首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The homeobox-gene rough is required in photoreceptor cells R2 and R5 for normal ommatidial assembly in the developing Drosophila eye. We have used several cell-type-specific markers and double mutant combinations to analyze cell-fate determination in rough. We show that the cells that would normally become R2 and/or R5 express a marker, a lacZ insertion in the seven-up (svp) gene, which is indicative of the R1/3/4/6 cell fate. In addition, the analysis of mitotically induced svp,ro double mutant clones in the eye indicates that in rough all outer photoreceptors are under the genetic control of the svp gene. These results show that, in the absence of rough function, R2 and R5 fail to be correctly determined and appear to be transformed into cells of the R3/4/1/6 subtype. This transformation and the subsequent developmental defects do not preclude the recruitment of R7 cells. However, the presence of ommatidia containing more than one R7 and/or R8 cell in rough implies a complex network of cellular interactions underlying cell-fate determination in the Drosophila retina.  相似文献   

2.
3.
The Drosophila eye is a mosaic that results from the stochastic distribution of two ommatidial subtypes. Pale and yellow ommatidia can be distinguished by the expression of distinct rhodopsins and other pigments in their inner photoreceptors (R7 and R8), which are implicated in color vision. The pale subtype contains ultraviolet (UV)-absorbing Rh3 in R7 and blue-absorbing Rh5 in R8. The yellow subtype contains UV-absorbing Rh4 in R7 and green-absorbing Rh6 in R8. The exclusive expression of one rhodopsin per photoreceptor is a widespread phenomenon, although exceptions exist. The mechanisms leading to the exclusive expression or to co-expression of sensory receptors are currently not known. We describe a new class of ommatidia that co-express rh3 and rh4 in R7, but maintain normal exclusion between rh5 and rh6 in R8. These ommatidia, which are localized in the dorsal eye, result from the expansion of rh3 into the yellow-R7 subtype. Genes from the Iroquois Complex (Iro-C) are necessary and sufficient to induce co-expression in yR7. Iro-C genes allow photoreceptors to break the "one receptor-one neuron" rule, leading to a novel subtype of broad-spectrum UV- and green-sensitive ommatidia.  相似文献   

4.
5.
In order to identify potential target genes of the rough homeodomain protein, which is known to specify some aspects of the R2/R5 photoreceptor subtype in the Drosophila eye, we have carried out a search for enhancer trap lines whose expression is rough-dependent. We crossed 101 enhancer traps that are expressed in the developing eye into a rough mutant background, and have identified seven lines that have altered expression patterns. One of these putative rough target genes is rhomboid, a gene known to be required for dorsoventral patterning and development of some of the nervous system in the embryo. We have examined the role of rhomboid in eye development and find that, while mutant clones have only a subtle phenotype, ectopic expression of the gene causes the non-neuronal mystery cells to be transformed into photoreceptors. We propose that rhomboid is a part of a partially redundant network of genes that specify photoreceptor cell fate.  相似文献   

6.
The canonical number of eight photoreceptors and their arrangement in the ommatidia of insect compound eyes is very conserved. However significant variations exist in selective groups, such as the Lepidoptera and Hymenoptera, which independently evolved additional photoreceptors. For this and historical reasons, heterogeneous labeling conventions have been in use for photoreceptor subtypes, despite developmentally and structurally well-defined homologies. Extending earlier efforts, we introduce a universal photoreceptor subtype classification key that relates to the Drosophila numbering system. Its application is demonstrated in major insect orders, with detailed information on the relationship to previous conventions. We then discuss new insights that result from the improved understanding of photoreceptor subtype homologies. This includes evidence of functionally imposed ground rules of differential opsin expression, the underappreciated role of R8 as ancestral color receptor, the causes and consequences of parallel R7 photoreceptor addition in Hymenoptera and Lepidoptera, and the ancestral subfunctionalization of outer photoreceptors cells, which may be only developmentally recapitulated in Drosophila. We conclude with pointing out the need for opsin expression data from a wider range of insect orders.  相似文献   

7.
Strutt H  Strutt D 《Current biology : CB》2003,13(16):1451-1457
The ommatidia of the Drosophila eye initiate development by stepwise recruitment of photoreceptors into symmetric ommatidial clusters. As they mature, the clusters become asymmetric, adopting opposite chirality on either side of the dorsoventral midline and rotating exactly 90 degrees (Figures 1A and 1B, ). The choice of chirality is governed by higher activity of the frizzled (fz) gene in one cell of the R3/R4 photoreceptor pair and by Notch-Delta (N-Dl) signaling. The 90 degrees rotation also requires activity of planar polarity genes such as fz as well as the roulette (rlt) locus. We now show that two regulators of EGF signaling, argos and sprouty (sty), and a gain-of-function Ras85D allele, interact genetically with fz in ommatidial polarity. Furthermore, we find that argos is required for ommatidial rotation, but not chirality, and that rlt is a novel allele of argos. We present evidence that there are two pathways by which EGF signaling affects ommatidial rotation. In the first, typified by the rlt phenotype, there is partial transformation of the "mystery cells" toward a neuronal fate. Although most of these mystery cells subsequently fail to develop as neurons, their partial transformation results in inappropriate subcellular localization of the Fz receptor, a likely cue for regulating ommatidial rotation. Secondly, reducing EGF signaling can specifically affect ommatidial rotation without showing transformation of the mystery cells or defects in polarity protein localization.  相似文献   

8.
B J Frankfort  R Nolo  Z Zhang  H Bellen  G Mardon 《Neuron》2001,32(3):403-414
An outstanding model to study how neurons differentiate from among a field of equipotent undifferentiated cells is the process of R8 photoreceptor differentiation during Drosophila eye development. We show that in senseless mutant tissue, R8 differentiation fails and the presumptive R8 cell adopts the R2/R5 fate. We identify senseless repression of rough in R8 as an essential mechanism of R8 cell fate determination and demonstrate that misexpression of senseless in non-R8 photoreceptors results in repression of rough and induction of the R8 fate. Surprisingly, there is no loss of ommatidial clusters in senseless mutant tissue and all outer photoreceptor subtypes can be recruited, suggesting that other photoreceptors can substitute for R8 to initiate recruitment and that R8-specific signaling is not required for outer photoreceptor subtype assignment. A genetic model of R8 differentiation is presented.  相似文献   

9.
10.
The Drosophila eye is composed of several hundred ommatidia that can exist in either of two chiral forms, depending on position: ommatidia in the dorsal half of the eye adopt one chiral form, whereas ommatidia in the ventral half adopt the other. Chirality appears to be specified by a polarizing signal with a high activity at the interface between the two halves (the 'equator'), which declines in opposite directions towards the dorsal and ventral poles. Here, using genetic mosaics, we show that this polarizing signal is decoded by the sequential use of two receptor systems. The first depends on the seven-transmembrane receptor Frizzled (Fz) and distinguishes between the two members of the R3/R4 pair of presumptive photoreceptor cells, predisposing the cell that is located closer to the equator and having higher Fz activity towards the R3 photoreceptor fate and the cell further away towards the R4 fate. This bias is then amplified by subsequent interactions between the two cells mediated by the receptor Notch (N) and its ligand Delta (Dl), ensuring that the equatorial cell becomes the R3 photoreceptor while the polar cell becomes the R4 photoreceptor. As a consequence of this reciprocal cell fate decision, the R4 cell moves asymmetrically relative to the R3 cell, initiating the appropriate chiral pattern of the remaining cells of the ommatidium.  相似文献   

11.
The Drosophila eye is a polarized epithelium in which ommatidia of opposing chirality fall on opposite sides of the eye's midline, the equator. The equator is established in at least two steps: photoreceptors R3 and R4 adopt their fates, and then ommatidia rotate clockwise or counterclockwise in accordance with the identity of these photoreceptors. We report the role of two cadherins, Fat (Ft) and Dachsous (Ds), in conveying the polarizing signal from the D/V midline in the Drosophila eye. In eyes lacking Ft, the midline is abolished. In ft and ds mutant clones, wild-type tissue rescues genetically mutant tissue at the clonal borders, giving rise to ectopic equators. These ectopic equators distort a mosaic analysis of these genes and led to the possible misinterpretation that ft and ds are required to specify the R3 and R4 cell fates, respectively. Our interpretation of these data supports a significantly different model in which ft and ds are not necessarily required for fate determination. Rather, they are involved in long-range signaling during the formation of the equator, as defined by the presence of an organized arrangement of dorsal and ventral chiral ommatidial forms.  相似文献   

12.
Neuronal differentiation in Drosophila ommatidium   总被引:19,自引:0,他引:19  
Using monoclonal and polyclonal antibodies as differentiation markers, we have found that the eight photoreceptors of the Drosophila ommatidium differentiate in a fixed sequence. The foundation photoreceptor, R8, expresses neural antigens first. The paired photoreceptors R2/5 are next to express, followed by the pair R3/4, followed by the pair R1/6; R7 is the final photoreceptor to differentiate. From previous studies it is known that Drosophila photoreceptors use local, positional cues to select their identities. Together with the morphological picture of ommatidial development, the sequential order of photoreceptor differentiation demonstrated here suggests that these cues may be encoded in the particular combination of cells an undetermined cell finds itself in contact with.  相似文献   

13.
14.
Ten-a is one of the two Drosophila proteins that belong to the Ten M protein family. This protein is a type Ⅱ transmembrane protein and is expressed mainly in the embryonic CNS, in the larval eye imaginal disc and in the compound eye of the pupa. Here, we investigate the role of ten-α during development of the compound eye by using the Gal4/ UAS system to induce ten-α overexpression in the developing eye. We found that overexpression of ten-α can perturb eye development during all stages examined. In an early stage, overexpression of ten-α in eye primordial cells caused small and rough eyes and interfered with photoreceptor cell recruitment, resulting in some ommatidia having fewer or extra photoreceptor cells. Conversely, ten-α overexpression daring ommatidial formation caused severe eye defects due to absence of many cellular components. Interestingly, overexpression of ten-α in the late stage developing ommatidial cluster affected the number of pigment cells, caused cone cells proliferation in many ommatidia, and caused some photoreceptor cell defects. These results suggest that ten-α may be a novel gene required for normal eye morphogenesis.  相似文献   

15.
The Drosophila eye is widely used as a model system to study neuronal differentiation, survival and axon projection. Photoreceptor differentiation starts with the specification of a founder cell R8, which sequentially recruits other photoreceptor neurons to the ommatidium. The eight photoreceptors that compose each ommatidium exist in two chiral forms organized along two axes of symmetry and this pattern represents a paradigm to study tissue polarity. We have developed a method of fluoroscopy to visualize the different types of photoreceptors and the organization of the ommatidia in living animals. This allowed us to perform an F(1) genetic screen to isolate mutants affecting photoreceptor differentiation, survival or planar polarity. We illustrate the power of this detection system using known genetic backgrounds and new mutations that affect ommatidial differentiation, morphology or chirality.  相似文献   

16.
The R7 and R8 photoreceptor cells of the Drosophila retina are thought to mediate color discrimination and polarized light detection. This is based on the patterned expression of different visual pigments, rhodopsins, in different photoreceptor cells. In this report, we examined the developmental timing of retinal patterning. There is genetic evidence that over the majority of the eye, patterned expression of opsin genes is regulated by a signal from one subtype of R7 cells to adjacent R8 cells. We examined the onset of expression of the rhodopsin genes to determine the latest time point by which photoreceptor subtype commitment must have occurred. We found that the onset of rhodopsin expression in all photoreceptors of the compound eye occurs during a narrow window from 79% to 84% of pupal development (approximately 8 h), pupal stages P12-P14. Rhodopsin 1 has the earliest onset, followed by Rhodopsins 3, 4, and 5 at approximately the same time, and finally Rhodopsin 6. This sequence mimics the model for how R7 and R8 photoreceptor cells are specified, and defines the timing of photoreceptor cell fate decisions with respect to other events in eye development.  相似文献   

17.
The regulatory gene hairy is expressed and required during early embryogenesis to control segmentation gene expression properly and during larval and pupal development to control the pattern of certain adult sensory structures. We have found the hairy protein to be expressed transiently during two stages of eye imaginal disc development, including all cells immediately anterior to the morphogenetic furrow that traverses the developing eye disc, and again in the presumptive R7 photoreceptor cells of the developing ommatidia. This pattern is conserved in a significantly diverged Drosophila species. We show that, surprisingly, ommatidia formed by homozygous hairy- mutant clones are apparently normal, indicating that hairy function in the eye is dispensable. However, we do find that ectopic expression of hairy causes numerous structural abnormalities and the alteration of cell fates. Thus, proper regulation of hairy is still essential for normal eye development. We suggest that the loss of hairy function may be compensated by other regulatory proteins, as has been observed previously for several structurally and functionally related genes involved in sensory organ development. The effects of ectopic hairy expression may result from interactions with proneural genes involved in the development of the eye and other sensory organs.  相似文献   

18.
BACKGROUND: Color vision requires comparison between photoreceptors that are sensitive to different wavelengths of light. In Drosophila, this is achieved by the inner photoreceptors (R7 and R8) that contain different rhodopsins. Two types of comparisons can occur in fly color vision: between the R7 (UV sensitive) and R8 (blue- or green sensitive) photoreceptor cells within one ommatidium (unit eye) or between different ommatidia that contain spectrally distinct inner photoreceptors. Photoreceptors project to the optic lobes: R1-R6, which are involved in motion detection, project to the lamina, whereas R7 and R8 reach deeper in the medulla. This paper analyzes the neural network underlying color vision into the medulla. RESULTS: We reconstruct the neural network in the medulla, focusing on neurons likely to be involved in processing color vision. We identify the full complement of neurons in the medulla, including second-order neurons that contact both R7 and R8 from a single ommatidium, or contact R7 and/or R8 from different ommatidia. We also examine third-order neurons and local neurons that likely modulate information from second-order neurons. Finally, we present highly specific tools that will allow us to functionally manipulate the network and test both activity and behavior. CONCLUSIONS: This precise characterization of the medulla circuitry will allow us to understand how color vision is processed in the optic lobe of Drosophila, providing a paradigm for more complex systems in vertebrates.  相似文献   

19.
The compound eye of the butterfly Papilio xuthus is composed of three spectrally distinct types of ommatidia. We investigated the blue and double-peaked green receptors that are encountered distally in type I and III ommatidia, by means of intracellular recordings, in vivo fluorescence microscopy, and histology. The blue receptors are R1 and/or R2 photoreceptors; they contain the same mRNA encoding the opsin of the blue-absorbing visual pigment. However, here we found that the sensitivity in the UV wavelength region strongly depends on the ommatidial type; the blue receptors in type I ommatidia have a distinctly depressed UV sensitivity, which is attributed to lateral filtering in the fused rhabdom. In the main, fronto-ventral part of the eye, the R3 and R4 photoreceptors of all ommatidia contain the same set of two mRNAs encoding the opsins of green-absorbing visual pigments, PxL1 and PxL2. The spectral sensitivities are double-peaked, but the UV sensitivity of the R3 and R4 photoreceptors in type I ommatidia appears to be reduced, similar to that of the co-localized blue receptors.  相似文献   

20.
eql (equatorial-less) is a recessive lethal mutation on the second chromosome of Drosophila melanogasfer. J. Campos-Ortega found that eql clones in somatic mosaic flies have reduced numbers of photoreceptor cells, and he suggested that only the R1, R6, and R7 photoreceptor cells were missing in this mutant. These photoreceptor cells help to define the inverted orientation of ommatidial facets along the equatorial midline of the fly eye, hence the mutation was named “equatorial-less”. We have conducted a detailed analysis of the eql mutation, by serial section reconstruction of eql clones marked with bw or w? in somatic mosaic flies. We found that all photoreceptor cell types (Rl–R8) could be deleted by the eql mutation, and in rare cases the number of photoreceptor cells was increased. The apparent lack of photoreceptor cell type specificity was confirmed by our analysis of genetically mosaic facets, which indicated that no single photoreceptor cell, or subset of photoreceptor cells, was uniquely required to express eql Rather, eql appears to function in all photoreceptor cells, and possibly in all eye precursor cells. The distribution of photoreceptor cell numbers in w eql facets was consistent with the hypothesis that each photoreceptor cell was deleted independently of the others. The eql gene is located on the right arm of chromosome 2 at map location 2 ? 104.5 ± 0.7 and lies between the polytene chromosome bands 59D8 and 60A7. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号