首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Performance and characteristics of an anaerobic baffled reactor   总被引:20,自引:0,他引:20  
The performance and the characteristics of a laboratory scale anaerobic baffled reactor (ABR) were investigated using synthetic wastewater. The experimental results showed that among different volatile fatty acids (VFAs), acetate was the main intermediate of acidogenic degradation of glucose. The VFA concentration decreased longitudinally down the reactor. The analysis of the biogas composition revealed that methane concentration increased steadily from compartment 1 to 5, while hydrogen content decreased in the first compartments. There was no detectable hydrogen in the last two compartments. The methane-producing activity of anaerobic sludge in different compartments depended on the substrate, which suggests that the proper anaerobic consortium in each separate compartment was developed according to the substrate(s) availability and the specific environmental conditions. The ABR has the potential to provide a higher efficiency at higher loading rates and be applicable for extreme environmental conditions and inhibitory compounds.  相似文献   

2.
Granule development in a split-feed anaerobic baffled reactor   总被引:9,自引:0,他引:9  
Operating anaerobic reactors at high organic loading rates during start-up can lead to instability, accumulation of volatile fatty acids and low pH, such problems being exacerbated in reactors that exhibit plug-flow characteristics. Moreover, plug-flow conditions increase the exposure of biomass to any toxic components in the feed. To overcome these limitations, an anaerobic baffled reactor (ABR), a reactor exhibiting partial plug-flow characteristics, was modified by splitting the feed between the individual compartments to produce the split-feed ABR (SFABR). Consequently, more favourable conditions were created in the initial compartments, such as lower, longer hydraulic retention time and longer cell retention time; conditions in the final compartments were also improved by the increased food availability for microorganisms. Other benefits included better gas mixing characteristics as a result of the more balanced gas production across the reactor. Granule development was compared in SFABR and normally fed ABR by analysing sludge samples, taken during start-up and continuous operation, using scanning electron microscopy. Photomicrographs allowed tentative conclusions to be made concerning the effect of split-feeding on the distribution of bacterial populations within the granule architecture and the role of extracellular polymers on granule formation.  相似文献   

3.
Fluorescent in situ hybridization (FISH) using 16S and 23S rRNA-targeted probes together with construction of an archaeal 16S ribosomal DNA (rDNA) clone library was used to characterize the microbial populations of an anaerobic baffled reactor successfully treating industrial dye waste. Wastewater produced during the manufacture of food dyes containing several different azo and other dye compounds was decolorized and degraded under sulfidogenic and methanogenic conditions. Use of molecular methods to describe microbial populations showed that a diverse group of Bacteria and Archaea was involved in this treatment process. FISH enumeration showed that members of the gamma subclass of the class Proteobacteria and bacteria in the Cytophaga-Flexibacter-Bacteroides phylum, together with sulfate-reducing bacteria, were prominent members of a mixed bacterial population. A combination of FISH probing and analysis of 98 archaeal 16S rDNA clone inserts revealed that together with the bacterial population, a methanogenic population dominated by Methanosaeta species and containing species of Methanobacterium and Methanospirillum and a relatively unstudied methanogen, Methanomethylovorans hollandica, contributed to successful anaerobic treatment of the industrial waste. We suggest that sulfate reducers, or more accurately sulfidogenic bacteria, together with M. hollandica contribute considerably to the treatment process through metabolism of dye-associated sulfonate groups and subsequent conversion of sulfur compounds to carbon dioxide and methane.  相似文献   

4.
The spatial successions of bacterial and archaeal communities in anaerobic digestion were investigated in a glucose-degrading five-compartment anaerobic baffled reactor (ABR). The distributions of H2-producing acetogens, H2-utilizing acetogens and methanogens in different anaerobic-digestion stages were quantitatively analyzed using functional probes. The results show that the acidogenesis stage and acetogenesis stage were located in the first two compartments, while the methanogenesis were located in the last two compartments. In acidogenesis/acetogenesis stage of anaerobic digestion, H2-producing acetogens (19.7%) and H2-utilizing acetogens (8.3%) were the dominant bacterial community. While in methanogenesis stage, methanogens became the dominant (40.2%) with H2-producing acetogens and H2-utilizing acetogens only accounting for 6.6% and 4.8%, respectively. With the bacterial population decreasing from 7.2 ± 0.5 × 1012 cells mL−1 to 0.6 ± 0.3 × 1012 cells mL−1 along water flowing direction, their diversity increased from 2.79 to 299. The acidogenic bacteria, such as Lactococcus sp., Uncultured Firmicutes bacterium, and Uncultured Clostridium sp., etc., dominated in the acidogenesis/acetogenesis stage, while Uncultured Desulfobacterales bacterium became dominant in the methanogenesis stage. A two-stage anaerobic process may be suitable for easily degradable organic matters removal.  相似文献   

5.
设计出一个由12个隔室组成的厌氧折流板反应器(ABR),并将其应用于高浓度、高色度的印染废水生物处理,取得了良好效果。研究着重考察该反应器在处理印染废水过程中不同隔室的微生物种群构成,并分析与印染废水处理效率密切相关的具有脱色功能和苯胺降解功能的两类细菌的分布规律。结果表明,在处理印染废水的ABR反应器中,可培养的优势菌群以芽孢杆菌属(Bacillus)、不动杆菌属(Acinetobacter)、丛毛单胞菌属(Comamonas)、假单胞菌属(Pseudomonas)和水螺菌属(Aquaspirillum)为主,且在ABR的前段、中段及后段隔室中不同种类的优势菌群存在数量差异;好氧及兼性厌氧优势菌群的数量随着废水在ABR隔室中的折流前进而逐渐减少;厌氧微生物的数量变化规律则是先增多,后减少;产甲烷活性在前段隔室中相对较低,后段隔室则相对较高。脱色菌在ABR的前段隔室中分布相对较多,后段隔室中分布相对较少;苯胺降解菌则呈现出在前段隔室中分布相对较少,后段隔室中分布相对较多的规律,这两类功能菌的分布与ABR不同隔室中色度下降、苯胺产生和消减之间密切相关。  相似文献   

6.
The ability of pigs to use nitrogen and energy in Bermuda grass was evaluated in order to assess whether Bermuda grass harvested from spray fields could be fed to pigs as a means to recycle nitrogen. Digestibility of Bermuda grass incorporated into corn-soybean meal diets was evaluated in heavy finishing pigs and gestating sows. Results suggest that Bermuda grass digestibility is negative in animals not adapted to a high-fiber diet. Enzymes improve this digestibility, but even with enzymes, nitrogen digestibility was poor. Pigs fed a diet containing 10% Bermuda grass required a one week adaptation period for maximal digestion; following adaptation, pigs can digest approximately 40% of the energy in Bermuda grass but none of the nitrogen. Feeding Bermuda grass to pigs as a means of recycling nitrogen is thus not recommended.  相似文献   

7.
Zhang J  Wei Y  Xiao W  Zhou Z  Yan X 《Bioresource technology》2011,102(16):7407-7414
An anaerobic baffled reactor with four compartments (C1-C4) was successfully used for treatment of acetone-butanol-ethanol fermentation wastewater and methane production. The chemical oxygen demand (COD) removal efficiency was 88.2% with a CH4 yield of 0.25 L/(g CODremoved) when organic loading rate (OLR) was 5.4 kg COD m−3 d−1. C1 played the most important role in solvents (acetone, butanol and ethanol) and COD removal. Community structure of C2 was similar to that in C1 at stage 3 with higher OLR, but was similar to those in C3 and C4 at stages 1-2 with lower OLR. This community variation in C2 was consistent with its increased role in COD and solvent removal at stage 3. During community succession from C1 to C4 at stage 3, abundance of Firmicutes (especially OTUs ABRB07 and ABRB10) and Methanoculleus decreased, while Bacteroidetes and Methanocorpusculum became dominant. Thus, ABRB07 coupled with Methanoculleus and/or acetogen (ABRB10) may be key species for solvents degradation.  相似文献   

8.
Treatment of a low strength complex wastewater of chemical oxygen demand (COD) around 500mg/L was studied in a 10L capacity laboratory scale anaerobic baffled reactor (ABR). It was operated at hydraulic retention times (HRTs) of 20, 15, 10, 8 and 6h. Corresponding organic loading rates (OLRs) were 0.6, 0.8, 1.2, 1.5 and 2kg COD/m(3)d. At every HRT (or OLR), pseudo steady state (PSS) was achieved. Even at maximum OLR of 2kg COD/m(3)d, COD and biochemical oxygen demand (BOD) removals exceeded 88%. Removal of particulate fraction of organics was found to be greater than soluble fraction. Compartment-wise studies of various parameters revealed that if the OLR was larger, the number of initial compartments played significant role in the removal of organics. The values of volatile fatty acids (VFA) demonstrated that hydrolysis and acidogenesis were the main biochemical activities in the initial few compartments. Based on the tracer studies, dead space in the ABR was found to range from 23% to 34%. The flow pattern in the ABR was classified as intermediate between plug flow and perfectly mixed flows. Observations from scanning electron micrographs (SEM) also suggested that distinct phase separation takes place in an ABR. Study of organic and hydraulic shock loads revealed that ABR was capable of sustaining the type of shock loads generally experienced at a sewage treatment plant (STP).  相似文献   

9.
Bioprocess and Biosystems Engineering - Advanced nitrogen removal without the addition of external carbon source is challenging in the conventional biological nitrogen removal processes. This study...  相似文献   

10.
A study was performed to assess the feasibility of anaerobic treatment of slaughterhouse wastewaters in a UASB (Upflow Anaerobic Sludge Blanket) reactor and in an AF (Anaerobic Filter). Among the different streams generated, the slaughter line showed the highest organic content with an average COD of 8000 mg/l, of which 70% was proteins. The suspended solids content represented between 15 and 30% of the COD. Both reactors had a working volume of 21. They were operated at 37°C. The UASB reactor was run at OLR (Organic Loading Rates) of 1–6.5 kg COD/m3/day. The COD removal was 90% for OLR up to 5 kg COD/m3/day and 60% for an OLR of 6.5 kg COD/m3/day. For similar organic loading rates, the AF showed lower removal efficiencies and lower percentages of methanization. At higher OLR sludge, flotation occurred and consequently the active biomass was washed out from the filter. The results indicated that anaerobic treatment systems are applicable to slaughterhouse wastewaters and that the UASB reactor shows a better performance, giving higher COD removal efficiencies than the AF.  相似文献   

11.
The bacterial community of an aerobic:anaerobic non-P removing SBR biomass fed a mixture of acetate and glucose was analysed using several 16S rRNA based methods. Populations responsible for anaerobic glucose and acetate assimilation were determined with fluorescent in situ hybridization (FISH) in combination with microautoradiography (FISH/MAR). At 'steady state' this community consisted of alpha-Proteobacteria (26%) and gamma-Proteobacteria (14%), mainly appearing as large cocci in tetrads (i.e. typical 'G-Bacteria'). Large numbers of low G+C bacteria (22%), and high G+C Gram-positive bacteria (29%) seen as small cocci in clusters or in sheets were also detected after FISH. DGGE fingerprinting of PCR amplified 16S rDNA fragments and subsequent cloning and sequencing of several of the major bands led to the identification of some of these populations. They included an organism 98% similar in its 16S rRNA sequence to Micropruina glycogenica, and ca. 76% of the high G+C bacteria responded to a probe MIC 184, designed against it. The rest responded to the KSB 531 probe designed against a high G+C clone sequence, sbr-gs28 reported in other similar systems. FISH analyses showed that both these high G+C populations were almost totally dominated by small clustered cocci. Only ca. 2% of cells were beta-Proteobacteria. None of the alpha- and gamma-Proteobacterial 'G-bacteria' responded to FISH probes designed for the 'G-Bacteria' Amaricoccus spp. or Defluvicoccus vanus. FISH/MAR revealed that not all the alpha-Proteobacterial 'G-Bacteria' could take up acetate or glucose anaerobically. Almost all of the gamma-Proteobacterial 'G-Bacteria' assimilated acetate anaerobically but not glucose, the low G+C clustered cocci only took up glucose, whereas the high G+C bacteria including M. glycogenica and the sbr-gs28 clone assimilated both acetate and glucose. All bacteria other than the low G+C small cocci and a few of the alpha-Proteobacteria accumulated PHB. The low G+C bacteria showing anaerobic glucose assimilation ability were considered responsible for the lactic acid produced anaerobically by this SBR biomass, and M. glycogenica for its high glycogen content.  相似文献   

12.
采用序批式反应器(SBR),对比厌氧/好氧(A/O)和厌氧/缺氧(A/A)2种运行模式对模拟生活和工业混合污水同时脱氮除磷的效能。结果表明:反硝化聚磷菌完全可以在厌氧/缺氧交替运行条件下得到富集,稳定运行的2种模式对有机物和P的去除率分别保持在90%和85%以上,且A/A SBR具有更强的释磷能力,其释磷量比A/O SBR高出1.2倍。进一步试验表明:磷的释放在有无硝酸盐的情况下效果是不同的。2个系统内污泥均有反硝化除磷能力,A/A SBR中所含反硝化聚磷菌(DPAO)的比例是A/O SBR的4.56倍。2种模式出水水质都能取得较好的效果,且能实现同步除磷脱氮,而反硝化除磷在生物除磷方面更具优势。  相似文献   

13.
Nitrogen removal with the anaerobic ammonium oxidation process   总被引:3,自引:0,他引:3  
Anaerobic ammonium-oxidizing (anammox) bacteria convert ammonium to N2 with nitrite as the terminal electron acceptor in the absence of O2. Nitritation–anammox bioreactors provide a cost-effective and environment-friendly alternative to conventional nitrification/denitrification nitrogen removal systems. Currently, this process is only applied for ammonium removal from wastewater with high ammonium load and temperature. Nevertheless, recent results obtained with laboratory-scale bioreactors suggest new possible routes of application of the Nitritation–anammox technology including (1) municipal wastewater treatment, removal of (2) methane in combination with nitrite-reducing methane-oxidizing bacteria, (3) nitrate coupled to organic acid oxidation and (4) nitrogen oxides. The current review summarizes the state-of-the-art of the application of Nitritation–anammox systems and discusses the possibilities of utilizing these recent results for wastewater treatment.  相似文献   

14.
Nitrobenzene (NB) is an important industrial raw material in organic synthesis. However, successful biological treatment is challenging since NB wastewater is biologically toxic. During the experiment, the performance was examined during the acclimation process of NB in an anaerobic baffled reactor (ABR). The removal efficiencies of NB and chemical oxygen demand were 98% and 90%, respectively. Furthermore, by applying polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) technology of 16SrDNA, this paper analyzes the structural change of the archaea community in the ABR before and after NB acclimation and identifies the dominant community. The sequence structure analysis of archaea 16S rDNA in DGGE profiles shows that after NB biodegradation, the archaea-dominant community primarily consists of Methanothrix soehngenii from Methanosarcina, Methanosaeta concilii from Methanosaeta, Methanobacterium beijingense 8-2, uncultured Archaeon TA04, and uncultured Methanobacterium sp. isolated from environmental samples, which may be the important functional archaea in an ABR for NB biodegradation. The study of the population structure distribution and the dominant archaea community is helpful for elucidating the mechanisms of the anaerobic biodegradation mechanism of NB.  相似文献   

15.
Zhu GF  Li JZ  Wu P  Jin HZ  Wang Z 《Bioresource technology》2008,99(17):8027-8033
A laboratory-scale anaerobic baffled reactor (ABR) with four compartments using soybean protein processing wastewater as organic loading rates (OLRs) was investigated for the performance and phase separated characteristics. It was found that the chemical oxygen demand (COD) removal efficiencies were 92-97% at 1.2-6.0kgCOD/m(3)d feeding. The dominated species, propionate and butyrate, were found in the 1st compartment. Acetate was dominated in the 2nd compartment and then decreased in the 3rd and 4th. Meanwhile, 93% volatile fatty acids (VFAs) were removed in the 3rd and 4th compartments. In the 1st compartment, biogas revealed carbon dioxide (CO(2)) and hydrogen (H(2)). The highest H(2) yield was found in the 2nd compartment, thereafter decreased from the 2nd to 4th which corresponded to the increased of the methane (CH(4)) yield. It indicated that the proper anaerobic consortium in each separate compartment was developed along with substrate availability and specific environmental conditions.  相似文献   

16.
17.
The anaerobic baffled reactor (ABR) contains a granulated, mixed anaerobic culture segregated into compartments. Operation of four reactors under a range of hydraulic retention times showed that this novel reactor design offers highly efficient performance in the conversion of carbon in the feed stream to methane and carbon dioxide. The design parameter varied was the number of compartments. COD removal at 20 h retention time was routinely over 95% in all reactors, with low washout of biomass. Very high specific reaction rates were achievable (although with a loss of efficiency) at low biomass concentrations and high loading rates. In order to optimize volumetric reaction rates, a tradeoff has to be made between high biomass concentration, granule size, and the resulting mass transfer limitations. Formate is shown to be an important intermediate in the process under conditions of high loading.  相似文献   

18.
A modelling of the anaerobic digestion process of molasses was conducted in a 70-L multistage anaerobic biofilm reactor or hybrid anaerobic baffled reactor with six compartments at an operating temperature of 26 °C. Five hydraulic retention times (6, 16, 24, 72 and 120 h) were studied at a constant influent COD concentration of 10,000 mg/L. Two different kinetic models (one was based on a dispersion model with first-order kinetics for substrate consumption and the other based on a modification of the Young equation) were evaluated and compared to predict the organic matter removal efficiency or fractional conversion. The first-order kinetic constant obtained with the dispersion model was 0.28 h−1, the Peclet dispersion number being 45, with a mean relative error of 2%. The model based on the Young equation predicted the behaviour of the reactor more accurately showing deviations lower than 10% between the theoretical and experimental values of the fractional conversion, the mean relative error being 0.9% in this case.  相似文献   

19.
20.
The process kinetics of a lab-scale upflow aerobic immobilized biomass (UAIB) reactor using simulated sugar-manufacturing wastewater as feed was investigated. The experimental unit consisted of a 22l reactor filled with high porosity pumice stone. The UAIB reactor was tested under different organic loads and different hydraulic retention times (HRT) and the substrate loading removal rate was compared with prediction of Stover-Kincannon model, second-order model and the first order substrate removal model. After obtaining steady-state conditions, organic loading rate was increased from 750 to 4500 g COD/m(3) day to resemble wastewater from sugar production lines, and hydraulic retention time was decreased from 1 to 0.5 days, stepwise. Nine different operational conditions were applied changing these two parameters in a certain program. As a result of the calculations, Stover-Kincannon model and second-order model known as "Grau" model were found to be the most appropriate models for this reactor. Stover-Kincannon model and Grau second-order model gave high correlation coefficients, which were 99.7% and 99.4%, respectively. Therefore, these models could be used in predicting the behavior or design of the UAIB reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号