首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metachromatic fluorochrome acridine orange was used to differentially stain DNA and RNA in Chinese hamster ovary (CHO) cells and in mitogen-stimulated human lymphocytes during their progression through the cell cycle. Green and red fluorescence of individual cells, representing cellular DNA and RNA, respectively, was measured by flow cytometry. CHO cells were synchronized by selective detachment at mitosis. Their rate of progression through G1 and subsequently through S phase correlated with the content of stainable RNA. The mean duration of the G1 phase was 5.2 hours for cells with high RNA content (highest 25 percentile population) and 8.1 hours for cells with low RNA (lowest 25 percentile). The duration of S phase was 5.9 and 7.5 hours for high- and low-RNA, 25 percentile subpopulations, respectively. Lymphocytes synchronized at the G1/S boundary by hydroxyurea or 5-fluorodeoxyuridine showed extremely high intercellular variation with respect to content of stainable RNA. After release from the block they traversed S phase at rates linearly proportional to the content of stainable RNA. The duration of S phase was five hours for cells with high RNA-, six to nine hours for cells with moderate RNA- and up to 27 hours for cells with minimal RNA-content. The data suggest that the rate of progression through the cell cycle of individual cells within a population may be correlated with the number of ribosomes per cell.  相似文献   

2.
Studying the activity of DNase II in relation to cell cycle in synchronized HeLa S3 cells show a two to seven fold increase in DNase II activity at those times when DNA synthesis is taking place. The peaks of DNase II activity coincide with the peaks of DNA synthesis. The increased DNase II activity could be prevented by puromycin, suggesting that the enzyme activity increased at the S phase was caused by synthesis of new molecules rather than the activation of existing molecules. Acid phosphatase (as a marker for lysosomal enzymes) does not show an induction similar to that observed for DNase II in relation to cell cycle.  相似文献   

3.
To ascertain the activity and substrate specificity of nuclear protein kinases during various stages of the cell cycle of HeLa S3 cells, a nuclear phospho-protein-enriched sample was extracted from synchronised cells and assayed in vitro in the presence of homologous substrates. The nuclear protein kinases increased in activity during S and G2 phase to a level that was twice that of kinases from early S phase cells. The activity was reduced during mitosis but increased again in G1 phase. When the phosphoproteins were separated into five fractions by cellulose-phosphate chromatography each fraction, though not homogenous, exhibited differences in activity. Variations in the activity of the protein kinase fractions were observed during the cell cycle, similar to those observed for the unfractionated kinases. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the proteins phosphorylated by each of the five kinase fractions demonstrated a substrate specificity. The fractions also exhibited some cell cycle stage-specific preference for substrates; kinases from G1 cells phosphorylated mainly high molecular weight polypeptides, whereas lower molecular weight species were phosphorylated by kinases from the S, G2 and mitotic stages of the cell cycle. Inhibition of DNA and histone synthesis by cytosine arabinoside had no effect on the activity or substrate specificity of S phase kinases. Some kinase fractions phosphorylated histones as well as non-histone chromosomal proteins and this phosphorylation was also cell cycle stage dependent. The presence of histones in the in vitro assay influenced the ability of some fractions to phosphorylate particular non-histone polypeptides; non-histone proteins also appeared to affect the in vitro phosphorylation of histones.  相似文献   

4.
5.
The phosphorylation of non-histone chromatin proteins in synchronized HeLa S3 cells was studied in 5 phases of the cell cycle: mitosis, G1, early and late S, and G2. The rate of non-histone chromatin protein phosphorylation was found to be maximal during G1 and G2, somewhat decreased during S phase, and almost 90% depressed during mitosis. Analysis of the phosphorylated non-histone chromatin proteins by SDS-acrylamide gel electrophoresis showed a heterogeneous pattern of phosphorylation as measured by labeling with 32P. Significant variations in the labeling pattern were seen during different stages of the cell cycle, and particular unique species appeared to be phosphorylated selectively during certain stages of the cycle.  相似文献   

6.
7.
8.
9.
A subnuclear fraction has been isolated from HeLa S3 nuclei after treatment with high salt buffer, deoxyribonuclease, and dithiothreitol. This fraction retains the approximate size and shape of nuclei and resembles the nuclear matrix recently isolated from rat liver nuclei. Ultrastructural and biochemical analyses indicate that this structure consists of nonmembranous elements as well as some membranous elements. Its chemical composition is 87% protein, 12% phospholipid, 1% DNA, and 0.1% RNA by weight. The protein constituents are resolved in SDS- polyacrylamide slab gels into 30-35 distinguishable bands in the apparent molecular weight range of 14,000 - 200,000 with major peptides at 14,000 - 18,000 and 45,000 - 75,000. Analysis of newly synthesized polypeptides by cylindrical gel electrophoresis reveals another cluster in the 90,000-130,000 molecular weight range. Infection with adenovirus results in an altered polypeptide profile. Additional polypeptides with apparent molecular weights of 21,000, 23,000, and 92,000 become major components by 22 h after infection. Concomitantly, some peptides in the 45,000-75,000 mol wt range become less prominent. In synchronized cells the relative staining capacity of the six bands in the 45,000-75,000 mol wt range changes during the cell cycle. Synthesis of at least some matrix polypeptides occures in all phases of the cell cycle, although there is decreased synthesis in late S/G2. In the absence of protein synthesis after cell division, at least some polypeptides in the 45,000- 75,000 mol wt range survive nuclear dispersal and subsequent reformation during mitosis. The possible significance of this subnuclear structure with regard to structure-function relationships within the nucleus during virus replication and during the life cycle of the cell is discussed.  相似文献   

10.
Acceptor proteins for (ADP-ribose)n in the HeLa S3 cell cycle   总被引:3,自引:0,他引:3  
The acceptor proteins for (ADP-ribose)n were investigated by using nuclei or chromosomes isolated from specific phases of the cell cycle of HeLa S3 cells. Analysis of HMG proteins and histone H1 by acetic acid/urea polyacrylamide gel electrophoresis demonstrated that the (ADP-ribosyl)n-ation of HMG 14 and 17 and histone H1 increased by 12- and 5-fold, respectively, in the metaphase chromosomes as compared with that in the G1 phase cell nuclei. The degree of (ADP-ribosyl)n-ation of these proteins in the S phase cell nuclei was as low as that in G1 phase cell nuclei. In the G2 phase cell nuclei, the degrees of (ADP-ribosyl)n-ation of HMG 14 and 17 and histone H1 were about 5- and 2-fold greater, respectively, as compared with that in the G1 phase cell nuclei. The (ADP-ribosyl)n-ation of HMG 1 and 2 was constant through the cell cycle except for a slight decrease in the S phase. The data may imply that the (ADP-ribosyl)n-ation of HMG 14 and 17 and histone H1 is linked to chromatin structural changes in mitosis.  相似文献   

11.
蛋白激酶C抑制剂staurosporine对HeLa细胞周期的影响   总被引:2,自引:0,他引:2  
蛋白激酶C抑制剂staurosporine对HeLa细胞周期的影响石法武*任洪波张兆山**王会信周廷冲(军事医学科学院基础医学研究所,**生物工程研究所,北京100850TheefectofstaurosporineonthecelcycleofHe...  相似文献   

12.
Tsai YJ  Lee HI  Lin A 《PloS one》2012,7(3):e32820
In this study, we employed a surface-specific antibody against the large ribosome subunit to investigate the distribution of ribosomes in cells during the cell cycle. The antibody, anti-L7n, was raised against an expansion segment (ES) peptide from the large subunit ribosomal protein L7, and its ribosome-surface specificity was evident from the positive immuno-reactivity of ribosome particles and the detection of 60 S immune-complex formation by an immuno-electron microscopy. Using immunofluorescent staining, we have microscopically revealed that ribosomes are dispersed in the cytoplasm of cells throughout all phases of the cell cycle, except at the G2 phase where ribosomes show a tendency to gather toward the nuclear envelope. The finding in G2 cells was confirmed by electron microscopy using a morphometric assay and paired t test. Furthermore, further observations have shown that ribosomes are not distributed immune-fluorescently with nuclear envelope markers including the nuclear pore complex, the integral membrane protein gp210, the inner membrane protein lamin B2, and the endoplasm reticulum membrane during cell division we propose that the mechanism associated with ribosome segregation into daughter cells could be independent of the processes of disassembly and reassembly of the nuclear envelope.  相似文献   

13.
5 S ribosomal RNA is found initially in the cytoplasmic soluble fraction soon after its synthesis. After a lag of half an hour, the 5 S RNA becomes associated with nucleoprotein in the nucleus, where some of it later becomes incorporated into the large ribosomal sub-unit. In exponentially growing HeLa cells, 5 S RNA is made in amounts approximately four times greater than required for synthesis of ribosomal sub-units.  相似文献   

14.
15.
The involvement of adenosine 3':5'-monophosphate (cAMP) in the regulation of the cell cycle was studied by determining intracellular fluctuations in cAMP levels in synchronized HeLa cells and by testing the effects of experimentally altered levels on cell cycle traverse. Cyclic AMP levels were lowest during mitosis and were highest during late G-1 or early S phase. These findings were supported by results obtained when cells were accumulated at these points with Colcemid or high levels of thymidine. Additional fluctuations in cAMP levels were observed during S phase. Two specific effects of cAMP on cell cycle traverse were found. Elevation of cAMP levels in S phase or G-2 caused arrest of cells in G-2 for as long as 10 h and lengthened M. However, once cells reached metaphase, elevation of cAMP accelerated the completion of mitosis. Stimulation of mitosis was also observed after addition of CaCl2. The specificity of the effects of cAMP was verified by demonstrating that: (a) intracellular cAMP was increased after exposure to methylisobutylxanthine (MIX) before any observed effects on cycle traverse; (b) submaximal concentrations of MIX potentiated the effects of isoproterenol; and (c) effects of MIX and isoproterenol were mimicked by 8-Br-cAMP. MIX at high concentrations inhibited G-1 traverse, but this effect did not appear to be mediated by cAMP. Isoproterenol slightly stimulated G-1 traverse and partially prevented the MIX-induced delay. Moreover, low concentrations of 8-Br-cAMP (0.10-100 muM) stimulated G-1 traverse, whereas high concentrations (1 mM) inhibited. Both of these effects were also observed with the control, Br-5'-AMP, at 10-fold lower concentrations.  相似文献   

16.
17.
gamma-Glutamyltransferase ((5-glutamyl)-peptide:amino-acid 5-glutamyltransferase, EC 2.3.2.2) activity of WI-38 fibroblasts decreased only slightly in relation to a constant amount of cell-associated protein as the cells were carried in culture serially from middle to late passage numbers leading toward senescence, e.g., from population doubling level 27 through 41. Also, when the enzyme activity was expressed on the basis of a unit number of cells or unit amount of DNA, little change occurred over that range of PDLs. As the culture approached 'phase-out', the transferase activity rose sharply regardless of how the activity was expressed. The possibility is considered that the large increase in activity could be a reflection of a significant increase in size of cells and therefore changes in the membranes where the transferase is located. The occurrence of other enzymes of the 'gamma-glutamyl cycle' in WI-38 and HeLa S3 cells also was demonstrated. These included gamma-glutamylcyclotransferase ((gamma-L-glutamyl)-L-amino-acid gamma-glutamyltransferase (cyclizing), EC 2.3.2.4) and 5-oxoprolinase, whose activities showed no large increase comparable to that of the gamma-glutamyltransferase, as the culture approached 'phase-out'.  相似文献   

18.
The growth and division of mitochondria during the cell cycle was investigated by a morphometric analysis of electron micrographs of synchronized HeLa cells. The ratio of total outer membrane contour length to cytoplasmic area did not vary significantly during the cell cycle, implying a continuous growth of the mitochondrial outer membrane. The mean fraction of cytoplasmic area occupied by mitochondrial profiles was likewise found to remain constant, indicating that the increase in total mitochondrial volume per cell occurs continuously during interphase, in such a way that the mitochondrial complement occupies a constant fraction( approximately 10-11(percent)) of the volume of the cytoplasm. The mean area, outer membrane contour length, and axis ratio of the mitochondrial profiles also did not vary appreciably during the cell cycle; furthermore, the close similarity of the frequency distributions of these parameters for the six experimental time-points suggested a stable mitochondrial shape distribution. The constancy of both the mean mitochondrial profile area and the number of mitochondrial profiles per unit of cytoplasmic area was interpreted to indicate the continuous division of mitochondria at the level of the cell population. Furthermore, no evidence was found for the occurrence of synchronous mitochondrial growth and division within individual cells. Thus, it appears that, in HeLa cells, there is no fixed temporal relationship between the growth and division of mitochondria and the events of the cell cycle. A number of statistical methods were developed for the purpose of making numerical estimates of certain three-dimensional cellular and mitochondrial parameters. Mean cellular and cytoplasmic volumes were calculated for the six time-points; both exhibited a nonlinear, approx. twofold increase. A comparison of the axis ratio distributions of the mitochondrial profiles with theoretical distributions expected from random sectioning of bodies of various three-dimensional shapes allowed the derivation of an "average" mitochondrial shape. This, in turn, permitted calculations to be made which expressed the two-dimensional results in three-dimensional terms. Thus, the estimated values for the number of mitochondria per unit of cytoplasmic volume and for the mean mitochondrial volume were found to remain constant during the cell cycle, while the estimated number of mitochondria per cell increase approx. twofold in an essentially continuous manner.  相似文献   

19.
Some cytoplasmic organelles have showed characteristic variations which are related to the different cell cycle phases, in thymidine synchonized HeLa cells in culture. In these cells, the most modified organelles were intracytoplasmic membranes (endoplasmic reticulum) and microfilament arrangements. Microfilaments were numerous under the cell membrane, but also some of them were dispersed in dense bundles. These structures were seen around the nucleus, 12-14 h after removal of excess thymidine (G1). They migrated to the periphery of the cell during S and G2. During mitosis, they were directly under superficial membrane-associated microfilaments.  相似文献   

20.
ADP-ribosylation in permeable HeLa S3 cells   总被引:2,自引:0,他引:2  
ADP-ribosylation in permeabilized metaphase and interphase cells using [32P]NAD at pH 8.0 have been compared. Incorporation into trichloroacetic acid insoluble material was 4-5-times greater in metaphase cells. 17-22% was in the soluble fraction which contained material released from the cells, 16-22% in the 0.2 M HCl extract (histones) of the cell ghosts and the remaining activity in the residual fraction. Fractions were analyzed using dodecylsulphate/polyacrylamide gel electrophoresis at pH 6.0. The soluble fractions from metaphase and interphase cells exhibited three common unidentified ADP-ribosylated proteins corresponding to 78 000, 54 000 and 36 000 Da. In addition metaphase cells contained several other ADP-ribosylated proteins not present in interphase cells. The 0.2 M HCl extracts gave from metaphase cells radioactivity in the 32 000-39 000-Da region suggesting ADP-ribosylation of histone H1 with up to 10 residues of ADP-ribose and in the 17 000-20 000-Da region indicating ADP-ribosylation of core histones. The pattern of ADP-ribosylation of core histone in metaphase and interphase cells was qualitatively similar whereas the number of ADP-ribose residues per H1 molecule was higher in metaphase cells. The residual fraction contained free poly(ADP-ribose) and oligo(ADP-ribose). The results do not lend support to a special function of ADP-ribosylated histones in the mitotic event while certain ADP-ribosylated non-histone proteins may be specific for metaphase cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号