首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为探索可表达较大片段外源基因的脊灰病毒重组载体,以HBVS基因置换脊灰病毒的P1基因,同时以另一途径提供脊灰病毒P1结构蛋白,经转染入Hela细胞中形成缺陷型重组病毒颗粒,此病毒可以感染新的细胞,并表达其重组的外源基因,但不产生子代病毒。实验结果表明,这种瞬时表达系统的构建,为脊灰病毒缺陷型重组载体用于基因转导技术打下基础。  相似文献   

2.
In order to study the importance of VP4 in picornavirus replication and translation, we replaced the hepatitis A virus (HAV) VP4 with the poliovirus (PV1) VP4. Using a modification of oligonucleotide site directed mutagenesis and the polymerase chain reaction (PCR), we created a subgenomic cDNA chimera of hepatitis A virus in which the precise sequences coding for HAV VP4 capsid protein were replaced by the sequences coding for the poliovirus VP4 capsid protein. The method involved the use of PCR primers corresponding to the 3' and 5' ends of the poliovirus VP4 sequence and that had HAV VP4 3' and 5' flanking sequences on their 5'ends. Single stranded DNA of 240 and 242 nt containing the 204 nt coding for the complete poliovirus VP4 were produced by using a limiting amount of one of the primers in a PCR reaction. These single stranded PCR products were used like mutagenic oligonucleotides on a single stranded phagemid containing the first 2070 bases of the HAV genome. Using this technique, we precisely replaced the HAV VP4 gene by the poliovirus VP4 gene as determined by DNA sequencing. The cDNA was transcribed into RNA and translated in vitro. The resulting protein could be precipitated by antibody to poliovirus VP4 but not to HAV VP4.  相似文献   

3.
分析脊髓灰质炎(脊灰)病毒(PV)的急性弛缓性麻痹(AFP)病例流行病学特征,提高对疫苗衍生脊灰病毒(VDPVs)和循环的疫苗衍生脊灰病毒(cVDPVs)的认识,增加AFP病例监测系统敏感性。对西安市1995-2008年检出的PV阳性AFP病例进行流行病学分析。对疫苗变异PV采用VP1基因核苷酸序列测定方法进行分子生物性状分析。西安市1995-2008年共检出PV13株,检出率4.29%。分离到的PV以II、III型为主,AFP病例散在发生,无聚集性。未全程免疫儿童(全程免疫儿童,年龄以≤1岁儿童为主(84.62%)。麻痹残留率高达84.62%。脊灰相关病例(VAPP)的发生危险性为0.24/100万。型内特征鉴定有1株为疫苗变异PV,经VP1基因核苷酸序列测定未达到VDPV的分类标准。维持无脊灰阶段,存在着VDPV和发生cVDPVs的可能,在保持高水平脊髓灰质炎疫苗(OPV)免疫覆盖率的同时,高质量的AFP病例流行病学监测和病毒学监测工作,具有重要的现实意义。  相似文献   

4.
A rapid and sensitive method for the detection of wild poliovirus from sewage samples using the polymerase chain reaction (PCR) technique was investigated. To eliminate the toxicity of sample concentrates to the enzymatic system used in PCR, a methodology was developed for the purification of these concentrates, consisting of treatment with trichlorofluoroethane and Sephadex column chromatography. The viral RNA was extracted from the purified concentrates, submitted to PCR with primers specific for Brazilian wild poliovirus type 1 and for Sabin types 1, 2 and 3. The amplified products were detected by electrophoresis in vertical polyacrylamide gels and stained with ethidium bromide. The results suggest that sewage sampling for environmental surveillance, combined with the rapid and precise PCR technology, provides a powerful tool for assessment of the success of the poliovirus eradication programme.  相似文献   

5.
以脊髓灰质炎病毒(以下简称脊灰病毒)为载体构建的重组体活病毒可以做为探讨脊灰病毒的抗原结构和特性的有益手段。在构建重组有甲型肝炎病毒小片段抗原多肽的重组脊灰病毒基础上,分析了脊灰病毒VP1上中和抗原位点I的空间构象特点,并探讨了插入的外源抗原片段对其空间结构的可能影响。  相似文献   

6.
Poly(rC) binding proteins mediate poliovirus mRNA stability   总被引:2,自引:2,他引:0       下载免费PDF全文
The 5'-terminal 88 nt of poliovirus RNA fold into a cloverleaf RNA structure and form ribonucleoprotein complexes with poly(rC) binding proteins (PCBPs; AV Gamarnik, R Andino, RNA, 1997, 3:882-892; TB Parsley, JS Towner, LB Blyn, E Ehrenfeld, BL Semler, RNA, 1997, 3:1124-1134). To determine the functional role of these ribonucleoprotein complexes in poliovirus replication, HeLa S10 translation-replication reactions were used to quantitatively assay poliovirus mRNA stability, poliovirus mRNA translation, and poliovirus negative-strand RNA synthesis. Ribohomopoly(C) RNA competitor rendered wild-type poliovirus mRNA unstable in these reactions. A 5'-terminal 7-methylguanosine cap prevented the degradation of wild-type poliovirus mRNA in the presence of ribohomopoly(C) competitor. Ribohomopoly(A), -(G), and -(U) did not adversely affect poliovirus mRNA stability. Ribohomopoly(C) competitor RNA inhibited the translation of poliovirus mRNA but did not inhibit poliovirus negative-strand RNA synthesis when poliovirus replication proteins were provided in trans using a chimeric helper mRNA possessing the hepatitis C virus IRES. A C24A mutation prevented UV crosslinking of PCBPs to 5' cloverleaf RNA and rendered poliovirus mRNA unstable. A 5'-terminal 7-methylguanosine cap blocked the degradation of C24A mutant poliovirus mRNA. The C24A mutation did not inhibit the translation of poliovirus mRNA nor diminish viral negative-strand RNA synthesis relative to wild-type RNA. These data support the conclusion that poly(rC) binding protein(s) mediate the stability of poliovirus mRNA by binding to the 5'-terminal cloverleaf structure of poliovirus mRNA. Because of the general conservation of 5' cloverleaf RNA sequences among picornaviruses, including C24 in loop b of the cloverleaf, we suggest that viral mRNA stability of polioviruses, coxsackieviruses, echoviruses, and rhinoviruses is mediated by interactions between PCBPs and 5' cloverleaf RNA.  相似文献   

7.
为了了解2月龄婴儿中针对脊髓灰质炎病毒的中和抗体水平,并探讨母传抗体对脊髓灰质炎减毒活疫苗(OPV)和灭活疫苗(IPV)免疫效果的影响。对416名2月龄婴儿分别接种OPV和IPV,采集免疫前后血清,用微量中和法检测血清中Ⅰ、Ⅱ、Ⅲ型脊髓灰质炎病毒中和抗体滴度,评价抗体GMT水平及4倍增长情况。检测结果显示,2月龄婴儿母传抗体Ⅰ、Ⅱ、Ⅲ型阳性率分别为45%、38.2%和17.5%,抗体GMT水平为9.0、8.1和5.2。经接种两组疫苗后,母传抗体阳性者与阴性者免后抗体GMT水平相比,OPV组无明显差异,IPV组阳性者略低于阴性者。在免前抗体滴度<1∶32人群中,OPV组免后抗体滴度4倍增长率及几何滴度增长倍数分别为:Ⅰ型93.6%、71.2;Ⅱ型98.2%、43.7;Ⅲ型91.7%、47.9;IPV组免后抗体滴度4倍增长率及几何滴度增长倍数分别为:Ⅰ型82%、9.4;Ⅱ型62.8%、5.1;Ⅲ型95.6%、11.7;在免前抗体滴度1∶32~1∶128人群中,OPV组Ⅰ型92.3%、23;Ⅱ型86.4%、13.9;Ⅲ型55.6%、4.1;IPV组Ⅰ型48%、2.5;Ⅱ型15%、0.9;Ⅲ型55.6%、2.7。目前中国2月龄婴儿免前脊灰抗体阳性率较高,尤其是Ⅰ、Ⅱ型。脊灰母传抗体对两种疫苗免疫效果有一定干扰,对IPV疫苗的影响较为明显。  相似文献   

8.
CD44 is not required for poliovirus replication.   总被引:1,自引:1,他引:0       下载免费PDF全文
The identification of a monoclonal antibody, AF3, which recognizes a single isoform of the cell surface protein CD44 and preferentially blocks binding of serotype 2 poliovirus to HeLa cells, suggested that CD44 might be an accessory molecule to Pvr, the cell receptor for poliovirus, and that it could play a role in the function of the poliovirus receptor site. We show here that only AF3 blocks binding of serotype 2 poliovirus to HeLa cells and, in contrast to a previously published report, that the anti-CD44 monoclonal antibodies A3D8 and IM7 are unable to block binding of poliovirus. To determine whether CD44 is involved in poliovirus infection, we analyzed the replication of all three serotypes of poliovirus in human neuroblastoma cells which lack or express CD44 and in mouse neuroblastoma cells which lack Pgp-1, the mouse homolog of human CD44, and which express Pvr. All three poliovirus serotypes replicate with normal kinetics and to normal levels in the absence or presence of CD44 or in the absence of Pgp-1. Furthermore, the binding affinity constants of all three poliovirus serotypes for Pvr are unaffected by the presence or absence of CD44 in the human neuroblastoma cell line. We conclude that CD44 and Pgp-1 are not required for poliovirus replication and are unlikely to be involved in poliovirus pathogenesis.  相似文献   

9.
Expression of the human poliovirus receptor (PVR) in transgenic mice results in susceptibility to poliovirus infection. In the primate host, poliovirus infection is characterized by restricted tissue tropism. To determine the pattern of poliovirus tissue tropism in PVR transgenic mice, PVR gene expression and susceptibility to poliovirus infection were examined by in situ hybridization. PVR RNA is expressed in transgenic mice at high levels in neurons of the central and peripheral nervous system, developing T lymphocytes in the thymus, epithelial cells of Bowman's capsule and tubules in the kidney, alveolar cells in the lung, and endocrine cells in the adrenal cortex, and it is expressed at low levels in intestine, spleen, and skeletal muscle. After infection, poliovirus replication was detected only in neurons of the brain and spinal cord and in skeletal muscle. These results demonstrated that poliovirus tissue tropism is not governed solely by expression of the PVR gene nor by accessibility of cells to virus. Although transgenic mouse kidney tissue expressed poliovirus binding sites and was not a site of poliovirus replication, when cultivated in vitro, kidney cells developed susceptibility to infection. Identification of the changes in cultured kidney cells that permit poliovirus infection may provide information on the mechanism of poliovirus tissue tropism.  相似文献   

10.
H C Selinka  A Zibert    E Wimmer 《Journal of virology》1992,66(4):2523-2526
The human poliovirus receptor consists of three extracellular immunoglobulinlike domains, a transmembrane domain, and an intracytoplasmic domain. The amino-terminal variable-type domain (V domain) of the human poliovirus receptor is necessary and sufficient for its function as a viral receptor (H.-C. Selinka, A. Zibert, and E. Wimmer, Proc. Natl. Acad. Sci. USA 88:3598-3602, 1991). In this paper, data are presented showing that transfer of the putative poliovirus receptor-binding domain to a truncated receptor for the human immunodeficiency virus results in a functional receptor for poliovirus. After expression in mouse cells, this chimeric protein confers susceptibility to poliovirus. Thus, unlike human immunodeficiency virus, poliovirus can enter mouse cells by way of a truncated CD4 receptor if the specific binding domain for poliovirus is provided.  相似文献   

11.
In vitro construction of poliovirus defective interfering particles.   总被引:26,自引:21,他引:5       下载免费PDF全文
To construct poliovirus defective interfering (DI) particles in vitro, we synthesized an RNA from a cloned poliovirus cDNA, pSM1(T7)1, which carried a deletion in the genome region corresponding to nucleotide positions 1663 to 2478 encoding viral capsid proteins, by using bacteriophage T7 RNA polymerase. The RNA was designed to retain the correct reading frame in nucleotide sequence downstream of the deletion. HeLa S3 monolayer cells were transfected with the deletion RNA and then superinfected with standard virus as a helper. The DI RNA was observed in the infected cells after three passages at high multiplicity of infection. The sequence analysis of RNA extracted from the purified DI particle clearly showed that this DI RNA had the same deletion in size and location as that in the RNA used for the transfection. Thus, we succeeded in construction of a poliovirus DI particle in vitro. To gain insight into the mechanism for DI generation, we constructed poliovirus cDNAs pSM1(T7)1a and pSM1(T7)1b that, in addition to the same deletion as that in pSM1(T7)1, had insertion sequences of 4 bases and 12 bases, respectively, at the corresponding nucleotide position, 2978. The RNA transcribed from pSM1(T7)1a was not a template for synthesis of poliovirus nonstructural proteins and therefore was inactive as an RNA replicon. On the other hand, the RNA from pSM1(T7)1b replicated properly in the transfected cells. Superinfection of the transfected cells with standard virus resulted in production of DI particles derived from pSM1(T7)1b and not from pSM1(T7)1a. These observations indicate that deletion RNAs that are inactive replicons have little or no possibility of being genomes of DI particles suggesting the existence of a nonstructural protein(s) that has an inclination to function as a cis-acting protein(s). The method described here will provide a useful technique to investigate genetic information essential for poliovirus replication.  相似文献   

12.
Defective interfering (DI) RNA genomes of poliovirus which contain in-frame deletions in the P1 capsid protein-encoding region have been described. DI genomes are capable of replication and can be encapsidated by capsid proteins provided in trans from wild-type poliovirus. In this report, we demonstrate that a previously described poliovirus DI genome (K. Hagino-Yamagishi and A. Nomoto, J. Virol. 63:5386-5392, 1989) can be complemented by a recombinant vaccinia virus, VVP1 (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 65:2088-2092, 1991), which expresses the poliovirus capsid precursor polyprotein, P1. Stocks of defective polioviruses were generated by transfecting in vitro-transcribed defective genome RNA derived from plasmid pSM1(T7)1 into HeLa cells infected with VVP1 and were maintained by serial passage in the presence of VVP1. Encapsidation of the defective poliovirus genome was demonstrated by characterizing poliovirus-specific protein expression in cells infected with preparations of defective poliovirus and by Northern (RNA) blot analysis of poliovirus-specific RNA incorporated into defective poliovirus particles. Cells infected with preparations of defective poliovirus expressed poliovirus protein 3CD but did not express capsid proteins derived from a full-length P1 precursor. Poliovirus-specific RNA encapsidated in viral particles generated in cells coinfected with VVP1 and defective poliovirus migrated slightly faster on formaldehyde-agarose gels than wild-type poliovirus RNA, demonstrating maintenance of the genomic deletion. By metabolic radiolabeling with [35S]methionine-cysteine, the defective poliovirus particles were shown to contain appropriate mature-virion proteins. This is the first report of the generation of a pure population of defective polioviruses free of contaminating wild-type poliovirus. We demonstrate the use of this recombinant vaccinia virus-defective poliovirus genome complementation system for studying the effects of a defined mutation in the P1 capsid precursor on virus assembly. Following removal of residual VVP1 from defective poliovirus preparations, processing and assembly of poliovirus capsid proteins derived from a nonmyristylated P1 precursor expressed by a recombinant vaccinia virus, VVP1 myr- (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 66:4556-4563, 1992), in cells coinfected with defective poliovirus were analyzed. Capsid proteins generated from nonmyristylated P1 did not assemble detectable levels of mature virions but did assemble, at low levels, into empty capsids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Chimeric poliovirus RNAs, possessing the 5' nontranslated region (NTR) of hepatitis C virus in place of the 5' NTR of poliovirus, were used to examine the role of the poliovirus 5' NTR in viral replication. The chimeric viral RNAs were incubated in cell-free reaction mixtures capable of supporting the sequential translation and replication of poliovirus RNA. Using preinitiation RNA replication complexes formed in these reactions, we demonstrated that the 3' NTR of poliovirus RNA was insufficient, by itself, to recruit the viral replication proteins required for negative-strand RNA synthesis. The 5'-terminal cloverleaf of poliovirus RNA was required in cis to form functional preinitiation RNA replication complexes capable of uridylylating VPg and initiating the synthesis of negative-strand RNA. These results are consistent with a model in which the 5'-terminal cloverleaf and 3' NTRs of poliovirus RNA interact via temporally dynamic ribonucleoprotein complexes to coordinately mediate and regulate the sequential translation and replication of poliovirus RNA.  相似文献   

14.
15.
Mechanism of poliovirus inactivation by bromine chloride   总被引:1,自引:0,他引:1  
The mechanism of poliovirus inactivation by BrCl was determined by exposing poliovirus to various concentrations of BrCl and correlating the loss of virus infectivity with structural changes of the virus. Concentrations of 0.3 to 5 mg of BrCl per liter resulted in 95% to total inactivation of poliovirus. However, the inactivated virus retained structural integrity, as determined by buoyant density measurements of poliovirus labeled with radioactivity. However, at concentrations of 10 to 20 mg of BrCl per liter, total inactivation of poliovirus was associated with the degradation of the structural integrity of the virus. Since infectious ribonucleic acid at similar concentrations could be recovered from untreated poliovirus and poliovirus treated with 0.3 mg of BrCl per liter, it was concluded that BrCl as HOBr or bromamines inactivates poliovirus by reacting with the protein coat of the virus. Moreover, this inactivating reaction does not result in the degradation of the structure of the virion, nor does it affect the biological activity of the internal ribonucleic acid of the virus.  相似文献   

16.
Poliovirus infects susceptible cells through the poliovirus receptor (PVR), which functions to bind virus and to change its conformation. These two activities are thought to be necessary for efficient poliovirus infection. How binding and conformation conversion activities contribute to the establishment of poliovirus infection was investigated. Mouse L cells expressing mouse high-affinity Fcγ receptor molecules were established and used to study poliovirus infection mediated by mouse antipoliovirus monoclonal antibodies (MAbs) (immunoglobulin G2a [IgG2a] subtypes) or PVR-IgG2a, a chimeric molecule consisting of the extracellular moiety of PVR and the hinge and Fc portion of mouse IgG2a. The antibodies and PVR-IgG2a showed the same degree of affinity for poliovirus, but the infectivities mediated by these molecules were different. Among the molecules tested, PVR-IgG2a mediated the infection most efficiently, showing 50- to 100-fold-higher efficiency than that attained with the different MAbs. A conformational change of poliovirus was induced only by PVR-IgG2a. These results strongly suggested that some specific interaction(s) between poliovirus and the PVR is required for high-level infectivity of poliovirus in this system.  相似文献   

17.
To achieve the goal of poliovirus eradication, surveillance of endemic areas is a crucial step in the poliovirus eradication program. Currently, six countries still have endemic poliovirus. We have tested a novel method which uses SDS/EDTA-treated chromatography paper strips to collect and transport poliovirus-containing stool samples. The SDS/EDTA-treated paper strips were soaked with different dilutions of poliovirus-containing feces and stored at different temperatures. After storing the SDS/EDTA paper strips for 5 months at 37 degrees C, poliovirus RNA could be successfully amplified using RT-PCR. Infectivity of wild-type poliovirus type 1, 2, and 3 was lost upon contact with the SDS/EDTA-treated strips. This easy, inexpensive, and biosafe chromatography paper strip method for the collection and transportation of poliovirus samples can be of use in poliovirus surveillance and polio vaccination programs.  相似文献   

18.
Entry of poliovirus into cells is blocked by valinomycin and concanamycin A   总被引:2,自引:0,他引:2  
Irurzun A  Carrasco L 《Biochemistry》2001,40(12):3589-3600
Poliovirus contains a virus particle devoid of a lipid envelope that does not require an intact pH to enter into susceptible cells. Thus, the blockade of pH gradient generated in endosomes is not sufficient to impede the translocation of poliovirus particles to the cytoplasm, suggesting that translocation takes place at the plasma membrane. Measuring both viral protein synthesis and eIF4G-1 cleavage mediated by poliovirus protease 2A has been used to monitor productive entry of poliovirus into cells. Translation of the input poliovirus RNA produces enough 2A(pro) to cleave eIF4G-1, providing a sensitive assay to estimate poliovirus RNA delivery to the cytoplasm followed by its translation. Combination of concanamycin A, a vacuolar proton-ATPase inhibitor, and valinomycin, an ionophore that promotes K(+) efflux from cells, powerfully prevented poliovirus infection. Moreover, modifying the ionic conditions of the culture medium (increasing the concentration of K(+) and decreasing the concentration of Na(+)), together with concanamycin A, also significantly interfered with poliovirus entry. These findings suggest that poliovirus RNA requires an intact concentration of K(+) ions inside the cells to be uncoated and to gain access to the cytoplasm. In addition, the actual contribution of concanamycin A (as well as other inhibitors of endocytosis) to the total inhibition of productive poliovirus entry points to the idea that at least some percentage of polioviral subparticles translocates from the endosomes.  相似文献   

19.
The emergence of circulating vaccine-derived poliovirus (cVDPV) strains in suboptimally vaccinated populations is a serious threat to the global poliovirus eradication. The genetic determinants for the transmissibility phenotype of polioviruses, and in particularly of cVDPV strains, are currently unknown. Here we describe the fecal excretion of wild-type poliovirus, oral polio vaccine, and cVDPV (Hispaniola) strains after intraperitoneal injection in poliovirus receptor-transgenic mice. Both the pattern and the level of fecal excretion of the cVDPV strains resemble those of wild-type poliovirus type 1. In contrast, very little poliovirus was present in the feces after oral polio vaccine administration. This mouse model will be helpful in elucidating the genetic determinants for the high fecal-oral transmission phenotype of cVDPV strains.  相似文献   

20.
Mechanism of poliovirus inactivation by bromine chloride.   总被引:1,自引:1,他引:0       下载免费PDF全文
The mechanism of poliovirus inactivation by BrCl was determined by exposing poliovirus to various concentrations of BrCl and correlating the loss of virus infectivity with structural changes of the virus. Concentrations of 0.3 to 5 mg of BrCl per liter resulted in 95% to total inactivation of poliovirus. However, the inactivated virus retained structural integrity, as determined by buoyant density measurements of poliovirus labeled with radioactivity. However, at concentrations of 10 to 20 mg of BrCl per liter, total inactivation of poliovirus was associated with the degradation of the structural integrity of the virus. Since infectious ribonucleic acid at similar concentrations could be recovered from untreated poliovirus and poliovirus treated with 0.3 mg of BrCl per liter, it was concluded that BrCl as HOBr or bromamines inactivates poliovirus by reacting with the protein coat of the virus. Moreover, this inactivating reaction does not result in the degradation of the structure of the virion, nor does it affect the biological activity of the internal ribonucleic acid of the virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号