首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cleavage patterns of mitochondrial DNA (mtDNA) by 17 restriction endonucleases were compared between eight lines of musk shrews derived from different wild-caught stocks. Enzymatic digestion byBamHI,PvuII,XbaI, andXhoI showed a cleavage pattern common to all lines that were from five Japanese islands (Nag, Ize, OKI, TKU, and Tr), Bangladesh (BAN), Sri Lanka (SRI), and Java (Bog), and every line lacked cleavage sites forSalI andSmaI. Different cleavage patterns were detected by the remaining 11 enzymes. Within the BAN line, the presence of at least two types of mtDNAs was proved by six enzymes and was not contradictory to the maternal pedigrees going up to the wild ancestors of the stock. More than 30 cleavage sites of the shrew mtDNA were mapped by double-digestion methods. Nucleotide diversities of mtDNA were calculated from these maps and were estimated to be less than 0.5% among Japanese and Bog lines but to be 3.8% between BAN and the other seven lines and 2.3% within the BAN line. These results indicate that BAN shrews differentiate from the other lines to the intersubspecific extent reported in mice previously.  相似文献   

2.
Large-scale rearrangements of mitochondrial DNA (mtDNA; i.e., partial duplications [dup-mtDNAs] and deletions [Delta-mtDNAs]) coexist in tissues in a subset of patients with sporadic mitochondrial disorders. In order to study the dynamic relationship among rearranged and wild-type mtDNA (wt-mtDNA) species, we created transmitochondrial cell lines harboring various proportions of wt-, Delta-, and dup-mtDNAs from two patients. After prolonged culture in nonselective media, cells that contained initially 100% dup-mtDNAs became heteroplasmic, containing both wild-type and rearranged mtDNAs, likely generated via intramolecular recombination events. However, in cells that contained initially a mixture of both wt- and Delta-mtDNAs, we did not observe any dup-mtDNAs or other new forms of rearranged mtDNAs, perhaps because the two species were physically separated and were therefore unable to recombine. The ratio of wt-mtDNA to Delta-mtDNAs remained stable in all cells examined, suggesting that there was no replicative advantage for the smaller deleted molecules. Finally, in cells containing a mixture of monomeric and dimeric forms of a specific Delta-mtDNA, we found that the mtDNA population shifted towards homoplasmic dimers, suggesting that there may be circumstances under which the cells favor molecules with multiple replication origins, independent of the size of the molecule.  相似文献   

3.
The nucleotide sequences of the mitochondrial DNA (mtDNA) molecules of two nematodes, Caenorhabditis elegans [13,794 nucleotide pairs (ntp)], and Ascaris suum (14,284 ntp) are presented and compared. Each molecule contains the genes for two ribosomal RNAs (s-rRNA and l-rRNA), 22 transfer RNAs (tRNAs) and 12 proteins, all of which are transcribed in the same direction. The protein genes are the same as 12 of the 13 protein genes found in other metazoan mtDNAs: Cyt b, cytochrome b; COI-III, cytochrome c oxidase subunits I-III; ATPase6, Fo ATPase subunit 6; ND1-6 and 4L, NADH dehydrogenase subunits 1-6 and 4L: a gene for ATPase subunit 8, common to other metazoan mtDNAs, has not been identified in nematode mtDNAs. The C. elegans and A. suum mtDNA molecules both include an apparently noncoding sequence that contains runs of AT dinucleotides, and direct and inverted repeats (the AT region: 466 and 886 ntp, respectively). A second, apparently noncoding sequence in the C. elegans and A. suum mtDNA molecules (109 and 117 ntp, respectively) includes a single, hairpin-forming structure. There are only 38 and 89 other intergenic nucleotides in the C. elegans and A. suum mtDNAs, and no introns. Gene arrangements are identical in the C. elegans and A. suum mtDNA molecules except that the AT regions have different relative locations. However, the arrangement of genes in the two nematode mtDNAs differs extensively from gene arrangements in all other sequenced metazoan mtDNAs. Unusual features regarding nematode mitochondrial tRNA genes and mitochondrial protein gene initiation codons, previously described by us, are reviewed. In the C. elegans and A. suum mt-genetic codes, AGA and AGG specify serine, TGA specifies tryptophan and ATA specifies methionine. From considerations of amino acid and nucleotide sequence similarities it appears likely that the C. elegans and A. suum ancestral lines diverged close to the time of divergence of the cow and human ancestral lines, about 80 million years ago.  相似文献   

4.
Incomplete Maternal Transmission of Mitochondrial DNA in Drosophila   总被引:22,自引:7,他引:15       下载免费PDF全文
The possibility of incomplete maternal transmission of mitochondrial DNA (mtDNA) in Drosophila, previously suggested by the presence of heteroplasmy, was examined by intra- and interspecific backcrosses of Drosophila simulans and its closest relative, Drosophila mauritiana. mtDNAs of offspring in these crosses were characterized by Southern hybridization with two alpha-32P-labeled probes that are specific to paternal mtDNAs. This method could detect as little as 0.03% paternal mtDNA, if present, in a sample. Among 331 lines that had been backcrossed for ten generations, four lines from the interspecific cross D. simulans (female) x D. mauritiana (male) showed clear evidence for paternal leakage of mtDNA. In three of these the maternal type was completely replaced while the fourth was heteroplasmic. Since in this experiment the total number of fertilization is known to be 331 x 10 = 3310, the proportion of paternal mtDNA per fertilization was estimated as about 0.1%. The mechanisms and evolutionary significance for paternal leakage are discussed in light of this finding.  相似文献   

5.
Two distinct patterns of mitochondrial DNA (mtDNA) segregation were found in different mouse-rat hybrid cell lines. On mouse-rat hybrid cell line, H2, retained complete sets of chromosomes and mtDNAs of both mouse and rat. Even after cultivation for about one year after cloning, the H2 cell population still retained both parental mtDNAs. However, when mtDNAs of H2 subclones were examined, it was found that some individual cells in the H2 cell population contained only mouse or only rat mtDNA, although they still retained complete sets of both kinds of parental chromosomes. This type of mtDNA segregation, named stochastic segregation, is bidirectional and may be caused by the repetition of random sharing of mouse and rat mtDNAs with daughter cells. This segregation occurred spontaneously during long-term cultivation. The second type of mtDNA segregation, named chromosome-dependent segregation, was found in the other mouse-rat hybrid cell lines that segregated either mouse or rat chromosomes. In these hybrid cells, chromosomes and mtDNA of the same species co-segregated. This second type of segregation is unidirectional. The types of mtDNA segregation appear to depend on the stability of the parental chromosomes in the hybrid cells. When both mouse and rat chromosomes retain stably, mtDNA shows stochastic segregation. On the contrary, when either species of chromosomes is segregated from the cells, mtDNA shows chromosome-dependent segregation.  相似文献   

6.
Rand DM  Fry A  Sheldahl L 《Genetics》2006,172(1):329-341
Under the mitochondrial theory of aging, physiological decline with age results from the accumulated cellular damage produced by reactive oxygen species generated during electron transport in the mitochondrion. A large body of literature has documented age-specific declines in mitochondrial function that are consistent with this theory, but relatively few studies have been able to distinguish cause from consequence in the association between mitochondrial function and aging. Since mitochondrial function is jointly encoded by mitochondrial (mtDNA) and nuclear genes, the mitochondrial genetics of aging should be controlled by variation in (1) mtDNA, (2) nuclear genes, or (3) nuclear-mtDNA interactions. The goal of this study was to assess the relative contributions of these factors in causing variation in Drosophila longevity. We compared strains of flies carrying mtDNAs with varying levels of divergence: two strains from Zimbabwe (<20 bp substitutions between mtDNAs), strains from Crete and the United States (approximately 20-40 bp substitutions between mtDNAs), and introgression strains of Drosophila melanogaster carrying mtDNA from Drosophila simulans in a D. melanogaster Oregon-R chromosomal background (>500 silent and 80 amino acid substitutions between these mtDNAs). Longevity was studied in reciprocal cross genotypes between pairs of these strains to test for cytoplasmic (mtDNA) factors affecting aging. The intrapopulation crosses between Zimbabwe strains show no difference in longevity between mtDNAs; the interpopulation crosses between Crete and the United States show subtle but significant differences in longevity; and the interspecific introgression lines showed very significant differences between mtDNAs. However, the genotypes carrying the D. simulans mtDNA were not consistently short-lived, as might be predicted from the disruption of nuclear-mitochondrial coadaptation. Rather, the interspecific mtDNA strains showed a wide range of variation that flanked the longevities seen between intraspecific mtDNAs, resulting in very significant nuclear x mtDNA epistatic interaction effects. These results suggest that even "defective" mtDNA haplotypes could extend longevity in different nuclear allelic backgrounds, which could account for the variable effects attributable to mtDNA haplogroups in human aging.  相似文献   

7.
8.
D M Shah  C H Langley 《Plasmid》1979,2(1):69-78
Mitochondrial DNAs (mtDNA) from three species of the genus Drosophila (D. melanogaster, D. simulons, and D. virilis) were compared by electron microscope heteroduplex mapping. Analysis of heteroduplex molecules revealed that the A + T-rich region of these mtDNAs has undergone quite extensive base sequence divergence, whereas the remainder of the molecule was found to share apparently complete base sequence homology in all three species. The differences in the sizes of the A + T-rich regions, as determined from the heteroduplex measurements, completely account for the differences in the total sizes of these mtDNAs. A segment of approximately 0.1 kb is conserved within the A + T-rich regions of D. simulans and D. virilis mtDNAs, but not within the A + T-rich region of D. melanogaster mtDNA. HaeIII restriction endonuclease analysis of the heteroduplex molecules has further shown that the unique HaeIII site of D. virilis mtDNA molecule is apparently conserved in both D. melanogaster and D. simulans mtDNA molecules. Finally, electrophoretic patterns of HaeIII-digested mtDNAs from all three species were found to be different and distinguishable from each other suggesting that single base substitutions have probably taken place throughout the entire mitochondrial genome.  相似文献   

9.
Restriction endonuclease analyses were performed on mitochondrial DNAs (mtDNAs) representing unisexual parthenogenetic (cytotypes A, B, and C) and bisexual (cytotypes D and E) populations of Amazonian lizards presently regarded as Cnemidophorus lemniscatus. The results of mtDNA cleavage map comparisons among these C. lemniscatus indicated that (1) there was no cleavage site variation among the unisexuals, (2) mtDNAs from the bisexual cytotypes D and E differed in sequence from one another by about 13%, and (3) mtDNAs from cytotypes A–C differed from those of cytotype D by about 5% and from those of cytotype E by about 13%. Higher resolution restriction fragment size comparisons confirmed the high degree of similarity among the unisexual mtDNAs, but identified 12 cleavage site variants among the 13 cytotype D mtDNAs examined. Both cladistic and phenetic (UPGMA) analyses of the data indicate that the unisexual and cytotype D mtDNAs form a single clade, suggesting that a female of cytotype D was the maternal progenitor of the unisexuals. The similarity among the unisexual mtDNAs and the variability among those of cytotype D suggest that the three unisexual cytotypes arose recently from a common maternal lineage. The mtDNA variability observed among cytotype D individuals has a strong geographic component, suggesting that the unisexuals arose from one or a few geographically proximal populations. The mtDNA comparisons also support the conclusion, based on allozyme comparisons (Sites et al., 1990, this issue), that cytotypes D and E, although presently allocated to C. lemniscatus, are separate species.  相似文献   

10.
Mitochondrial homoplasmy, which is maintained by strictly maternal inheritance and a series of bottlenecks, is thought to be an adaptive condition for metazoans. Doubly uniparental inheritance (DUI) is a unique mode of mitochondrial transmission found in bivalve species, in which two distinct mitochondrial genome (mtDNA) lines are present, one inherited through eggs (F) and one through sperm (M). During development, the two lines segregate in a sex- and tissue-specific manner: females lose M during embryogenesis, whereas males actively segregate it in the germ line. These two pivotal events are still poorly characterized. Here we investigated mtDNA replication dynamics during embryogenesis and pre-adulthood of the venerid Ruditapes philippinarum using real-time quantitative PCR. We found that both mtDNAs do not detectably replicate during early embryogenesis, and that the M line might be lost from females around 24 h of age. A rise in mtDNA copy number was observed before the first reproductive season in both sexes, with the M mitochondrial genome replicating more than the F in males, and we associate these boosts to the early phase of gonad production. As evidence indicates that DUI relies on the same molecular machine of mitochondrial maternal inheritance that is common in most animals, our data are relevant not only to DUI but also to shed light on how differential segregations of mtDNA variants, in the same nuclear background, may be controlled during development.  相似文献   

11.
The mtDNA of Cycas taitungensis is a circular molecule of 414,903 bp, making it 2- to 6-fold larger than the known mtDNAs of charophytes and bryophytes, but similar to the average of 7 elucidated angiosperm mtDNAs. It is characterized by abundant RNA editing sites (1,084), more than twice the number found in the angiosperm mtDNAs. The A + T content of Cycas mtDNA is 53.1%, the lowest among known land plants. About 5% of the Cycas mtDNA is composed of a novel family of mobile elements, which we designated as "Bpu sequences." They share a consensus sequence of 36 bp with 2 terminal direct repeats (AAGG) and a recognition site for the Bpu 10I restriction endonuclease (CCTGAAGC). Comparison of the Cycas mtDNA with other plant mtDNAs revealed many new insights into the biology and evolution of land plant mtDNAs. For example, the noncoding sequences in mtDNAs have drastically expanded as land plants have evolved, with abrupt increases appearing in the bryophytes, and then in the seed plants. As a result, the genomic organizations of seed plant mtDNAs are much less compact than in other plants. Also, the Cycas mtDNA appears to have been exempted from the frequent gene loss observed in angiosperm mtDNAs. Similar to the angiosperms, the 3 Cycas genes nad1, nad2, and nad5 are disrupted by 5 group II intron squences, which have brought the genes into trans-splicing arrangements. The evolutionary origin and invasion/duplication mechanism of the Bpu sequences in Cycas mtDNA are hypothesized and discussed.  相似文献   

12.
Mitochondrial DNA (mtDNA) molecules from species of the genus Drosophila contain a region exceptionally rich in adenine + thymine (A+T). Using agarose gel electrophoresis and electron microscopy, we determined that in the mtDNA molecules of D. melanogaster, D. simulans, D. mauritiana, D. yakuba, D. takahashii, and D. virilis, the A+T-rich regions, which are 5.1, 4.8, 4.6, 1.1, 2.2, and 1.0 kilobase pairs in size, respectively, are at homologous locations relative to various common EcoRI and HindIII cleavage sites. Under conditions highly permissive for base pairing (35% formamide), heteroduplexes were constructed between EcoRI fragments and whole circular molecules of mtDNAs of the above mentioned six species in a variety of combinations. Complete pairing of molecules outside the A+T-rich region was found in all heteroduplexes examined. However, in contrast, A+T-rich regions of the different species failed to pair in all but those combinations of mtDNAs involving the three most closely related species. In heteroduplexes between D. melanogaster and D. simulans, and between D. melanogaster and D. mauritiana mtDNAs, up to 35% of the A+T-rich regions appeared double-stranded. These data indicate that much more extensive divergence of sequences has occurred in A+T-rich regions than in other regions of Drosophila mtDNA molecules.  相似文献   

13.
Plant mitochondrial DNA evolved rapidly in structure,but slowly in sequence   总被引:1,自引:0,他引:1  
Summary We examined the tempo and mode of mitochondrial DNA (mtDNA) evolution in six species of crucifers from two genera,Brassica andRaphanus. The six mtDNAs have undergone numerous internal rearrangements and therefore differ dramatically with respect to the sizes of their subgenomic circular chromosomes. Between 3 and 14 inversions must be postulated to account for the structural differences found between any two species. In contrast, these mtDNAs are extremely similar in primary sequence, differing at only 1–8 out of every 1000 bp. The point mutation rate in these plant mtDNAs is roughly 4 times slower than in land plant chloroplast DNA (cpDNA) and 100 times slower than in animal mtDNA. Conversely, the rate of rearrangements is extraordinarily faster in plant mtDNA than in cpDNA and animal mtDNA.  相似文献   

14.
We report the presence, in the mitochondrial DNA (mtDNA) of all of the sexual species of the salamander family Ambystomatidae, of a shared 240- bp intergenic spacer between tRNAThr and tRNAPro. We place the intergenic spacer in context by presenting the sequence of 1,746 bp of mtDNA from Ambystoma tigrinum tigrinum, describe the nucleotide composition of the intergenic spacer in all of the species of Ambystomatidae, and compare it to other coding and noncoding regions of Ambystoma and several other vertebrate mtDNAs. The nucleotide substitution rate of the intergenic spacer is approximately three times faster than the substitution rate of the control region, as shown by comparisons among six Ambystoma macrodactylum sequences and eight members of the Ambystoma tigrinum complex. We also found additional inserts within the intergenic spacers of five species that varied from 87-444 bp in length. The presence of the intergenic spacer in all sexual species of Ambystomatidae suggests that it arose at least 20 MYA and has been a stable component of the ambystomatid mtDNA ever since. As such, it represents one of the few examples of a large and persistent intergenic spacer in the mtDNA of any vertebrate clade.   相似文献   

15.
Although crucial to the success of fertilization and embryogenesis, little is known about the mitochondrial DNA (mtDNA) content of mature spermatozoa and oocytes across taxa and across different fertilization systems. Oocytes are assumed to hold a large population of mtDNAs that populate emerging cells during early embryogenesis, whereas spermatozoa harbor only a limited pool of mtDNAs that is believed to sustain functionality but fails to contribute paternal mtDNA to the zygote. Recent work suggests that mature sperm of the genetic model Drosophila melanogaster lack mtDNA, questioning the significance of zygotic mechanisms for the selective elimination of paternal mtDNA and their necessity for fertilization success. This finding further contradicts previous observations of the inheritance of paternal mtDNA in drosophilids. Using quantitative polymerase chain reaction, we estimate the mtDNA content of several laboratory strains of D. melanogaster and D. simulans to shed light on this discrepancy and to describe the mitochondrial/mtDNA load of gametes within this system. These measurements led to an average estimate of 22.91±4.61 mtDNA molecules/copies per spermatozoon across both species and to 1.07E+07±2.71E+06 molecules/copies per oocyte for D. simulans. As a consequence, the ratio of paternal and maternal mtDNA in the zygote was estimated at 1:4.65E+05.  相似文献   

16.
Mitochondrial DNA (mtDNA) from sheep and goat was compared by restriction endonuclease analysis and heteroduplex mapping in the electron microscope. The fragment patterns produced by endonuclease Hae III from three individual sheep and two goat mtDNAs all differed from each other. The three sheep mtDNAs had identical Eco RI and Hind III fragments, but the two goat mtDNA patterns differed from each other as well as from sheep mtDNA. We estimate that each sheep mtDNA differs from each other by 0.5–1% of its nucleotide sequences, the two goat mtDNAs by 1–2%, and there is a 6–11% sequence difference between sheep and goat mtDNAs. We have mapped the Eco RI and Hind III sites of goat and sheep mtDNA and determined the positions of the D loop, which marks the replication origin, relative to the restriction map. The D loops are at homologous positions on the mtDNAs from both species, but the goat D loop is only 75% as long as the sheep D loop. Regions with a high degree of sequence divergence occur at both ends of the D loop. We suggest that a duplication of about 150 base pairs has occurred in the region where the sheep and goat D loops differ in length. We discuss mtDNA evolution in terms of divergence of isolated “mitochondrial DNA clones.”  相似文献   

17.
A line (named Cl) of cytoplasmic sterility of sugar beet whose cytoplasm derived from Betacicla Turkey was obtained by interspecific hybrid. Its cytoplasm and a spontaneous male sterile cytoplasm from wild beet Beta maritima (named M) were compared with that of Owen's sterile line (S-cms) and a common maintainer of them named N was used as control. RFLP and RAPD methods were mainly used in our experiments. The restriction fragment patterns of mtDNAs were found to be likely but for a few of specific low-lighted electrophoresis bands in Cl. The results of Southern hybridization of six heterogeneous mitochondrial genes as probes to digests of mtDNAs by six restriction enzymes showed to be analogous between S and M lines. But the Cl mtDNA was sorted out by hybridization of atpA probe. Difference of low-molecular-weight mitochondrial DNAs was found among the three sterile lines. Three RNA molecules weighing about 4.2kb stably existed in Cl mitochondria. Our results of RAPD also supported that the Cl cytoplas  相似文献   

18.
19.
By using the polymerase chain reaction to amplify and sequence 178 bp of a rapidly evolving region of the mtDNA genome (segment I of the control region) from 81 individuals, approximately 11% of the variation present in the lesser snow goose Chen caerulescens caerulescens L. mitochondrial genome was surveyed. The 26 types of mtDNA detected formed two distinct mitochondrial clades that differ by an average of 6.7% and are distributed across the species range. Restriction analysis of amplified fragments was then used to assign the mtDNA of an additional 29 individuals to either of these clades. Within one major clade, sequence among mtDNAs was concordant with geographic location. Within the other major clade the degree of sequence divergence among haplotypes was lower and no consistent geographic structuring was evident. The two major clades presumably result from vicariant separation of lesser snow geese during the Pleistocene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号