首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to define mechanisms by which dopamine (DA) regulates the Na,K-ATPase in alveolar epithelial type 2 (AT2) cells. The Na,K-ATPase activity increased by twofold in cells incubated with either 1 μM DA or a dopaminergic D1 agonist, fenoldopam, but not with the dopaminergic D2 agonist quinpirole. The increase in activity paralleled an increase in Na,K-ATPase α1 and β1 protein abundance in the basolateral membrane (BLM) of AT2 cells. This increase in protein abundance was mediated by the exocytosis of Na,K-pumps from late endosomal compartments into the BLM. Down-regulation of diacylglycerol-sensitive types of protein kinase C (PKC) by pretreatment with phorbol 12-myristate 13-acetate or inhibition with bisindolylmaleimide prevented the DA-mediated increase in Na,K-ATPase activity and exocytosis of Na,K-pumps to the BLM. Preincubation of AT2 cells with either 2-[1-(3-dimethylaminopropyl)-5-methoxyindol-3-yl]-3-(1H-indol-3-yl)maleimide (Gö6983), a selective inhibitor of PKC-δ, or isozyme-specific inhibitor peptides for PKC-δ or PKC-ε inhibited the DA-mediated increase in Na,K-ATPase. PKC-δ and PKC-ε, but not PKC-α or -β, translocated from the cytosol to the membrane fraction after exposure to DA. PKC-δ– and PKC-ε–specific peptide agonists increased Na,K-ATPase protein abundance in the BLM. Accordingly, dopamine increased Na,K-ATPase activity in alveolar epithelial cells through the exocytosis of Na,K-pumps from late endosomes into the basolateral membrane in a mechanism-dependent activation of the novel protein kinase C isozymes PKC-δ and PKC-ε.  相似文献   

2.
3.
Regulation of the increase in inositol phosphate (IP) production and intracellular Ca2+ concentration ([Ca2+]i by protein kinase C (PKC) was investigated in cultured rat vascular smooth muscle cells (VSMCs). Pretreatment of VSMCs with phorbol 12-myristate 14-acetate (PMA, 1 μM) for 30 min almost abolished the BK-induced IP formation and Ca2+ mobilisation. This inhibition was reduced after incubating the cells with PMA for 4 h, and within 24 h the BK-induced responses were greater than those of control cells. The concentrations of PMA giving a half-maximal (pEC50) and maximal inhibition of BK induced an increase in [Ca2+]i, were 7.8 ± 0.3 M and 1 μM, n = 8, respectively. Prior treatment of VSMCs with staurosporine (1 μM), a PKC inhibitor, inhibited the ability of PMA to attenuate BK-induced responses, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. Paralleling the effect of PMA on the BK-induced IP formation and Ca2+ mobilisation, the translocation and downregulation of PKC isozymes were determined by Western blotting with antibodies against different PKC isozymes. The results revealed that treatment of the cells with PMA for various times, translocation of PKC-, βI, βII, δ, ε, and ζ isozymes from the cytosol to the membrane were seen after 5 min, 30 min, 2 h, and 4 h of treatment. However, 24-h treatment caused a partial downregulation of these PKC isozymes in both fractions. Treatment of VSMCs with 1 μM PMA for either 1 or 24 h did not significantly change the KD and Bmax of the BK receptor for binding (control: KD = 1.7 ± 0.2 nM; Bmax = 47.3 ± 4.4 fmol/mg protein), indicating that BK receptors are not a site for the inhibitory effect of PMA on BK-induced responses. In conclusion, these resuts demonstrate that translocation of PKC-, βI, βII, δ, ε, and ζ induced by PMA caused an attenuation of BK-induced IPs accumulation and Ca2+ mobilisation in VSMCs.  相似文献   

4.
Oxidative stress and Mrp2 internalization   总被引:2,自引:0,他引:2  
Oxidative stress in the liver is sometimes accompanied by cholestasis. We have described the internalization of multidrug resistance-associated protein 2/ATP-binding cassette transporter family 2 (Mrp2/Abcc2), a biliary transporter involved in bile-salt-independent bile flow, under ethacrynic acid (EA)-induced acute oxidative stress in rat liver. However, the signaling pathway and regulatory molecules have not been investigated. In the present study, we investigated the mechanism of EA-induced Mrp2 internalization using isolated rat hepatocyte couplets (IRCHs). The Mrp2 index, defined as the ratio of Mrp2-positive canalicular membrane staining in IRCHs per number of cell nuclei, was significantly reduced by treatment with EA. This reduction was abolished by a nonspecific protein kinase C (PKC) inhibitor Gö6850, a Ca2+ chelator, EGTA, but not by a protein kinase A (PKA)-selective inhibitor, a Ca2+-dependent conventional PKC (cPKC) inhibitor Gö6976, or a protein kinase G (PKG) inhibitor (1 μM). Moreover, an increase in the intracellular Ca2+ level and NO release into medium were observed shortly after the EA treatment. Both of these increases, as well as Mrp2 internalization, were completely blocked by EGTA. In conclusion, EA produced a reduction in GSH, Ca2+ elevation, NO production, and nPKC activation in a sequential manner, finally leading to Mrp2 internalization.  相似文献   

5.
Wang CM  Chang YY  Sun SH 《Cellular signalling》2003,15(12):1129-1137
The present study investigates the receptor and mechanisms involved in ATP-stimulated transforming growth factor-beta 1 (TGF-β1) mRNA expression of a type-2 astrocyte cell line, RBA-2. RT-PCR analysis revealed that RBA-2 type-2 astrocytes possess abundant P2X4 and P2X7 receptors. ATP and P2X7 receptor-sensitive agonist, BzATP, both stimulated TGF-β1 mRNA expression in a time and dose-dependent manner. The stimulation required a minimum of 500 μM ATP; BzATP was much more potent that ATP, and P2X7-selective antagonist, oATP, inhibited the effects. In addition, ATP metabolites ADP, AMP and adenosine were ineffective in stimulation of TGF-β1 mRNA expression. Thus, the effect of ATP was mediated through the P2X7 receptors. To investigate further the mechanisms by which the P2X7 receptor mediated the TGF-β1 mRNA expression, the cells were treated with inhibitors for mitogen-activated kinase (MAPK) or protein kinase C (PKC), PD98059 or GF109203X, respectively. Both PD98059 and GF109203X inhibited the ATP-stimulated TGF-β1 mRNA expression. Furthermore, ATP and BzATP stimulated ERK1/2 activation and the activation was inhibited by PKC inhibitors, GF109203X and Gö6976. In conclusion, activation of P2X7 receptors enhanced TGF-β1 mRNA expression and the effect involved PKC/MAPK signalling pathway in RBA-2 type-2 astrocytes.  相似文献   

6.
A Surovoy  D Waidelich  G Jung 《FEBS letters》1992,300(3):259-262
The isoforms of protein kinase C (PKC) present in rat mesangial cells were identified by immunoblot analysis with antibody raised against isotype-specific peptides. In addition to the previously observed - and -subspecies, mesangial cells also express the δ- and ζ-isoenzymes of PKC. On exposure to phorbol 12,13-dibutyrate (PDB) a complete depletion of PKC-δ is observed within 8 h. Removal of PDB results in a recovery of PKC-δ. In contrast, PKC-ζ is unaffected by addition or removal of PDB.  相似文献   

7.
The increased accumulation of activated microglia containing amyloid β protein (Aβ) around senile plaques is a common pathological feature in subjects with Alzheimer's disease (AD). Much less is known, however, of intracellular signal transduction pathways for microglial activation in response to Aβ. We investigated intracellular signaling in response to Aβ stimulation in primary cultured rat microglia. We found that the kinase activity of PKC-δ but not that of PKC- or - is increased by stimulation of microglia with Aβ, with a striking tyrosine phosphorylation of PKC-δ. In microglia stimulated with Aβ, tyrosine phosphorylation of PKC-δ was evident at the membrane fraction without an overt translocation of PKC-δ. PKC-δ co-immunoprecipitated with MARCKS from microglia stimulated with Aβ. Aβ induced translocation of MARCKS from the membrane fraction to the cytosolic fraction. Immunocytochemical analysis revealed that phosphorylated MARCKS accumulated in the cytoplasm, particularly at the perinuclear region in microglia treated with Aβ. Taken together with our previous observations that Aβ-induced phosphorylation of MARCKS and chemotaxis of microglia are inhibited by either tyrosine kinase or PKC inhibitors, our results provide evidence that Aβ induces phosphorylation and translocation of MARCKS through the tyrosine kinase-PKC-δ signaling pathway in microglia.  相似文献   

8.
9.
We have studied activation-induced dephosphorylation of proteins in human neutrophils loaded with [32P]orthophosphate using two-dimensional gel electrophoresis and autoradiography. A major phosphoprotein of 20 kDa in resting neutrophils was markedly dephosphorylated upon activation of cells with chemotactic peptide or phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC). Using a monoclonal anti-cofilin antibody, this phosphoprotein could be shown to be identical with cofilin, a protein implicated in actin filament remodeling. Signaling pathways leading to this dephosphorylation were further characterized. To define the role of PKC isoforms in cofilin dephosphorylation, we used different PKC inhibitors. Gö 6976 (10 μM), which inhibits preferentially PKC α and β, did not prevent PMA-induced dephosphorylation of cofilin, whereas Ro 31-8220 and CGP 41 251 (10 μM), which act also on Ca2+-independent PKC isoforms, almost completely suppressed this event. The lack of effect of Gö 6976 was not due to insufficient entry into the cells, as this drug suppressed PMA-induced increases in protein phosphorylation. Ca2+-independent PKC isoforms, rather than PKC α or β, may thus be involved in PMA-induced cofilin dephosphorylation. In contrast, Ro 31-8220 did not inhibit chemotactic peptide-induced cofilin dephosphorylation, suggesting here a PKC-independent pathway. The phosphatase inhibitor okadaic acid (1–2 μM) attenuated phosphorylation of cofilin in resting cells. This reduced level was not further attenuated by PMA. Phosphatases 1 and/or 2A may thus control cofilin phosphorylation in resting cells and contribute to PMA-induced cofilin dephosphorylation. Dephosphorylation of cofilin induced by PMA, chemotactic peptide, or okadaic acid was always accompanied by a shift of cofilin to the cell periphery into F-actin-rich areas. These findings suggest a role of cofilin in stimulus-dependent actin remodeling in motile neutrophils.  相似文献   

10.
11.
We previously showed in rat renal glomerular mesangial cells, that arginine vasopressin (AVP)-stimulated cell proliferation was mediated by epidermal growth factor receptor (EGF-R) transactivation, and activation (phosphorylation) of ERK1/2 and p70S6 kinase (Ghosh et al. [2001]: Am J Physiol Renal Physiol 280:F972-F979]. In this paper, we extend these observations and show that different protein kinase C (PKC) isoforms play different roles in mediating AVP-stimulated ERK1/2 and p70S6 kinase phosphorylation and cell proliferation. AVP treatment for 0-60 min stimulated the serine/threonine phosphorylation of PKC isoforms alpha, delta, epsilon, and zeta. The activation of PKC was dependent on EGF-R and phosphatidylinositol 3-kinase (PI3K) activation. In addition, inhibition of conventional and novel PKC isoforms by chronic (24 h) exposure to phorbol 12-myristate 13-acetate (PMA) inhibited AVP-induced activation of ERK and p70S6 kinase as well as EGF-R phosphorylation. Rottlerin, a specific inhibitor of PKCdelta, inhibited both ERK and p70S6 kinase phosphorylation and cell proliferation. In contrast, a PKCepsilon translocation inhibitor decreased ERK1/2 activation without affecting p70S6 kinase or cell proliferation, while a dominant negative PKCzeta (K281W) cDNA delayed p70S6 kinase activation without affecting ERK1/2. On the other hand, G?6976, an inhibitor of conventional PKC isoforms, did not affect p70S6 kinase, but stimulated ERK1/2 phosphorylation without affecting cell proliferation. Our results indicate that PKCdelta plays an important role in AVP-stimulated ERK and p70S6 kinase activation and cell proliferation.  相似文献   

12.
Although the stimulatory effect of glucagon-like peptide 1 (GLP-1), a cAMP-generating agonist, on Ca(2+) signal and insulin secretion is well established, the underlying mechanisms remain to be fully elucidated. We recently discovered that Ca(2+) influx alone can activate conventional protein kinase C (PKC) as well as novel PKC in insulin-secreting (INS-1) cells. Building on this earlier finding, here we examined whether GLP-1-evoked Ca(2+) signaling can activate PKCalpha and PKCepsilon at a substimulatory concentration of glucose (3 mm) in INS-1 cells. We first showed that GLP-1 translocated endogenous PKCalpha and PKCepsilon from the cytosol to the plasma membrane. Next, we assessed the phosphorylation state of the PKC substrate, myristoylated alanine-rich C kinase substrate (MARCKS), by using MARCKS-GFP. GLP-1 translocated MARCKS-GFP to the cytosol in a Ca(2+)-dependent manner, and the GLP-1-evoked translocation of MARCKS-GFP was blocked by PKC inhibitors, either a broad PKC inhibitor, bisindolylmaleimide I, or a PKCepsilon inhibitor peptide, antennapedia peptide-fused pseudosubstrate PKCepsilon-(149-164) (antp-PKCepsilon) and a conventional PKC inhibitor, G?-6976. Furthermore, forskolin-induced translocation of MARCKS-GFP was almost completely inhibited by U73122, a putative inhibitor of phospholipase C. These observations were verified in two different ways by demonstrating 1) forskolin-induced translocation of the GFP-tagged C1 domain of PKCgamma and 2) translocation of PKCalpha-DsRed and PKCepsilon-GFP. In addition, PKC inhibitors reduced forskolin-induced insulin secretion in both INS-1 cells and rat islets. Thus, GLP-1 can activate PKCalpha and PKCepsilon, and these GLP-1-activated PKCs may contribute considerably to insulin secretion at a substimulatory concentration of glucose.  相似文献   

13.
Prolonged activation of protein kinase C (PKC) types and β by tumor-promoting phorbol esters leads to desensitization of the phorbol ester response, downregulation of protein kinase C activity and depletion of the protein kinase C polypeptide. When the γ isoenzyme of PKC is transiently expressed in COS-1 cells and exposed to phorbol esters, PKC-γ is downregulated in COS cells although these cells do not normally express this subtype. A point mutation in the purative ATP-binding site (Lys-380→Met-380) of the protein kinase C γ isoenzyme which results in a kinase-deficient enzyme does not interfere with this downregulation. Our results suggest that autophosphorylation or constitutive signalling through the protein kinase C-γ kinase domain is not a prerequisite for downregulation of PKC activity.  相似文献   

14.
In cultured bovine adrenal chromaffin cells expressing Nav1.7 sodium channel isoform, veratridine increased Ser473-phosphorylation of Akt and Ser9-phosphorylation of glycogen synthase kinase-3β by 217 and 195%, while decreasing Ser396-phosphorylation of tau by 36% in a concentration (EC50 = 2.1 μM)- and time (t1/2 = 2.7 min)-dependent manner. These effects of veratridine were abolished by tetrodotoxin or extracellular Ca2+ removal. Veratridine (10 μM for 5 min) increased translocation of Ca2+-dependent conventional protein kinase C-α from cytoplasm to membranes by 47%; it was abolished by tetrodotoxin, extracellular Ca2+ removal, or Gö6976 (an inhibitor of protein kinase C-α), and partially attenuated by LY294002 (an inhibitor of phosphatidylinositol 3-kinase). LY294002 (but not Gö6976) abrogated veratridine-induced Akt phosphorylation. In contrast, either LY294002 or Gö6976 alone attenuated veratridine-induced glycogen synthase kinase-3β phosphorylation by 65 or 42%; however, LY294002 plus Gö6976 completely blocked it. Veratridine (10 μM for 5 min)-induced decrease of tau phosphorylation was partially attenuated by LY294002 or Gö6976, but completely blocked by LY294002 plus Gö6976; okadaic acid or cyclosporin A (inhibitors of protein phosphatases 1, 2A, and 2B) failed to alter tau phosphorylation. These results suggest that Na+ influx via Nav1.7 sodium channel and the subsequent Ca2+ influx via voltage-dependent calcium channel activated (1) Ca2+/protein kinase C-α pathway, as well as (2) Ca2+/phosphatidylinositol 3-kinase/Akt and (3) Ca2+/phosphatidylinositol 3-kinase/protein kinase C-α pathways; these parallel pathways converged on inhibitory phosphorylation of glycogen synthase kinase-3β, decreasing tau phosphorylation.  相似文献   

15.
16.
Protein kinase C (PKC; also known as PRKC) is known to be an important participant in radiation-induced apoptosis. However, its role is not fully clarified. Using 3SBH5 cells, which are radiation-sensitive thymic lymphoma cells, the involvement and functions of PKC were assessed in radiation- induced apoptosis. PMA (phorbol 12-myristate 13-acetate), a PKC activator, inhibited the radiation-induced apoptosis in 3SBH5 cells. On the other hand, chelerythrine, a PKC inhibitor, potentiated apoptosis. In addition, G?6976, a classical PKC (cPKC) inhibitor, which specifically inhibits PKC (alpha and betaI), also promoted apoptosis. Interestingly, post-treatment (20 min after irradiation) with G?6976 had no effect on the radiation-induced apoptosis. These results suggest that cPKC is activated early after irradiation for anti-apoptosis signaling and contributes to the balance between cell survival and death. Indeed, an increase of cPKC activity involving PKC (alpha, betaI and betaII) was observed in the cytosolic fraction 3 min after irradiation with 0.5 Gy. However, no translocation of cPKC was observed in the cells after irradiation. Our findings indicate that activation of cPKC (alpha or beta) soon after irradiation is critical to the understanding of the regulation of radiation-induced apoptosis in radiation-sensitive cells.  相似文献   

17.
The effects of P2Y2 purinoceptor activation on c-Fos expression and the signaling pathways evoked by extracellular ATP/UTP in HeLa cells were investigated. We found that P2Y2 activation induced c-Fos protein and phosphorylated the extracellular signal-regulated kinases 1 and 2 (ERK1/2). The P2Y2-stimulated c-Fos induction was partly blocked (a) by U73122, a phospholipase C inhibitor, (b) by G?6976, a conventional PKC inhibitor, (c) by PD098059, a mitogen-activated protein kinase kinase inhibitor, and, moreover, (d) by the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin. When G?6976 and PD098059, or G?6976 and wortmannin, were combined there was a totally inhibition of P2Y2-induced c-Fos increase. Either U73122 or G?6976 did not inhibit ERK1/2 phosphorylation induced by ATP/UTP, while it was inhibited by LY294002 (or wortmannin) and by staurosporine. Additionally, wortmannin inhibited the cytosol-to-membrane translocation of PKC- epsilon induced by ATP/UTP. These data indicated that agonist-induced PI3K and downstream PKC- epsilon activation mediated the effect of ATP/UTP on ERK1/2 activation. To test the biological consequences of ERK1/2 activation, the effect of P2Y2 on cell functions were examined. P2Y2 stimulation increased cell proliferation and this effect was attenuated by PD098059 in a dose-dependent manner, thereby indicating that the ERK pathway mediates mitogenic signaling by P2Y2. In conclusion, the activation of conventional PKCs through P2Y2 receptor acts in concert with ERK and PI3K/PKC- epsilon pathways to induce c-Fos protein and HeLa cell proliferation.  相似文献   

18.
We have investigated the roles of ceramide in Fas signalling leading to phospholipase D (PLD) activation in A20 cells. Upon stimulation of Fas signalling by anti-Fas monoclonal antibody, sphingomyelin hydrolysis and activation of PLD were induced. Also, the translocation of protein kinase C (PKC) βI and βII and the elevation of diacylglycerol (DAG) content were induced by Fas cross-linking. When phosphatidylcholine-specific phospholipase C (PC-PLC) was inhibited by D609, the Fas-induced changes in PLD activity, DAG content, and PKC translocation were inhibited. In contrast, D609 had no effect on Fas-induced alterations in sphingolipid metabolism, suggesting that changes in ceramide content do not account for Fas-induced PLD activation. Furthermore, C6-ceramide had no effect on Fas-induced PLD activation and PKC translocation. Taken together, these data might suggest that ceramide generated by Fas cross-linking does not affect PKC β-dependent PLD activity stimulated by anti-Fas monoclonal antibody in A20 cells.  相似文献   

19.
The chloride conductance (G(Cl,swell)) that participates in the regulatory volume decrease process triggered by osmotic swelling in HeLa cells was impaired by removal of extracellular Ca(2+), depletion of intracellular Ca(2+) stores with thapsigargin, or by preloading the cells with BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid). Furthermore, overnight exposure to the phorbol ester tetradecanoyl phorbol acetate and acute incubation with inhibitors of the conventional protein kinase C (PKC) isoforms bisindolylmaleimide I and G?6976 inhibited G(Cl,swell). Treatment of HeLa cells with U73122, a phospholipase C inhibitor, also prevented G(Cl,swell). Hypotonicity induced selective PKC alpha accumulation in the membrane/cytoskeleton fraction in fractionation experiments and translocation of a green fluorescent protein-PKC alpha fusion protein to the plasma membrane of transiently transfected HeLa cells. To further explore the role of PKCs in hypotonicity-induced G(Cl,swell), HeLa clones stably expressing either a kinase-dead dominant negative variant of the Ca(2+)-dependent PKC isoform alpha (PKC alpha K386R) or of the atypical PKC isoform zeta (PKCzeta K275W) were generated. G(Cl,swell) was significantly reduced in HeLa cells expressing the dominant negative PKC alpha mutant but remained unaltered in cells expressing dominant negative PKCzeta. These findings strongly implicate PKC alpha as a critical regulatory element that is required for efficient regulatory volume decrease in HeLa cells.  相似文献   

20.
We investigated the effects of the vasoconstrictor angiotensin (Ang) II on the whole cell inward rectifier K(+) (Kir) current enzymatically isolated from small-diameter (<100 microm) coronary arterial smooth muscle cells (CASMCs). Ang II inhibited the Kir current in a dose-dependent manner (half inhibition value: 154 nM). Pretreatment with phospholipase C inhibitor and protein kinase C (PKC) inhibitors prevented the Ang II-induced inhibition of the Kir current. The PKC activator reduced the Kir currents. The inhibitory effect of Ang II was reduced by intracellular and extracellular Ca(2+) free condition and by G?6976, which inhibits Ca(2+)-dependent PKC isoforms alpha and beta. However, the inhibitory effect of Ang II was unaffected by a peptide that selectively inhibits the translocation of the epsilon isoform of PKC. Western blot analysis confirmed that PKCalpha, and not PKCbeta, was expressed in small-diameter CASMCs. The Ang II type 1 (AT(1))-receptor antagonist CV-11974 prevented the Ang II-induced inhibition of the Kir current. From these results, we conclude that Ang II inhibits Kir channels through AT(1) receptors by the activation of PKCalpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号