首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Feeding lactating rats on high-fat cheese crackers in addition to laboratory chow increased the dietary intake of fat from 2 to 20% of the total weight of food eaten and decreased mammary-gland lipogenesis in vivo by approx. 50%. This lipogenic inhibition was also observed in isolated mammary acini, where it was accompanied by decreased glucose uptake. These inhibitions were completely reversed by incubation with insulin. Insulin had no effect on the rate of glucose transport into acini, nor on pyruvate dehydrogenase activity as estimated by the accumulation of pyruvate and lactate, suggesting that these are not the sites of lipogenic inhibition. Insulin stimulated the incorporation of [1-14C]acetate into lipid in acini from high-fat-fed rats. In the presence of alpha-cyanohydroxycinnamate, a potent inhibitor of mitochondrial pyruvate transport, and with glucose as the sole substrate, neither [1-14C]glucose incorporation into lipid nor glucose uptake were stimulated by insulin. Insulin did stimulate the incorporation of [1-14C]acetate into lipid in the presence of alpha-cyanohydroxycinnamate, and this was accompanied by an increase in glucose uptake by the acini. This indicated that increased glucose uptake was secondary to the stimulation of lipogenesis by insulin, which therefore must occur via activation of a step in the pathway distal to mitochondrial pyruvate transport. Insulin stimulated acetyl-CoA carboxylase activity measured in crude extracts of acini from high-fat-fed rats, restoring it to values close to those of chow-fed controls. The effects of insulin on acetyl-CoA carboxylase activity and lipogenesis were not antagonized by adrenaline or dibutyryl cyclic AMP.  相似文献   

2.
In parenchymal liver cells isolated from fed rats, insulin increased the formation of 14CO2 from [1-14C]pyruvate (and presumably the flux through pyruvate dehydrogenase) by 14%. Dichloroacetate, an activator of the pyruvate dehydrogenase complex, stimulated this process by 133%. As judged from the conversion of [2-14C]pyruvate to 14CO2, the tricarboxylic acid cycle activity was not affected by insulin, but it was depressed by dichloroacetate. In hepatocytes from fed rats, incubated with glucose as the only carbon source, dichloroacetate caused a stimulation (31%) of fatty acid synthesis, measured as 3H incorporation from 3H2O into fatty acid, and an increased (134%) accumulation of ketone bodies (acetoacetate + D-3-hydroxybutyrate). Dichloroacetate did not affect ketone body formation from [14C]palmitate, suggesting that the increased accumulation of ketone bodies resulted from acetyl-CoA derived from pyruvate. Insulin stimulated fatty acid synthesis in hepatocytes from fed rats. In the combined presence of insulin plus dichloroacetate, fatty acid synthesis was more rapid than in the presence of either insulin or dichloroacetate, whereas the accumulation of ketone bodies was smaller than in the presence of dichloroacetate alone. Although pyruvate dehydrogenase activity, which is rate-limiting for fatty acid synthesis in hepatocytes from fed rats, is stimulated both by insulin and by dichloroacetate, the reciprocal changes in fatty acid synthesis and ketone body accumulation brought about by insulin in the presence of dichloroacetate suggest that insulin is also involved in the regulation of fatty acid synthesis at a mitochondrial site after pyruvate dehydrogenase, possibly at the partitioning of acetyl-CoA between citrate and ketone body formation.  相似文献   

3.
Depression of carbohydrate digestion by oral administration of acarbose, a glucosidase inhibitor, led to a 75% inhibition of the re-activation of lipogenesis in vivo in the mammary gland of 18 h-starved lactating rats refed with 5 g of chow diet. Rates of [1-14C]glucose incorporation in vitro into lipid and CO2 in mammary-gland acini isolated from refed animals were elevated compared with acini from starved rats, but acarbose treatment completely prevented this stimulation. Gastric intubation of glucose led to a large stimulation of lipogenesis in the mammary gland of starved lactating rats, similar to that induced by refeeding with chow diet; this was dependent on the amount of glucose given and the time elapsed between glucose administration and injection of 3H2O for the measurement of lipogenesis. The switch-on of lipogenesis in the mammary gland of starved lactating rats, by refeeding or by intubation of glucose, was associated with a decrease in the ratio of [glucose 6-phosphate]/[fructose 1,6-bisphosphate] in the gland, indicative of an increase in phosphofructokinase activity. A time-course study revealed that the ratio decreased rapidly over the first 30 min of chow refeeding, after which a large surge in lipogenesis was seen. Acarbose, given 25 min after the onset of refeeding, led to a stepwise increase in the ratio, in parallel with the observed decrease in lipogenic activity. It is concluded that the control of lipogenesis in the mammary gland is closely linked to the availability of dietary carbohydrate. An important site of regulation of lipogenesis in the gland appears to be at the level of phosphofructokinase. A possible role of insulin in the regulation of phosphofructokinase activity, and the acute modulation of insulin-sensitivity in the gland during the starved-refed transition, are discussed.  相似文献   

4.
Dichloroacetate (2 mm) stimulated the conversion of [1-14C]lactate to glucose in hepatocytes from fed rats. In hepatocytes from rats starved for 24 h, where the mitochondrial NADHNAD+ ratio is elevated, dichloroacetate inhibited the conversion of [1-14C]lactate to glucose. Dichloroacetate stimulated 14CO2 production from [1-14C]lactate in both cases. It also completely activated pyruvate dehydrogenase and increased flux through the enzyme. The addition of β-hydroxybutyrate, which elevates the intramitochondrial NADHNAD+ ratio, changed the metabolism of [1-14C]lactate in hepatocytes from fed rats to a pattern similar to that seen in hepatocytes from starved rats. Thus, the effect of dichloroacetate on labeled glucose synthesis from lactate appears to depend on the mitochondrial oxidation-reduction state of the hepatocytes. Glucagon (10 nm) stimulated labeled glucose synthesis from lactate or alanine in hepatocytes from both fed and starved rats and in the absence or presence of dichloroacetate. The hormone had no effect on pyruvate dehydrogenase activity whether or not the enzyme had been activated by dichloroacetate. Thus, it appears that pyruvate dehydrogenase is not involved in the hormonal regulation of gluconeogenesis. Glucagon inhibited the incorporation of 10 mm [1-14C]pyruvate into glucose in hepatocytes from starved rats. This inhibition has been attributed to an inhibition of pyruvate dehydrogenase by the hormone (Zahlten et al., 1973, Proc. Nat. Acad. Sci. USA70, 3213–3218). However, dichloroacetate did not prevent the inhibition of glucose synthesis. Nor did glucagon alter the activity of pyruvate dehydrogenase in homogenates of cells that had been incubated with 10 mm pyruvate in the absence or presence of dichloroacetate. Thus, the inhibition by glucagon of pyruvate gluconeogenesis does not appear to be due to an inhibition of pyruvate dehydrogenase.  相似文献   

5.
1. The effects of fasting on the neutral lipid synthesis to insulin and/or epinephrine in isolated fat cells have been examined using [1-14C]glucose. 2. The ability of adipocytes from starved rats to synthesize fatty acids from both labeled substrates was markedly diminished compared to adipocytes from control rats. 3. The response of lipogenic stimulation to insulin at all concentrations tested was greatly diminished in adipocytes from 24 hr starved rats. 4. [1-14C]glucose utilization rates in the absence or in the presence of insulin were not significantly different in adipocytes from 24 hr starved rats as compared with control adipocytes, although basal and insulin stimulated glyceride-glycerol synthesis were significantly higher in starved adipocytes. 5. Epinephrine acutely inhibited [1-14C]acetate incorporation into fatty acids for insulin-stimulated lipogenesis in control adipocytes, in contrast, this lipolytic agent strongly increased [1-14C]glucose conversion to triacylglycerols. 6. In both cases, the differences in lipid synthesis capacities found in both nutritional states were abolished by epinephrine.  相似文献   

6.
Inhibition of glucose uptake by acetoacetate and relief of this inhibition by insulin found previously in slices of rat mammary gland [Williamson, McKeown & Ilic (1975) Biochem. J. 150. 145-152] was confirmed in acini, which represent a more homogeneous population of cells. Glycerol (1mM) behaved like insulin (50 minuits/ml) in its ability to relieve the inhibition of glucose (5 mM) utilization caused by acetoacetate (2 mM) in acini. Both glycerol and insulin reversed the increase in [citrate] and the decrease in [glycerol 3-phosphate] and the [lactate]/[pyruvate] ratio in the presence of acetoacetate. Lipogenesis from 3H2O, [3-14C] acetoacetate, [1-14C]- and [6-14C]-glucose was stimulated, whereas 14CO2 formation from [3-14C]acetoacetate was decreased. Neither insulin nor glycerol relieved the acetoacetate inhibition of glucose uptake when lipogenesis was inhibited by 5-(tetradecyloxy)-2-furoic acid. From measurements of [3-14C]acetoacetate incorporation into lipid in the various situations it is suggested that a cytosolic pathway for acetoacetate utilization may exist in rat mammary gland. In the absence of acetoacetate, glycerol inhibited glucose utilization by 60% and increased both [glycerol 3-phosphate] and the [lactate/[pyruvate] ratio. Possible ways in which glycerol may mimic the effects of insulin are discussed.  相似文献   

7.
1. The turnover rate of L-[1-14C]leucine was increased by 35% in lactating rats compared with virgin rats. Starvation or removal of pups (24 h) returned the value to that of the virgin rat. 2. Incorporation of L-[U-14C]leucine into lipid and protein of mammary glands of lactating rats in vivo increased 7-fold and 6-fold respectively compared with glands of virgin rats. Lactation caused no change in the incorporation of L-[U-14C]leucine into hepatic lipid and protein. 3. The production of 14CO2 from L[l-14C]leucine (in the presence of glucose) was similar in isolated acini from glands of fed (chow) and starved lactating rats. Feeding with a 'cafeteria' diet caused a slight decrease, and removal of pups a large decrease, in the oxidative decarboxylation of leucine. 4. Oxidation of L-[2-14C]leucine to 14CO2 was increased about 3-fold in acini from starved lactating rats or lactating rats fed on a 'cafeteria' diet compared with rats fed on a chow diet. Insulin decreased the formation of 14CO2 in all three situations. 5. Incorporation of L-[U-14C]- and [2-14C]-leucine into lipid was decreased in acini from starved lactating rats and lactating rats fed on a 'cafeteria' diet. Insulin tended to increase the conversion of [2-14C]leucine into lipid, but this was significant only in the case of the acini from 'cafeteria'-fed rats. 6. Experiments with (-)-hydroxycitrate indicate that the major route for conversion of leucine carbon into lipid in acini is via citrate translocation from the mitochondria. 7. The physiological implications of these findings are discussed.  相似文献   

8.
1. Measurements of arteriovenous differences across mammary glands of normal and starved lactating rats, and lactating rats made short-term insulin-deficient with streptozotocin or prolactin-deficient with bromocryptine, showed that only in the starved animals was there a significant decrease in glucose uptake. This decrease was accompanied by release of lactate and pyruvate from the gland, in contrast with the uptake of these metabolites by glands of normal lactating rats. 2. There were no marked differences in metabolite concentrations in freeze-clamped glands in the four conditions studied, apart from a decrease in [lactate] and [pyruvate] and an increase in [glucose] in the glands of the streptozotocin-treated group. 3. Acini isolated from the glands of starved, insulin or prolactin-deficient rats had a higher production of lactate and pyruvate from glucose than did glands from normal rats; this is in agreement with the reported decrease in the proportion of active pyruvate dehydrogenase in these situations [Field & Coore (1976) Biochem. J.156, 333-337; Kankel & Reinauer (1976) Diabetologia12, 149-154]. 4. Addition of insulin did not increase the uptake of glucose by acini from normal glands, but it caused a significant increase in the utilization of glucose by acini from glands of starved rats. Insulin did not decrease the accumulation of lactate and pyruvate in any of the experiments. 5. It is concluded that isolated acini represent a suitable model for the study of mammary-gland carbohydrate metabolism in that they reflect metabolism of the gland in vivo.  相似文献   

9.
1. The overall metabolic changes in lactating mammary gland in alloxan-diabetic and anti-insulin-serum-treated rats were assessed by measurement of the incorporation of (14)C from specifically labelled glucose, pyruvate and acetate into carbon dioxide and lipid, together with measurements of enzymes concerned with the pentose phosphate pathway and with citrate metabolism. 2. Alloxan-diabetes depressed the rate of formation of (14)CO(2) from [1-(14)C]glucose and [2-(14)C]glucose to approx. 10% of the control rate; this was partially reversed by addition of insulin in vitro. The quotient Oxidation of [1-(14)C]glucose/Oxidation of [6-(14)C]glucose fell from a value of 17.6 in the control group to 3.9 in the diabetic group and was restored to 14.3 in the presence of insulin in vitro. In keeping with these results it was shown that glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were significantly decreased in alloxan-diabetic rats. 3. Alloxan-diabetes depressed the decarboxylation and the oxidation of labelled pyruvate, but not the oxidation of labelled acetate. 4. The synthesis of lipid from specifically labelled glucose was greatly decreased, that from [2-(14)C]pyruvate was almost unchanged and that from [1-(14)C]acetate alone was increased in alloxandiabetic rats. However, the stimulation of lipid synthesis from acetate by glucose was small in the alloxan-diabetic rats compared with the controls. Insulin in vitro partially reversed all these effects. Both citrate-cleavage enzyme and acetate thiokinase activities were decreased in alloxan-diabetic rats. 5. Treatment of rats with anti-insulin serum depressed the formation of (14)CO(2) from [1-(14)C]glucose and [2-(14)C]glucose, but increased that from [6-(14)C]glucose. This was completely restored by the presence of insulin in vitro. The quotient Oxidation of [1-(14)C]glucose/Oxidation of [6-(14)C]glucose fell from a value of 17.6 in the control group to 3.8 in the anti-insulin-serum-treated group. There were no changes in the activity of glucose 6-phosphate dehydrogenase or 6-phosphogluconate dehydrogenase, but the hexokinase distribution changed and the content of the soluble fraction increased significantly. 6. The synthesis of lipid from specifically labelled glucose was depressed in anti-insulin-serum-treated rats; this effect was completely reversed by addition of insulin in vitro to the tissue slices.  相似文献   

10.
1. Monochloroacetate, dichloroacetate, trichloroacetate, difluoroacetate, 2-chloropropionate, 2,2'-dichloropropionate and 3-chloropropionate were inhibitors of pig heart pyruvate dehydrogenase kinase. Dichloroacetate was also shown to inhibit rat heart pyruvate dehydrogenase kinase. The inhibition was mainly non-competitive with respect to ATP. The concentration required for 50% inhibition was approx. 100mum for the three chloroacetates, difluoroacetate and 2-chloropropionate and 2,2'-dichloropropionate. Dichloroacetamide was not inhibitory. 2. Dichloroacetate had no significant effect on the activity of pyruvate dehydrogenase phosphate phosphatase when this was maximally activated by Ca(2+) and Mg(2+). 3. Dichloroacetate did not increase the catalytic activity of purified pig heart pyruvate dehydrogenase. 4. Dichloroacetate, difluoroacetate, 2-chloropropionate and 2,2'-dichloropropionate increased the proportion of the active (dephosphorylated) form of pyruvate dehydrogenase in rat heart mitochondria with 2-oxoglutarate and malate as respiratory substrates. Similar effects of dichloroacetate were shown with kidney and fat-cell mitochondria. Glyoxylate, monochloroacetate and dichloroacetamide were inactive. 5. Dichloroacetate increased the proportion of active pyruvate dehydrogenase in the perfused rat heart, isolated rat diaphragm and rat epididymal fat-pads. Difluoroacetate and dichloroacetamide were also active in the perfused heart, but glyoxylate, monochloroacetate and trichloroacetate were inactive. 6. Injection of dichloroacetate into rats starved overnight led within 60 min to activation of pyruvate dehydrogenase in extracts from heart, psoas muscle, adipose tissue, kidney and liver. The blood concentration of lactate fell within 15 min to reach a minimum after 60 min. The blood concentration of glucose fell after 90 min and reached a minimum after 120 min. There was no significant change in plasma glycerol concentration. 7. In epididymal fatpads dichloroacetate inhibited incorporation of (14)C from [U-(14)C]glucose, [U-(14)C]fructose and from [U-(14)C]lactate into CO(2) and glyceride fatty acid. 8. It is concluded that the inhibition of pyruvate dehydrogenase kinase by dichloroacetate may account for the activation of pyruvate dehydrogenase and pyruvate oxidation which it induces in isolated rat heart and diaphragm muscles, subject to certain assumptions as to the distribution of dichloroacetate across the plasma membrane and the mitochondrial membrane. 9. It is suggested that activation of pyruvate dehydrogenase by dichloroacetate could contribute to its hypoglycaemic effect by interruption of the Cori and alanine cycles. 10. It is suggested that the inhibitory effect of dichloroacetate on fatty acid synthesis in adipose tissue may involve an additional effect or effects of the compound.  相似文献   

11.
The comparative effects of insulin and ethanolamine on 14CO2 production and lipid synthesis from [U-14C]-D-glucose in isolated rat adipocytes were studied. Ethanolamine (10 mM) increased 14CO2 production (glucose oxidation) about 5-fold and lipogenesis about 3-fold as compared to the control. Ethanolamine was more efficient than 25 microU/ml insulin regarding both parameters, but it was less efficient than 200 microU/ml insulin in glucose oxidation, and equally potent in lipogenesis. The combination of ethanolamine and insulin was more active than insulin alone. The mechanisms of ethanolamine action include facilitation of glucose transport and increase of pyruvate dehydrogenase activity.  相似文献   

12.
1. The activities of pyruvate dehydrogenase in rat lymphocytes and mouse macrophages are much lower than those of the key enzymes of glycolysis and glutaminolysis. However, the rates of utilization of pyruvate (at 2 mM), from the incubation medium, are not markedly lower than the rate of utilization of glucose by incubated lymphocytes or that of glutamine by incubated macrophages. This suggests that the low rate of oxidation of pyruvate produced from either glucose or glutamine in these cells is due to the high capacity of lactate dehydrogenase, which competes with pyruvate dehydrogenase for pyruvate. 2. Incubation of either macrophages or lymphocytes with dichloroacetate had no effect on the activity of subsequently isolated pyruvate dehydrogenase; incubation of mitochondria isolated from lymphocytes with dichloroacetate had no effect on the rate of conversion of [1-14C]pyruvate into 14CO2, and the double-reciprocal plot of [1-14C]pyruvate concentration against rate of 14CO2 production was linear. In contrast, ADP or an uncoupling agent increased the rate of 14CO2 production from [1-14C]pyruvate by isolated lymphocyte mitochondria. These data suggest either that pyruvate dehydrogenase is primarily in the a form or that pyruvate dehydrogenase in these cells is not controlled by an interconversion cycle, but by end-product inhibition by NADH and/or acetyl-CoA. 3. The rate of conversion of [3-14C]pyruvate into CO2 was about 15% of that from [1-14C]pyruvate in isolated lymphocytes, but was only 1% in isolated lymphocyte mitochondria. The inhibitor of mitochondrial pyruvate transport, alpha-cyano-4-hydroxycinnamate, inhibited both [1-14C]- and [3-14C]-pyruvate conversion into 14CO2 to the same extent, and by more than 80%. 4. Incubations of rat lymphocytes with concanavalin A had no effect on the rate of conversion of [1-14C]pyruvate into 14CO2, but increased the rate of conversion of [3-14C]pyruvate into 14CO2 by about 50%. This suggests that this mitogen causes a stimulation of the activity of pyruvate carboxylase.  相似文献   

13.
Proline and hepatic lipogenesis   总被引:1,自引:0,他引:1  
The effects of proline on lipogenesis in isolated rat hepatocytes were determined and compared with those of lactate, an established lipogenic precursor. Proline or lactate plus pyruvate increased lipogenesis (measured with 3H2O) in hepatocytes from fed rats depleted of glycogen in vitro and in hepatocytes from starved rats. Lactate plus pyruvate but not proline increased lipogenesis in hepatocytes from starved rats. ( - )-Hydroxycitrate, an inhibitor of ATP-citrate lyase, partially inhibited incorporation into saponifiable fatty acid of 3H from 3H2O and 14C from [U-14C]lactate with hepatocytes from fed rats. Incorporation of 14C from [U-14C]proline was completely inhibited. Similar complete inhibition of incorporation of 14C from [U-14C]proline by ( - )-hydroxycitrate was observed with glycogen-depleted hepatocytes or hepatocytes from starved rats. Inhibition of phosphoenolpyruvate carboxykinase by 3-mercaptopicolinate did not inhibit the incorporation into saponifiable fatty acid of 3H from 3H2O or 14C from [U-14C]proline or [U-14C]lactate. Both 3-mercaptopicolinate and ( - )-hydroxycitrate increased lipogenesis (measured with 3H2O) in the absence or presence of lactate or proline with hepatocytes from starved rats. The results are discussed with reference to the roles of phosphoenolpyruvate carboxykinase, mitochondrial citrate efflux, ATP-citrate lyase and acetyl-CoA carboxylase in proline- or lactate-stimulated lipogenesis.  相似文献   

14.
The proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart was decreased by alloxan-diabetes or by perfusion with media containing acetate, n-octanoate or palmitate. The total activity of the dehydrogenase was unchanged. 2. Pyruvate (5 or 25mM) or dichloroacetate (1mM) increased the proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart, presumably by inhibiting the pyruvate dehydrogenase kinase reaction. Alloxan-diabetes markedly decreased the proportion of active dehydrogenase in hearts perfused with pyruvate or dichloroacetate. 3. The total activity of pyruvate dehydrogenase in mitochondria prepared from rat heart was unchanged by diabetes. Incubation of mitochondria with 2-oxo-glutarate plus malate increased ATP and NADH concentrations and decreased the proportion of active pyruvate dehydrogenase. The decrease in active dehydrogenase was somewhat greater in mitochondria prepared from hearts of diabetic rats than in those from hearts of non-diabetic rats. Pyruvate (0.1-10 mM) or dichloroacetate (4-50 muM) increased the proportion of active dehydrogenase in isolated mitochondria presumably by inhibition of the pyruvate dehydrogenase kinase reaction. They were much less effective in mitochondria from the hearts of diabetic rats than in those of non-diabetic rats. 4. The matrix water space was increased in preparations of mitochondria from hearts of diabetic rats. Dichloroacetate was concentrated in the matrix water of mitochondria of non-diabetic rats (approx. 16-fold at 10 muM); mitochondria from hearts of diabetic rats concentrated dichloroacetate less effectively. 5. The pyruvate dehydrogenase phosphate phosphatase activity of rat hearts and of rat heart mitochondria (approx. 1-2 munit/unit of pyruvate dehydrogenase) was not affected by diabetes. 6. The rate of oxidation of [1-14C]pyruvate by rat heart mitochondria (6.85 nmol/min per mg of protein with 50 muM-pyruvate) was approx. 46% of the Vmax. value of extracted pyruvate dehydrogenase (active form). Palmitoyl-L-carnitine, which increased the ratio of [acetyl-CoA]/[CoA] 16-fold, inhibited oxidation of pyruvate by about 90% without changing the proportion of active pyruvate dehydrogenase.  相似文献   

15.
Isolated acini from lactating rat mammary gland were incubated with glucose (5 mm) and progesterone. The steroid (0.1 mm) decreased glucose utilization and pyruvate accumulation, but increased the formation of lactate. The production of 14CO2 and 14C-labeled lipid from [1-14C]glucose, and the incorporation of 3H2O into lipid were also inhibited by progesterone. At lower concentrations of progesterone (0.01–0.025 mm) the only effects were an increased [lactate], a decreased [pyruvate], and a consequent rise in the lactate/pyruvate ratio. Addition of dichloroacetate, an activator of pyruvate dehydrogenase, did not reverse these effects and assays of active pyruvate dehydrogenase showed no inactivation by progesterone. The steroid did not affect pyruvate utilization but markedly inhibited the removal of lactate, suggesting that progesterone causes a decreased reoxidation of cytosolic NADH and thus alters the cytosolic redox state. The findings are discussed in relation to the physiological role of progesterone during pregnancy and lactation.  相似文献   

16.
1. The extractions of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo were calculated from measurements of their arterial and coronary sinus blood concentration. Elevation of plasma free fatty acid concentrations by infusion of intralipid and heparin resulted in increased extraction of free fatty acids and diminished extractions of glucose, lactate and pyruvate by the heart. It is suggested that metabolism of free fatty acids by the heart in vivo, as in vitro, may impair utilization of these substrates. These effects of elevated plasma free fatty acid concentrations on extractions by the heart in vivo were reversed by injection of dichloroacetate, which also improved extraction of lactate and pyruvate by the heart in vivo in alloxan diabetes. 2. Sodium dichloroacetate increased glucose oxidation and pyruvate oxidation in hearts from fed normal or alloxan-diabetic rats perfused with glucose and insulin. Dichloroacetate inhibited oxidation of acetate and 3-hydroxybutyrate and partially reversed inhibitory effects of these substrates on the oxidation of glucose. In rat diaphragm muscle dichloroacetate inhibited oxidation of acetate, 3-hydroxybutyrate and palmitate and increased glucose oxidation and pyruvate oxidation in diaphragms from alloxan-diabetic rats. Dichloroacetate increased the rate of glycolysis in hearts perfused with glucose, insulin and acetate and evidence is given that this results from a lowering of the citrate concentration within the cell, with a consequent activation of phosphofructokinase. 3. In hearts from normal rats perfused with glucose and insulin, dichloroacetate increased cell concentrations of acetyl-CoA, acetylcarnitine and glutamate and lowered those of aspartate and malate. In perfusions with glucose, insulin and acetate, dichloroacetate lowered the cell citrate concentration without lowering the acetyl-CoA or acetylcarnitine concentrations. Measurements of specific radioactivities of acetyl-CoA, acetylcarnitine and citrate in perfusions with [1-(14)C]acetate indicated that dichloroacetate lowered the specific radio-activity of these substrates in the perfused heart. Evidence is given that dichloroacetate may not be metabolized by the heart to dichloroacetyl-CoA or dichloroacetylcarnitine or citrate or CO(2). 4. We suggest that dichloroacetate may activate pyruvate dehydrogenase, thus increasing the oxidation of pyruvate to acetyl-CoA and acetylcarnitine and the conversion of acetyl-CoA into glutamate, with consumption of aspartate and malate. Possible mechanisms for the changes in cell citrate concentration and for inhibitory effects of dichloroacetate on the oxidation of acetate, 3-hydroxybutyrate and palmitate are discussed.  相似文献   

17.
It is shown that thiamine administration to rats (250 micrograms per 100 g of mass) who were given high-carbohydrate diet (lipogenesis intensification) after fasting inhibits an increase in the pyruvate dehydrogenase activity in the liver homogenate and mitochondria usual under these conditions. This is observed when determining total activity of the pyruvate dehydrogenase complex and activity of its first component--pyruvate dehydrogenase estimated from the ferricyanide reduction and [1-14C] CO2 formation from [1-14C] pyruvate. Fasting animals and animals whom thiamine was administered against a background of lipogenesis intensification revealed a higher ability of the liver tissue to synthesize acetoin as compared with the control group and animals with the intensified lipogenesis without thiamine administration.  相似文献   

18.
Insulin infusion through the portal vein immediately after a pulse of [3-14C]pyruvate in 24 hr starved rats enhanced the appearance of [14C]glucose at 2, 5 and 10 min and glucose specific activity at 1, 2 and 20 min in blood collected from the cava vein at the level of the suprahepatic veins. Insulin infusion for 5 min decreased liver pyruvate concentration and enhanced both liver and plasma lactate/pyruvate ratio, and it decreased the plasma concentration of all amino acids. When insulin was infused together with glucose, [14C]glucose levels and glucose specific activity decreased in blood but there was a marked increase in liver [14C]glycogen, glycogen specific activity and glycogen concentration, and an increase in liver lactate/pyruvate ratio. The effect of insulin plus glucose infusion on plasma amino acids concentration was smaller than that found with insulin alone. It is proposed that insulin effect enhancing liver gluconeogenesis is secondary to its effect either enhancing liver glycolysis which modifies the liver's cytoplasmic oxidoreduction state to its more reduced form, increasing liver amino acids consumption or both. In the presence of glucose, products of gluconeogenesis enhanced by insulin are diverted into glycogen synthesis rather than circulating glucose. This together with results of the preceding paper (Soley et al., 1985), indicates that glucose enhances liver glycogen synthesis from C3 units in the starved rat, the process being further enhanced in the presence of insulin.  相似文献   

19.
Dichloroacetate has effects upon hepatic metabolism which are profoundly different from its effects on heart, skeletal muscle, and adipose tissue metabolism. With hepatocytes prepared from meal-fed rats, dichloroacetate was found to activate pyruvate dehydrogenase, to increase the utilization of lactate and pyruvate without effecting an increase in the net utilization of glucose, to increase the rate of fatty acid synthesis, and to decrease slightly [1-14C]oleate oxidation to 14CO2 without decreasing ketone body formation. With hepatocytes isolated from 48-h-starved rats, dichloroacetate was found to activate pyruvate dehydrogenase, to have no influence on net glucose utilization, to inhibit gluconeogenesis slightly with lactate as substrate, and to stimulate gluconeogenesis significantly with alanine as substrate. The stimulation of fatty acid synthesis by dichloroacetate suggests that the activity of pyruvate dehydrogenase can be rate determining for fatty acid synthesis in isolated liver cells. The minor effects of dichloroacetate on gluconeogenesis suggest that the regulation of pyruvate dehydrogenase is only of marginal importance in the control of gluconeogenesis.  相似文献   

20.
The rapid stimulation of lipogenesis in mammary gland that occurs on re-feeding starved lactating rats with a chow diet was decreased (60%) by injection of mercaptopicolinic acid, an inhibitor of hepatic gluconeogenesis at the phosphoenolpyruvate carboxykinase step. Mercaptopicolinate had no effect on lipogenesis in mammary glands of fed lactating rats. The inhibition of lipogenesis persisted in vitro when acini from mammary glands of re-fed rats treated with mercaptopicolinate were incubated with [1-14C]glucose. Mercaptopicolinate added in vitro had no significant effect on lipogenesis in acini from starved-re-fed lactating rats. Mercaptopicolinate prevented the deposition of glycogen and increased the rate of lipogenesis in livers of starved-re-fed lactating rats, whereas it had no significant effect on livers of fed lactating rats. Administration of intraperitoneal glucose restored the rate of mammary-gland lipogenesis in re-fed rats treated with mercaptopicolinate to the values for re-fed rats. Hepatic glycogen deposition was also restored, and the rate of hepatic lipogenesis was stimulated 5-fold. It is concluded that stimulation of mammary-gland lipogenesis on re-feeding with a chow diet after a period of starvation is in part dependent on continued hepatic gluconeogenesis during the absorptive period. Possible sources of the glucose precursors are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号