首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A jetting technique in a liquid-liquid co-flowing stream was applied to the preparation of mammalian cell-enclosing calcium-alginate (Ca-alg) hydrogel fibers of several hundred micrometers in cross-sectional diameter. One percent alginate aqueous solution was extruded from needles (270, 480, 940 microm inner diameter) into a co-flowing laminar stream of 100 mM aqueous calcium chloride solution. The extruded alginate solution was stretched by the CaCl(2) solution, which is known as a "jetting process", and the Ca-alg hydrogel fibers were formed by gelation of the alginate solution through the uptake of calcium ions in the CaCl(2) solution. The cross-sectional diameter of the hydrogel fibers could be controlled from approximately 100-800 microm by changing the velocities of the alginate and CaCl(2) solution, and the inner diameter of the needle. Approximately 95% of bovine carotid artery vascular endothelial cells remained alive after the process of preparing hydrogel fibers in a co-flowing stream, demonstrating that the cell-enclosing process scarcely influences the viability of the enclosed cells.  相似文献   

2.
A simple and high-efficiency approach to loading macromolecules into microscale carriers is presented. Calcium-cross-linked alginate hydrogel microspheres were fabricated by an emulsification technique and then used as negatively charged templates to form polyelectrolyte multilayer coatings. A calcium ion chelator, EDTA, was used to free the Ca(2+)-cross-linked alginate hydrogel within {poly(allylamine hydrochloride)/poly (styrene sulfonate)}(4) ({PAH/PSS}(4)) coating, allowing partial release of alginate. The retention of alginate in {PAH/PSS}(4) microcapsule was confirmed by FTIR spectroscopy and confocal microscopy. Real-time confocal microscopy was used to investigate the loading process of positively charged macromolecules (dextran-amino, and peroxidase) into alginate-templated microcapsules, which showed the loading occurred in <2 min for dextran-amino and <10 min for peroxidase, respectively. A high loading efficiency of 25 mug peroxidase in approximately 1.0 x 10(7) microcapsules (2.5 pg POx/capsule) was achieved with a low concentration of peroxidase loading solution (10 mug/mL). This spontaneous loading technique for encapsulating positively charged molecules in alginate-templated polyelectrolyte microcapsules shows strong potential for biosensor and drug delivery applications.  相似文献   

3.
The molecular weight of polymeric alginic acid digested by alginate lyase (poly(1,4-beta-D-mannuronide) lyase, EC 4.2.2.3) was determined at various stages of the lysis. Low molecular weigh fragments were detected only after 60-100% lysis. Some high molecular weight fragments remained intact even after addition of a fresh aliquot of enzyme to the digest. The enzyme showed maximal activity at pH 5.6 in 0.05 M salt. Enzyme activity was stimulated by addition of 7.5 mM CaCl2 and 0.2 M NaCl, when the pH optimum was between 8 and 8.5. Only mannuronic acid was detected at the reducing end of fragments after exhausive enzymolysis, reduction and hydrolysis. On studying the reaction products by NMR, a double-bound signal (sigma = 5.98 ppm) was observed. A considerable decrease in intensity of the D-mannuronic acid residue signal was detected after hydrolysis of alginate lyase VI on poly-(ManUA-GulUA), but not poly(GulUA). The results suggest that alginate lyase VI may be an endoalginate lyase that splits glycoside bonds only between two mannuronic acid residues.  相似文献   

4.
Calcium alginate gel stabilized with a polyelectrolyte complex (PEC) consisting of potassium poly(vinyl alcohol) sulfate (KPVS) and trimethylammonium glycol chitosan iodide (TGCI) was used for the immobilization of beta-amylase. The immobilization was made by gelling aqueous droplets of enzyme solution including both sodium alginate and KPVS in a CaCl(2) solution containing TGCI. The activity of the enzyme entrapped into the stabilized gel beads was evaluated by studying the batch reaction kinetics of enzyme-catalyzed hydrolysis of maltotetraose. Repeated kinetic measurements, totaling 18, were carried out at fixed time intervals. After each measurement the beads were stirred for 1 day in a freshly prepared 10 mM NaCl solution at 3 degrees C. It was found that the immobilized system remained stable without leading to a serious loss of the activity or to a large leakage of the enzyme from the support. This was explained as being due to a PEC-crosslinked contracted network structure of the stabilized gel matrix.  相似文献   

5.
Salt induced dissociation of protamine, poly(L-lysine) and poly(L-arginine) from DNA was measured by relative light scattering at theta = 90 degrees and/or centrifugation. Dissociation of histones from DNA was studied using relative light scattering and intrinsic tyrosine fluorescence. Protamine was dissociated from DNA at 0.15 M MgCl2 (ionic strength mu = 0.45) or 0.53 M NaCl (mu = 0.53) based on light scattering data and at approximately 0.2 M MgCl2 (mu = 0.6) or 0.6 M NaCl based on centrifugation data. NaCl induced dissociation of poly(Lys) or poly(Arg) from natural DNAs measured by light scattering did not depend on the guanine plus cytosine content. To dissociate poly(Arg) from DNA higher ionic strength using NaCl, MgCl2, or CaCl2, similar ionic strength using NaClo4, and lower ionic strength using Na2SO4 was needed then to dissociated poly(Lys). Both the decrease in light scattering and the enhancement of tyrosine fluorescence of chromatin occurred between 0.5 and 1.5 M NaCl when histones were dissociated.  相似文献   

6.
Enzyme immobilization in the form of fiber and paper was easily achieved by wet spinning of aqueous admixture of sodium alginate and enzymes into divalent metallic ion solution as a coagulating bath, followed by paper making of resultant shortly cut fibers. Entrapment yields of enzymes used, e.g., glucoamylase, cyclodextrin glucanotransferase, endo-polygalacturonase, and protease, were always higher in calcium alginate fibers and their papers than those in corresponding beads. It was found that the yields increased with an increase of the discharge rate through the spinning nozzle because the higher discharge rate could provide more highly oriented metal-chelate linear polymer molecules along the fiber axis for preventing leakage of entrapped enzymes. Divalent metallic ions affected greatly the entrapment of glucoamylase in alginate fibers, the order of which followed roughly the ionotropic series of Thiele. Entrapment of glucoamylase in bicomponent systems comprising alginate and other water-soluble polymers was also investigated.  相似文献   

7.
Thermoalkalophilic esterase enzyme from Bal?ova (Agamemnon) geothermal site were aimed to be immobilized effectively via a simple and cost-effective protocol in silicate coated Calcium alginate (Ca-alginate) beads by entrapment. The optimal immobilization conditions of enzyme in Ca-alginate beads were investigated and obtained with 2% alginate using 0.5mg/ml enzyme and 0.7 M CaCl(2) solution. In order to prevent enzyme from leaking out of the gel beads, Ca-alginate beads were then coated with silicate. Enzyme loading efficiency and immobilization yield for silicate coated beads was determined as 98.1% and 71.27%, respectively and compared with non-coated ones which were 68.5% and 45.80%, respectively. Surface morphologies, structure and elemental analysis of both silicate coated and non-coated alginate beads were also compared using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM) equipped with Energy-dispersive X-ray spectroscopy (EDX). Moreover, silicate coated alginate beads enhanced reusability of esterase in continuous processes compared to non-coated beads. The hydrolytic properties of free and immobilized enzyme in terms of storage and thermal stability as well as the effects of the temperature and pH were determined. It was observed that operational, thermal and storage stabilities of the esterase were increased with immobilization.  相似文献   

8.
Chemical sensors utilizing immobilized enzymes and proteins are important for monitoring chemical processes and biological systems. In this study, calcium-cross-linked alginate hydrogel microspheres were fabricated as enzyme carriers by an emulsification technique. Glucose oxidase (GOx) was encapsulated in alginate microspheres using three different methods: physical entrapment (emulsion), chemical conjugation (conjugation), and a combination of physical entrapment and chemical conjugation (emulsion-conjugation). Nano-organized coatings were applied on alginate/GOx microspheres using the layer-by-layer self-assembly technique in order to stabilize the hydrogel/enzyme system under biological environment. The encapsulation of GOx and formation of nanofilm coating on alginate microspheres were verified with FTIR spectral analysis, zeta-potential analysis, and confocal laser scanning microscopy. To compare both the immobilization properties of enzyme encapsulation techniques and the influence of nanofilms with uncoated microspheres, the relationship between enzyme loading, release, and effective GOx activity (enzyme activity per unit protein loading) were studied over a period of four weeks. The results produced four key findings: (1) the emulsion-conjugation technique improved the stability of GOx in alginate microspheres compared to the emulsion technique, reducing the GOx leaching from microsphere from 50% to 17%; (2) the polyelectrolyte nanofilm coatings increased the GOx stability over time, but also reduced the effective GOx activity; (3) the effective GOx activity for the emulsion-conjugation technique (about 3.5 x 10(-)(5) AU microg(-)(1) s(-)(1)) was higher than that for other methods, and did not change significantly over four weeks; and (4) the GOx concentration, when compared after one week for microspheres with three bilayers of poly(allylamine hydrochloride)/sodium poly(styrene sulfonate) ({PAH/PSS}) coating, was highest for the emulsion-conjugation technique. As a result, the comparison of these three techniques showed the emulsion-conjugation technique to be a potentially effective and practical way to fabricate alginate/GOx microspheres for implantable glucose biosensor application.  相似文献   

9.
Crow BB  Nelson KD 《Biopolymers》2006,81(6):419-427
We have developed a novel biodegradable, polymeric fiber construct that is coextruded using a wet-spinning process into a core-sheath format with a polysaccharide pre-hydrogel solution as the core fluid and poly(L-lactic acid) (PLLA) as the sheath. The biodegradable, biocompatible fibers were extruded from polymeric emulsions comprised of solutions of various molecular weights of PLLA dissolved in chloroform and containing dispersed, protein-free aqueous phases comprising up to 10% of the emulsion volume. Biologically sensitive agents can be loaded via a dispersed aqueous phase in the polymer, and/or directly into the polysaccharide. We show that this core-sheath fiber format will load a model protein that can be delivered for extended periods in vitro. Bovine serum albumin (BSA) was loaded into the fiber core as a model protein. We have shown that the greater the volume of the protein-free aqueous phase dispersed into the polymeric continuous-phase emulsion, the greater the total release of BSA encapsulated by a core gel comprised of 1% sodium alginate solution. We conclude this fiber format provides a promising vehicle for in vivo delivery of biological molecules. Its biocompatibility and biodegradability also allow for its use as a possible substrate for tissue engineering applications.  相似文献   

10.
A method previously used in this laboratory for entrapment of tumor cells in alginate beads has been extended to provide a slow release delivery system for growth factors with known in vivo angiogenic activity. Protein growth factors were entrapped in alginate beads in amounts sufficient to cause incorporation of 3H-thymidine by COMMA-D cells in vitro, and in vivo neovascularization when injected subcutaneously into Balb/c mice. Entrapment of 125I-labelled growth factors showed that the amount of molecule entrapped in alginate beads may vary with the charge of the molecule. In vitro cell proliferation studies showed that entrapment in alginate beads may provide a slow-release system or a stabilizing environment for the protein. In some cases biological activity of the growth factor in solution was increased by the presence of control alginate beads. When alginate-entrapped growth factors were injected into Balb/c mice, induction of new blood vessels could be monitored qualitatively by macroscopic photography and assessed quantitatively by measuring the pooling of radiolabelled red blood cells at the experimental site. Subcutaneous injection of purified angiogenic factors not entrapped in alginate beads did not cause neovascularization. Diffusion of 125I-labelled growth factors from alginate beads in the animal showed that release in vivo may depend on the charge of the protein molecule. These results indicate that injection of purified molecules entrapped in alginate beads provides an effective localized and slow-release delivery of biologically active molecules. This delivery system may extend the time of effectiveness of biologically active molecules in vivo compared to direct injection without alginate entrapment. The method of entrapment and injection has potential for identifying active factors in tumor-induced angiogenesis and testing new compounds as modulators of neovascularization.  相似文献   

11.
Calcium alginate gel (CAG) beads were used to entrap the antioxidant astaxanthin-rich Xanthophyllomyces dendrorhous (ASX) by ionic gelation. ASX-CAG bead entrapment efficiency and release behavior, as influenced by alginate and CaCl2 concentration and hardening time, were investigated. The optimized bead preparation conditions that gave rise to an efficient ASX release pattern were 1.5% alginate, 50 mM CaCl2, and a 5 min hardening time. The antioxidant activity of non-encapsulated ASX was maintained for 4 days and then sharply decreased, whereas encapsulated ASX was maintained for 6 days. These results revealed that physical entrapment of ASX within CAG beads could be an effective technique for protecting the antioxidant activity of ASX from lipid peroxidation.  相似文献   

12.
The use of calcium alginate gels for the “Solids Separation” techniques was demonstrated by entrapment of a yeast extract in calcium alginate pellets and the study of the release of alcohol dehydrogenase and NADH into a dilute calcium chloride solution. The use of calcium alginate gels for a “Diffusional Chromatography” technique was demonstrated in a model system by a fractionation of NAD and hemoglobin release following their entrapment in calcium alginate pellets. The advantages of these techniques and their potentials are discussed.  相似文献   

13.
研究了基因工程菌BL21/pET22b-argE固定化条件。最适包埋材料为海藻酸钙,优化后的包埋条件为海藻酸钠20g.L-1(含有12 g.L-1菌液)滴至2%CaCl2溶液中,固定化16 h。固定化细胞酶拆分蛋氨酸的速率比游离细胞酶慢,但其终极拆分能力与游离细胞酶相当。固定化细胞酶反复利用8批时酶活仍保持在95%以上,具有很好的工业应用优势。  相似文献   

14.
Spherical gel beads of collagen/alginate were prepared by discharging droplets of a mixture containing collagen (1.07-1.9 mg/ml) and alginate (1.2-1.5% w/v) into 1.5% w/v CaCl2 solution at 4°C. Collagen in the gel beads was reconstituted by raising the temperature to 37°C after alginate was liquefied by citrate. Scanning electron microscopy of the beads revealed the characteristic fibrous structure of collagen. To demonstrate the application of this new technique in cell culture, GH3 rat pituitary tumor cells were entrapped and grown in the gel beads. The immobilized cells proliferated to a density of 1.95 x 106 cell/ml which is about an order of magnitude higher than that grown in the alginate beads.  相似文献   

15.
In frogs, the responses of the glossopharyngeal nerve (GL) to NaCl are enhanced after treatment of the tongue with 8-anilino-1-naphthalene-sulfonic acid (ANS), a hydrophobic probe for biological membranes. The enhancement by ANS treatment has been explained by removal of Ca2+ from the receptor membrane treated with ANS. To explore the mechanism of enhancement by ANS treatment, we recorded neural responses from the frog GL. After ANS treatment, treatment with 10 mM CaCl2 prior to stimulation of NaCl did not affect the enhanced responses to 100 mM NaCl. The response to a relatively high concentration of CaCl2 (50 mM) was enhanced after ANS treatment. It is difficult to interpret these neural events in terms of modulation of the responses by membrane-bound calcium. The presence of NiCl2 in stimulating solution is known as an enhancer. Neural events after ANS treatment were similar to those caused by NiCl2. Our previous studies have demonstrated that enhancement of the responses to electrolytes by NiCl2 is due to modulation of the responses of water fibers in the GL. Water fibers are characterized by sensitivity to water or CaCl2, and they also respond to relatively high concentrations of electrolytes such as NaCl and choline Cl. Using a suction electrode method, we recorded unitary impulses from single water fibers. The ANS treatment led greatly enhanced responses to NaCl or choline Cl in water fibers, suggesting that enhancement by the ANS treatment is due to modulation of the responses of water fibers as well as enhancement by NiCl2. It appears that distinct receptors for each separate cation responsible for the neural responses in water fibers interact with a membrane element that is affected by ANS or Ni2+.  相似文献   

16.
A novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate blended with distinct salts (CaCl2, Na2HPO4, or NaCl), as a pH-sensitive hydrogel was developed for protein drug delivery. It was noted that the salts blended in hydrogels may affect the structures of an entangled network of methylcellulose and alginate and have an effect on their swelling characteristics. The methylcellulose/alginate hydrogel blended with 0.7 M NaCl (with a gelation temperature of 32 degrees C) demonstrated excellent pH sensitivity and was selected for the study of release profiles of a model protein drug (bovine serum albumin, BSA). In the preparation of drug-loaded hydrogels, BSA was well-mixed to the dissolved aqueous methylcellulose/alginate blended with salts at 4 degrees C and then gelled by elevating the temperature to 37 degrees C. This drug-loading procedure in aqueous environment at low temperature may minimize degradation of the protein drug while achieving a high loading efficiency (95-98%). The amount of BSA released from test hydrogels was a function of the amount of alginate used in the hydrogels. The amount of BSA released at pH 1.2 from the test hydrogel with 2.5% alginate was relatively low (20%), while that released at pH 7.4 increased significantly (86%). In conclusion, the methylcellulose/alginate hydrogel blended with NaCl could be a suitable carrier for site-specific protein drug delivery in the intestine.  相似文献   

17.
A study of mechanisms of electrotransfection using Escherichia coli (JM 105) and the plasmid DNA pBR322 as model system is reported. pBR322 DNA carries an ampicillin resistance gene: E. coli transformants are conveniently assayed by counting colonies in a selection medium containing 50 micrograms/ml ampicillin and 25 micrograms/ml streptomycin. Samples not exposed to the electric field showed no transfection. In the absence of added cations, the plasmid DNA remains in solution and the efficiency of the transfection was 2 x 10(6)/micrograms DNA for cells treated with a 8-kV/cm, 1-ms electric pulse (square wave). DNA binding to the cell membrane greatly enhanced the efficiency of the transfection and this binding was increased by milimolar concentrations of CaCl2, MgCl2, or NaCl (CaCl2 greater than MgCl2 greater than NaCl). For example, in the presence of 2.5 mM CaCl2, 55% of the DNA added bound to E. coli and the transfection efficiency was elevated by two orders of magnitude (2 x 10(8)/micrograms DNA). These ions did not cause cell aggregation. With a low ratio of DNA to cells (less than 1 copy/cell), transfection efficiency correlated with the amount of DNA bound to the cell surface irrespective of salts. When the DNA binding ratio approached zero, the transfection efficiency was reduced by two to three orders, indicating that DNA entry by diffusion through the bulk solution was less than 1%. Square pulses of up to 12 kV/cm and 1 ms were used in the electrotransfection experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Positively charged molecules such as protamine, leukocyte cationic protein, and the carboxyl terminus of platelet factor 4 have been shown to increase fibrin fiber thickness. Synthetic homo poly(L-amino acids) were used to explore the role of charge and molecular weight of cationic molecules on fibrin assembly. The effects of poly(L-lysine) (PLL), poly(L-glutamic acid) (PLG), poly(L-aspartic acid) (PLA), poly(L-histidine) (PLH), and poly(L-arginine) (PLArg) on the assembly and structure of fibrin gels were studied by using light-scattering techniques. At a PLG (Mr 60,000) concentration of 80 micrograms/mL and a PLA (Mr 20,000) concentration of 64 microgram/mL, neither of these negatively charged polymers produced a detectable change in either fibrin assembly kinetics or final structure. Positively charged PLArg (16 micrograms/mL) caused a 30% increase in fibrin fiber mass/length ratio without calcium. In contrast, PLH (16 micrograms/mL), also positively charged, had no effect in the absence of CaCl2 but produced a 40% increase in fiber mass/length ratio with 5 mM CaCl2. At concentrations as low as 1 microgram/mL, positively charged PLL increased the initial fibrin assembly kinetics and led to larger fiber mass/length ratio. The impact on fibrin mass/length ratio was equivalent for three different molecular weight preparations of PLL (Mr 25,000, 90,000, and 240,000). The lack of a molecular weight effect on fiber thickness and the low polymer concentrations required to produce the perturbation argue against an excluded volume effect as the mechanism by which lateral fiber growth is augmented. Mechanisms by which poly(L-amino acids) may perturb fibrin assembly are discussed.  相似文献   

19.
The effects of calcium ions on the solution properties of porcine submaxillary mucin (PSM) have been investigated by static and dynamic light scattering. The weight average molecular weights of PSM fractions are unaffected by the addition of up to 0.5M CaCl2: these data are within experimental error of those for solutions in 0.1M NaCl. The distribution of relaxation frequencies derived from the dynamic data shows the existence of two distinct relaxation modes. The average relaxation times have been interpreted to yield the z-average translational diffusion coefficient and the longest intramolecular relaxation time tau1. A plot of tau1 vs the mean value of 1/Rh-3z is linear, and consistent with plots of such data recorded for PSM in 0.1m NaCl and 6M GdnHCl solutions. However, the tau values and the associated results for the mean value of R-1h-1z in 0.5M CaCl2 are smaller than those determined in 0.1M NaCl. This suggests that the conformation of PSM in CaCl2 solution is more contracted than those in the other two solvents. These results are consistent with the compact packaging of mucin in the secretary granules that have elevated Ca2+ levels.  相似文献   

20.
A technique has been described for the stabilization of calcium alginate beads using radiation polymerized acrylamide. The technique involved dropping a mixture containing the cells (20%), sodium alginate (2%), acrylamide (2.5%) and N-N'-methylene-bis-acrylamide (0.1%) through a syringe needle into cold (-75 degrees C) toluene. The frozen beads obtained were exposed to 60Co gamma-rays (0.5 KGy) and were then thawed in 0.1 M CaCl2 solution. Unlike the calcium alginate beads the conjugate beads were not found to be dissolved when incubated in 3% trisodium citrate solution. Stabilized beads containing entrapped yeast cells could be reused for over 15 batches for the inversion of sucrose without loss in activity or chemical integrity of the beads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号