oxazolone residue were synthesized. Herein we report the mutagenic potential of oxazolone during in vitro DNA synthesis and its behavior towards DNA repair enzymes. Nucleotide insertion opposite oxazolone, catalyzed by Klenow fragment exo and Taq polymerase indicates that the oxazolone lesion induces mainly dAMP insertion. This suggests that the formation of oxazolone in DNA may lead to G→T transversions. On the other hand, oxazolone represents a blocking lesion when DNA synthesis is performed with DNA polymerase β. Interestingly, DNA repair experiments carried out with formamidopyrimidine DNA N-glycosylase (Fpg) and endonuclease III (endo III) show that oxazolone is a substrate for both enzymes. Values of kcat/Km for the Fpg-mediated removal of oxidative guanine lesions revealed that 8-oxo-7,8-dihydroguanine is only a slightly better substrate than oxazolone. In the case of endo III-mediated cleavage of modified bases, the present results suggest that oxazolone is a better substrate than 5-OHC, an oxidized pyrimidine base. Finally, MALDI-TOF-MS analysis of the DNA fragments released upon digestion of an oxazolone-containing oligonucleotide by Fpg gave insights into the enzymatic mechanism of oligonucleotide cleavage.  相似文献   

19.
Bursts of free radicals produced by ionization of water in close vicinity to DNA can produce clusters of opposed DNA lesions and these are termed multiply damaged sites (MDS). How MDS are processed by the Escherichia coli DNA glycosylases, endonuclease (endo) III and endo VIII, which recognize oxidized pyrimidines, is the subject of this study. Oligonucleotide substrates were constructed containing a site of pyrimidine damage or an abasic (AP) site in close proximity to a single nucleotide gap, which simulates a free radical-induced single-strand break. The gap was placed in the opposite strand 1, 3 or 6 nt 5' or 3' of the AP site or base lesion. Endos III and VIII were able to cleave an AP site in the MDS, no matter what the position of the opposed strand break, although cleavage at position one 5' or 3' was reduced compared with cleavage at positions three or six 5' or 3'. Neither endo III nor endo VIII was able to remove the base lesion when the gap was positioned 1 nt 5' or 3' in the opposite strand. Cleavage of the modified pyrimidine by endo III increased as the distance increased between the base lesion and the opposed strand break. With endo VIII, however, DNA breakage at the site of the base lesion was equivalent to or less when the gap was positioned 6 nt 3' of the lesion than when the gap was 3 nt 3' of the lesion. Gel mobility shift analysis of the binding of endo VIII to an oligonucleotide containing a reduced AP (rAP) site in close opposition to a single nucleotide gap correlated with cleavage of MDS substrates by endo VIII. If the strand break in the MDS was replaced by an oxidized purine, 7,8-dihydro-8-oxoguanine (8-oxoG), neither endo VIII cleavage nor binding were perturbed. These data show that processing of oxidized pyrimidines by endos III and VIII was strongly influenced by the position and type of lesion in the opposite strand, which could have a significant effect on the biological outcome of the MDS lesion.  相似文献   

20.
In this study, effects of Lacidipine (LAC), Ramipril (RAM) and Valsartan (VAL) on DNA damage and oxidative stress occurred in acute and chronic periods after isoproterenol (ISO)-induced myocardial infarct (MI) were investigated in rats. LAC, RAM and VAL had been administered by oral gavage at 3, 3 and 30 mg/kg doses, respectively, in acute and chronic periods following MI. In acute MI model, LAC, RAM and VAL had been administered once per day to rat groups during 30 days. On days 29 and 30, the rats of the acute MI control and drug treatment groups were administered 180 mg/kg ISO, subcutaneously at an interval of 24 h. In chronic MI model, LAC, RAM and VAL had been administered to rat groups during 30 days, and on the 1st and 2nd days, the rats of the chronic MI control and drug treatment groups were administered ISO, by the same way. After this period, routine biochemistry indicators of MI, alanin aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase-isoenzymes (CK-MB), troponin I (TnI) and nitric oxide (NO), oxidative stress indicator, has been measured in the serums obtained from rat’s blood. Also, 7,8-Dihydro-8-oxo-guanine (8-OHGua), which is an indicator of DNA damage level, has been determined in whole blood. After MI diagnosis, the relationships among the 8-OHGua, NO and clinic MI indicators have been determined. Results have been evaluated by comparing with that of control group. In control groups, the clinic MI indicators have been found to be statistically higher than the drug groups. In parallel to this increase in MI indicators, there have been determined a significant decrease in NO levels and an increase in 8-OHGua level. There was no significant difference in the rat groups which received drugs without MI induction. We have observed that the level of 8-OHGua which increased after MI in both acute and chronic periods decreased by LAC, RAM and VAL when compared to acute and chronic MI control groups. In conclusion, it has been determined that oxidative stress has been increased after ISO induced MI model and this stress reduces NO and even damages DNA. LAC, RAM and VAL may decrease the severity of MI and prevent DNA damage by reducing oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号