首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently found that formylpeptide receptor (FPR), a G-protein-coupled receptor that mediates chemotaxis of phagocytic leukocytes induced by bacterial peptide N-formyl-methionyl-leucyl-phenylalanine, is expressed by malignant human glioma cells and promotes tumor growth and angiogenesis. In this study, we examined the effect of Nordy, a novel chiral lipoxygenase inhibitor which was synthesized based on the structure of a natural nordihydroguaiaretic acid, on the expression of FPR by human glioblastoma cells. We found that FPR was expressed at the protein level by highly malignant human glioma cell lines U87 and BT325, and a rat glioma cell line C6. The expression level of FPR was correlated with the degree of the malignancy of tumor cells. The poorly differentiated glioma cell line U87 expressed the highest level of FPR. In U87 glioma cells, the expression of FPR was attenuated at the protein level by Nordy treatment for 48 (P<0.05). Nordy did not affect FPR mRNA expression in U87 cells. In addition, Nordy treatment seemed to promote glioma cell differentiation, as evidenced by their reduced expression of vimentin and increased expression of GFAP. Our results suggest that Nordy was capable of reducing the level of malignancy of glioma cells.  相似文献   

2.
Changes in expression profiles for 17 proteins were ascertained in human mature osteoblasts compared to pre-osteoblasts (differentiation markers). A differential approach was used to highlight proteomic changes between human osteosarcoma cells and mature osteoblasts, showing a relative over-expression of 8 proteins (proliferation and tumor indicators), as well as under-expression of proteins also found down-regulated in pre-osteoblasts (specific markers of osteoblast differentiation). Our findings confirmed the differences between cell lines and primary human cell cultures and suggested caution on the use of osteosarcoma to study anti-osteoporotic drugs in humans.  相似文献   

3.
4.
5.
Adhesion of eight cell lines, derived from human gliomas of different histological types, to fibronectin, collagen I, vitronectin, and laminin was investigated in vitro. The glioma cell lines were found to attach to these substrates to different extents. Interestingly, all cell lines strongly attached to laminin. In addition, glioma cell adhesion was found to be dose dependent. Moreover, adhesion of three cell lines to fibronectin and collagen I was partially inhibited and to vitronectin completely prevented by GRGDTP peptide, indicating the involvement of integrin receptors in glioma cell adhesion. We have demonstrated, recently, that gangliosides play an important role in promoting glioma cell invasion of the reconstituted basement membrane, Matrigel, in vitro. In order to study the mechanism of action of gangliosides in this process, the role of six gangliosides (GM1, GM3, GD3, GD1a, GD1b, and GT1b) in cell adhesion to the four proteins was investigated in three cell lines. Although all gangliosides, with the exception of GM3, were found to enhance cell adhesion to these proteins to different extents, GD3 proved to be the most effective adhesion-promoting ganglioside in all three cell lines. GM3 was found to inhibit cell adhesion to the four proteins in one cell line but enhanced cell adhesion in two other cell lines. The three cell lines were found to express both GD3 and gangliosides recognised by the A2B5 antibody. Furthermore, adhesion of the three cell lines to fibronectin, vitronectin, laminin, and collagen I was inhibited by incubation with A2B5, demonstrating the involvement of intrinsic cell membrane gangliosides in adhesion of glioma cells to these proteins. Taken together with the observation that gangliosides modulate integrin receptor function, these data suggest that gangliosides may play a central role in the control of the adhesive and invasive properties of human glioma cells.  相似文献   

6.
The immediate early response gene IEX-1 is involved in the regulation of apoptosis and cell growth. In order to increase the apoptotic sensitivity to chemotherapeutic drugs and gamma-ray, we attempted to establish U87-MG human glioma cell line expressing IEX-1. Unexpectedly, however, transfection of IEX-1 into U87-MG glioma cells resulted in morphological changes to astrocytic phenotype and increase in glial differentiation marker proteins, S-100 and glial fibrillary acidic protein (GFAP). Glial cell differentiation was used to examine in rat C6 glioma cell line, since this cell line express astrocytic phenotypes by increase in intracellular cAMP concentration. Stimulation of human U87-MG glioma cells by membrane-permeable dibutyryl cAMP (dbcAMP) not only elicited their morphological changes but also induced expression of IEX-1 as well as S-100 and GFAP. H89, an inhibitor of protein kinase A (PKA), blocked dbcAMP-induced morphological changes of U87-MG cells and expression of IEX-1. In contrast, morphological changes and expression of S-100 and GFAP induced by IEX-1 were not affected by H89. Morphological changes induced by dbcAMP were totally abolished by functional disruption of IEX-1 expression by anti-sense RNA. These results indicate that IEX-1 plays an important role in astrocytic differentiation of human glioma cells and that IEX-1 functions at downstream of PKA.  相似文献   

7.
The Notch signaling regulator Numblike (Numbl) is expressed in the brain, but little is known regarding its role in the pathophysiology of glial cells. In this paper, we report that Numbl expression was down-regulated in high-grade human glioma tissue samples and glioblastoma cell lines. To investigate the role of Numbl in glioma migration and invasion, we generated human glioma cell lines in which Numbl was either overexpressed or depleted. Overexpression of Numbl suppressed, while elimination of Numbl promoted, the migration and invasion of glioma cells. Numbl inhibited glioma migration and invasion by dampening NF-κB activity. Furthermore, Numbl interacted directly with tumor necrosis factor receptor-associated factor 5 (TRAF5), which signals upstream and is required for the activation of NF-κB, and committed it to proteasomal degradation by promoting K48-linked polyubiquitination of TRAF5. In conclusion, our data suggest that Numbl negative regulates glioma cell migration and invasion by abrogating TRAF5-induced activation of NF-κB.  相似文献   

8.
Four primary antioxidant enzymes were measured in both human and rat glioma cells. Both manganese-containing superoxide dismutase (MnSOD) and copper-zinc-containing superoxide dismutase (CuZnSOD) activities varied greatly among the different glioma cell lines. MnSOD was generally higher in human glioma cells than in rat glioma cells and relatively higher than in other tumor types. High levels of MnSOD in human glioma cells were due to the high levels of expression of MnSOD mRNA and protein. Heterogeneous expression of MnSOD was present in individual glioma cell lines and may be due to subpopulations or cells at different differentiation stages. Less difference in CuZnSOD, catalase, or glutathione peroxide was found between human and rat glioma cells. The human glioma cell lines showed large differences in sensitivity to the glutathione modulating drugs 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU) and buthionine sulfoximine (BSO). A good correlation was found between sensitivity to BCNU and the activities of catalase in these cell lines. Only one cell line was sensitive to BSO and this line had low CuZnSOD activity.  相似文献   

9.
Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.  相似文献   

10.
A number of chromosomal abnormalities including 19q deletions have been associated with the formation of human gliomas. In this study, we employed a proteomics-based approach to identify possible genes involved in glioma tumorigenesis which may serve as potential diagnostic molecular markers for this type of cancer. By comparing protein spots from gliomas and non-tumor tissues using two-dimensional (2D) gel electrophoresis, we identified 11 up-regulated proteins and four down-regulated proteins in gliomas. Interestingly, we also discovered that a group of cytoskeleton-related proteins are differentially regulated in gliomas, suggesting the involvement of cytoskeleton modulation in glioma pathogenesis. We then focused on the cytoskeleton-related protein, SIRT2 (sirtuin homologue 2) tubulin deacetylase, which was down-regulated in gliomas. SIRT2 is located at 19q13.2, a region known to be frequently deleted in human gliomas. Subsequent Northern blot analysis revealed that RNA expression of SIRT2 was dramatically diminished in 12 out of 17 gliomas and glioma cell lines, in agreement with proteomic data. Furthermore, ectopic expression of SIRT2 in glioma cell lines led to the perturbation of the microtubule network and caused a remarkable reduction in the number of stable clones expressing SIRT2 as compared to that of a control vector in colony formation assays. These results suggest that SIRT2 may act as a tumor suppressor gene in human gliomas possibly through the regulation of microtubule network and may serve as a novel molecular marker for gliomas. Additional proteins were also identified, whose function in gliomas was previously unsuspected.  相似文献   

11.
The aim of this study was to determine the efficacy of neural stem cell-based suicidal gene therapy in rats bearing human glioma. F3 human neural stem cells (NSCs) were transduced to encode cytosine deaminase (CD) which converts 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU). Intratumoral or intravenous transplantation of F3.CD human NSCs led to marked reduction in tumor burden and significantly prolonged the survival of brain tumor-bearing rats. The systemic administration of 5-FC with direct intratumoral/intravenous transplantation of F3.CD cells had remarkable therapeutic effect in rats with human glioma cells as compared with transplantation of parental F3 cells. There was 74% reduction in tumor volume in rats receiving direct transplantation of F3.CD cells into tumor site, and 67% reduction in tumor volume in rats receiving intravenous injection of F3.CD cells as compared to control animals transplanted with human glioma U373 cells alone. The combination of F3.CD and 5-FC was a highly effective in the glioma rat model. Our observations suggest that genetically engineered NSCs encoding suicide gene CD could provide clinical application of suicide gene therapy for patients with glioma.  相似文献   

12.
The zebrafish (Danio rerio) and their transparent embryos represent a promising model system in cancer research. Compared with other vertebrate model systems, we had previously shown that the zebrafish model provides many advantages over mouse or chicken models to study tumor invasion, angiogenesis, and tumorigenesis. In this study, we systematically investigated the biological features of glioma stem cells (GSCs) in a zebrafish model, such as tumor angiogenesis, invasion, and proliferation. We demonstrated that several verified anti-angiogenic agents inhibited angiogenesis that was induced by xenografted-GSCs. We next evaluated the effects of a synthetic dl-nordihydroguaiaretic acid compound (dl-NDGA or “Nordy”), which revealed anti-tumor activity against human GSCs in vitro by establishing parameters through studying its ability to suppress angiogenesis, tumor invasion, and proliferation. Furthermore, our results indicated that Nordy might inhibit GSCs invasion and proliferation through regulation of the arachidonate 5-lipoxygenase (Alox-5) pathway. Moreover, the combination of Nordy and a VEGF inhibitor exhibited an enhanced ability to suppress angiogenesis that was induced by GSCs. By contrast, even following treatment with 50 µM Nordy, there was no discernible effect on zebrafish embryonic development. Together, these results suggested efficacy and safety of using Nordy in vivo, and further demonstrated that this model should be suitable for studying GSCs and anti-GSC drug evaluation.  相似文献   

13.
In spite of extensive research in molecular carcinogenesis, genes that can be considered primary targets in human carcinogenesis remain to be identified. Mutated oncogenes or cellular growth regulatory genes, when incorporated into normal human epithelial cells, failed to immortalize or transform these cells. Therefore, they may be secondary events in human carcinogenesis. Based on some experimental studies we have proposed that downregulation of a differentiation gene may be the primary event in human carcinogenesis. Such a gene could be referred to as a tumor-initiating gene. Downregulation of a differentiation gene can be accomplished by a mutation in the differentiation gene, by activation of differentiation suppressor genes, and by inactivation of tumor suppressor genes. Downregulation of a differentiation gene can lead to immortalization of normal cells. Mutations in cellular proto-oncogenes, growth regulatory genes, and tumor suppressor genes in immortalized cells can lead to transformation. Such genes could be called tumor-promoting genes. This hypothesis can be documented by experiments published on differentiation of neuroblastoma (NB) cells in culture. The fact that terminal differentiation can be induced in NB cells by adenosine 3',5'-cyclic monophosphate (cAMP) suggests that the differentiation gene in these cells is not mutated, and thus can be activated by an appropriate agent. The fact that cAMP-resistant cells exist in NB cell populations suggests that a differentiation gene is mutated in these cancer cells, or that differentiation regulatory genes have become unresponsive to cAMP. In addition to cAMP, several other differentiating agents have been identified. Our proposed hypothesis of carcinogenesis can also be applied to other human tumors such as melanoma, pheochromocytoma, medulloblastoma, glioma, sarcoma, and colon cancer.  相似文献   

14.
Cytokinins are important purine derivatives that act as redifferentiation-inducing hormones to control many processes in plants. Cytokinins such as isopentenyladenine (IPA) and kinetin are very effective at inducing the granulocytic differentiation of human myeloid leukemia HL-60 cells. We examined the gene expression profiles associated with exposure to IPA using cDNA microarrays and compared the results with those obtained with other inducers of differentiation, such as all-trans retinoic acid (ATRA), 1 alpha,25-dihydroxyvitamin D3 (VD3) and cotylenin A (CN-A). Many genes were up-regulated, and only a small fraction were down-regulated, upon exposure to the inducers. IPA and CN-A, but not ATRA or VD3, immediately induced the expression of mRNA for the calcium-binding protein S100P. The up-regulation of S100P was confirmed at the protein expression level. We also examined the expression of other S100 proteins, including S100A8, S100A9 and S100A12, and found that IPA preferentially up-regulated S100P at the early stages of differentiation. IPA-induced differentiation of HL-60 cells was suppressed by treatment with antisense oligonucleotides against S100P, suggesting that S100P plays an important role in cell differentiation.  相似文献   

15.
Multipotent adult germline stem cells (maGSCs) are pluripotent cells that can be differentiated into somatic cells of the three primary germ layers. To highlight the protein profile changes associated with stem cell differentiation, retinoic acid (RA) treated mouse stem cells (maGSCs and ESCs) were compared to nontreated stem cells. 2-DE and DIGE reference maps were created, and differentially expressed proteins were further processed for identification. In both stem cell types, the RA induced differentiation resulted in an alteration of 36 proteins of which 18 were down-regulated and might be potential pluripotency associated proteins, whereas the other 18 proteins were up-regulated. These might be correlated to stem cell differentiation. Surprisingly, eukaryotic initiation factor 5A (Eif5a), a protein which is essential for cell proliferation and differentiation, was significantly down-regulated under RA treatment. A time-dependent investigation of Eif5a showed that the RA treatment of stem cells resulted in a significant up-regulation of the Eif5a in the first 48 h followed by a progressive down-regulation thereafter. This effect could be blocked by the hypusination inhibitor ciclopirox olamine (CPX). The alteration of Eif5a hypusination, as confirmed by mass spectrometry, exerts an antiproliferative effect on ESCs and maGSCs in vitro, but does not affect the cell pluripotency. Our data highlights the important role of Eif5a and its hypusination for stem cell differentiation and proliferation.  相似文献   

16.
Rationale: Glioma is the most common primary malignant tumor of human central nervous system, and its rich vascular characteristics make anti-angiogenic therapy become a therapeutic hotspot. However, the existence of glioma VM makes the anti-angiogenic therapy ineffective. SUMOylation is a post-translational modification that affects cell tumorigenicity by regulating the expression and activity of substrate proteins.Methods: The binding and modification of IGF2BP2 and SUMO1 were identified using Ni2+-NTA agarose bead pull-down assays, CO-IP and western blot; and in vitro SUMOylation assays combined with immunoprecipitation and immunofluorescence staining were performed to explore the detail affects and regulations of the SUMOylation on IGF2BP2. RT-PCR and western blot were used to detect the expression levels of IGF2BP2, OIP5-AS1, and miR-495-3p in glioma tissues and cell lines. CCK-8 assays, cell transwell assays, and three-dimensional cell culture methods were used for evaluating the function of IGF2BP2, OIP5-AS1, miR-495-3p, HIF1A and MMP14 in biological behaviors of glioma cells. Meantime, RIP and luciferase reporter assays were used for inquiring into the interactions among IGF2BP2, OIP5-AS1, miR-495-3p, HIF1A and MMP14. Eventually, the tumor xenografts in nude mice further as certained the effects of IGF2BP2 SUMOylation on glioma cells.Results: This study proved that IGF2BP2 mainly binds to SUMO1 and was SUMOylated at the lysine residues K497, K505 and K509 sites, which can be reduced by SENP1. SUMOylation increased IGF2BP2 protein expression and blocked its degradation through ubiquitin-proteasome pathway, thereby increasing its stability. The expressions of IGF2BP2 and OIP5-AS1 were up-regulated and the expression of miR-495-3p was down-regulated in both glioma tissues and cells. IGF2BP2 enhances the stability of OIP5-AS1, thereby increasing the binding of OIP5-AS1 to miR-495-3p, weakening the binding of miR-495-3p to the 3''UTR of HIF1A and MMP14 mRNA, and ultimately promoting the formation of VM in glioma.Conclusions: This study first revealed that SUMOylation of IGF2BP2 regulated OIP5-AS1/miR-495-3p axis to promote VM formation in glioma cells and xenografts growth in nude mice, providing a new idea for molecular targeted therapy of glioma.  相似文献   

17.
18.
We recently found that microRNA-34a (miR-34a) is downregulated in human glioma tumors as compared to normal brain, and that miR-34a levels in mutant-p53 gliomas were lower than in wildtype-p53 tumors. We showed that miR-34a expression in glioma and medulloblastoma cells inhibits cell proliferation, G1/S cell cycle progression, cell survival, cell migration and cell invasion, but that miR-34a expression in human astrocytes does not affect cell survival and cell cycle. We uncovered the oncogenes c-Met, Notch-1 and Notch-2 as direct targets of miR-34a that are inhibited by miR-34a transfection. We found that c-Met levels in human glioma specimens inversely correlate with miR-34a levels. We showed that c-Met and Notch partially mediate the inhibitory effects of miR-34a on cell proliferation and cell death. We also found that mir-34a expression inhibits in vivo glioma xenograft growth. We concluded that miR-34a is a potential tumor suppressor in brain tumors that acts by targeting multiple oncogenes. In this extra view, we briefly review and discuss the implications of these findings and present new data on the effects of miR-34a in glioma stem cells. The new data show that miR-34a expression inhibits various malignancy endpoints in glioma stem cells. Importantly, they also show for the first time that miR-34a expression induces glioma stem cell differentiation. Altogether, the data suggest that miR-34a is a tumor suppressor and a potential potent therapeutic agent that acts by targeting multiple oncogenic pathways in brain tumors and by inducing the differentiation of cancer stem cells.  相似文献   

19.
20.
Radiotherapy has played a key role in the control of tumor growth in many cancer patients. It is usually difficult to determine what fraction of the tumor cell population is radioresistant after a course of radiotherapy. The response of tumor cells to radiation is believed to be accompanied by complex changes in the gene expression pattern. It may be possible to use these to sensitize radioresistant tumor cells and improve radiocurability. Based on the biological effects of ionizing radiation, in the present study, we developed one oligonucleotide microarray to analyze the expression of 143 genes in cells of two lung cancer cell lines with different radiosensitivities. Compared to NCI-H446 cells, expression of 18 genes significantly increased the basal levels in the radioresistant A549 cells, in which eight genes were up-regulated and 10 genes were down-regulated. In A549 cells irradiated with 5 Gy, 22 (19 up-regulated and three down-regulated) and 26 (eight up-regulated and 18 down-regulated) differentially expressed genes were found 6 and 24 h after irradiation, respectively. In NCI-H446 cells, the expression of 17 (nine up-regulated and eight down-regulated) and 18 (six up-regulated and 12 down-regulated) genes was altered 6 and 24 h after irradiation, respectively. RT-PCR was performed, and we found that MDM2, BCL2, PKCZ and PIM2 expression levels were increased in A549 cells and decreased in NCI-H446 cells after irradiation. Genes involved in DNA repair, such as XRCC5, ERCC5, ERCC1, RAD9A, ERCC4 and the gene encoding DNA-PK, were found to be increased to a higher level in A549 cells than in NCI-H446 cells. Antisense suppression of MDM2 resulted in increased radiosensitivity of A549 cells. Taken together, these results demonstrate the possibility that a group of genes involved in DNA repair, regulation of the cell cycle, cell proliferation and apoptosis is responsible for the different radioresistance of these two lung cancer cells. This list of genes may be useful in attempts to sensitize the radioresistant lung cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号