首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An anti-epilepsy peptide (AEP) was isolated and purified from venom of the scorpion Buthus martensii Karsch. The purification procedure included CM-Sephadex C-50 chromatography, gel filtration on Sephadex G-50 and DEAE-Sephadex A-50 chromatography. Its homogeneity was demonstrated by pH 4.3 polyacrylamide-disc-gel electrophoresis, focusing electrophoresis and SDS/polyacrylamide-disc-gel electrophoresis. The Mr of this peptide, calculated from measurements in SDS/15%-polyacrylamide-disc-gel and SDS/20%-polyacrylamide-disc-gel electrophoresis, is 8300. The isoelectric point is 8.52 by pH 8-9.5-range isoelectric focusing. No haemorrhagic or toxic activities were found. No toxicity was found even after the dose reached 28 mg/kg. The pharmacological tests showed that the AEP had no effect on heart rate, blood pressure or electrocardiogram, but strongly inhibited epilepsy induced by coriaria lactone and cephaloridine. The fluorescence spectrum showed that the peptide has a strong emission peak at 337 nm. Amino acid analysis suggested that the AEP is composed of 66 residues from 18 amino acids and has an Mr of 8290. The sequence of the first 50 N-terminal residues is as follows: Asp-Gly-Tyr-Ile-Arg-Gly-Ser-Asp-Asn-Cys-Lys-Val-Ser-Cys-Leu-Leu-Gly-Asn- Glu-Gly - Cys-Asn-Lys-Glu-Cys-Arg-Ala-Tyr-Gly-Ala-Ser-Tyr-Gly-Tyr-Cys-Trp-Thr-Val- Lys-Leu - Ala-Gln-Asp-Cys-Glu-Gly-Leu-Pro-Asp-Thr-.  相似文献   

2.
Insect-specific neurotoxins are important components of scorpion venoms. In this study, two toxins from the scorpion Buthus martensi Karsch (BmK) were purified. They shared high sequence homology with other depressant insect toxins and were designated BmK ITa and BmK ITb, respectively. They were able to suppress the action potential of cockroach isolated axon, which is due to a decrease in the peak sodium current. Furthermore, the effect of BmK ITb was lower than that of BmK ITa, and some of the electrophysiological characteristics of BmK ITb even resemble that of excitatory insect toxins. Their primary structures were determined by N-terminal partial sequence determination and cDNA cloning. The differences in their structures, especially the 31st residues, may result in the unique activity of BmK ITb.  相似文献   

3.
For a long time Asian scorpion Buthus martensi Karsch (BmK) has been used in Chinese traditional medicine to cure many diseases of nervous system. Here we report the purification and characterization of a pharmacologically active neurotoxin from the scorpion BmK. This toxin had little toxicity in mice and insects but was found to have an anti-epilepsy effect in rats, and is thus named as BmK anti-epilepsy peptide (BmK AEP). Its amino-acid sequence was determined by lysylendopeptidase digestion, Edman degradation and mass spectrographic analysis. Based on the determined sequence, the gene coding for this peptide was also cloned and sequenced by the 3' and 5' RACE methods. It encodes a precursor of 85 amino-acid residues including a signal peptide of 21 residues, a mature peptide of 61 residues and three additional residues Gly-Lys-Lys at the C-terminus. The additional Gly sometimes followed by one or two basic residues is prerequisite for the amidation of its C-terminus. C-terminal amidation was also verified by the molecular-mass determination of BmK AEP. This anti-epilepsy peptide toxin shares homology with other depressant insect toxins. The remarkable difference between them was mainly focused at residues 6, 7 and 39; these residues might relate to the unique action of BmK AEP.  相似文献   

4.
An antitumor peptide (ANTP) was isolated and purified from the venom of the Chinese scorpion Buthus martensii Karsch. The purification procedure included gel filtration on Sephadex G-50 and Superdex 30 high resolution chromatography, Phenyl Sepharose 6 Fast Flow chromatography, and SP-Sepharose Fast Flow chromatography. Its homogeneity was demonstrated by size exclusion HPLC on TSK G2000 SW. The isoelectric point is more than 10 by pH 3-10 range isoelectric focusing. ANTP has a relative molecular mass of 6280, calculated from the measurement of 16.5% SDS-PAGE. The pharmacological tests showed that ANTP has antitumoral effects in the mouse S-180 fibrosarcoma model and Ehrlich ascites tumor model. Amino acid analysis suggested the ANTP is rich in glycine and does not have histidine and threonine. The sequence of the first 25 N-terminal residues is as follows: Val-Arg-Asp-Gly-Tyr-Ile-Ala-Asp-Asp-Lys-Asn-Cys-Ala-Tyr-Phe-Cys-Gly-Arg-Asn-Ala-Tyr-Cys-Asp-Asp-Glu.  相似文献   

5.
Zhang N  Wu G  Wu H  Chalmers MJ  Gaskell SJ 《Peptides》2004,25(6):951-957
The scorpion neurotoxin BmKK4 was purified from the venom of the Chinese scorpion Buthus martensi Karsch by a combination of gel-filtration, ion exchange and reversed phase chromatography. The primary sequence of BmKK4 was determined using the tandem MS/MS technique and the cDNA database searching as followings: ZTQCQ SVRDC QQYCL TPDRC SYGTC YCKTT (NH(2)). BmKK4 is the first isolated member of a new subfamily alpha-KTx17 of scorpion K(+) toxins.  相似文献   

6.
The present study investigates the electrophysiological actions of BmK M1, an alpha-like toxin purified from the venom of the scorpion Buthus martensi Karsch, on voltage-gated Na+ channels. Using the voltage clamp technique, we assessed the BmK M1 activity on the cardiac Na+ channel (hH1) functionally expressed in Xenopus oocytes. The main actions of the toxin are a concentration-dependent slowing of the inactivation process and a hyperpolarizing shift of the steady-state inactivation. This work is the first electrophysiological characterization of BmK M1 on a cloned Na+ channel, demonstrating that this toxin belongs to the class of scorpion alpha-toxins. Our results also show that BmK M1 can be considered as a cardiotoxin.  相似文献   

7.
Zhang N  Li M  Chen X  Wang Y  Wu G  Hu G  Wu H 《Proteins》2004,55(4):835-845
A natural K+ channel blocker, BmKK2 (a member of scorpion toxin subfamily alpha-KTx 14), which is composed of 31 amino acid residues and purified from the venom of the Chinese scorpion Buthus martensi Karsch, was characterized using whole-cell patch-clamp recording in rat hippocampal neurons. The three dimensional structure of BmKK2 was determined with two-dimensional NMR spectroscopy and molecular modelling techniques. In solution this toxin adopted a common alpha/beta-motif, but showed distinct local conformation in the loop between alpha-helix and beta-sheet in comparison with typical short-chain scorpion toxins (e.g., CTX and NTX). Also, the alpha helix is shorter and the beta-sheet element is smaller (each strand consisted only two residues). The unusual structural feature of BmKK2 was attributed to the shorter loop between the alpha-helix and beta-sheet and the presence of two consecutive Pro residues at position 21 and 22 in the loop. Moreover, two models of BmKK2/hKv1.3 channel and BmKK2/rSK2 channel complexes were simulated with docking calculations. The results demonstrated the existence of a alpha-mode binding between the toxin and the channels. The model of BmKK2/rSK2 channel complex exhibited favorable contacts both in electrostatic and hydrophobic, including a network of five hydrogen bonds and bigger interface containing seven pairs of inter-residue interactions. In contrast, the model of BmKK2/hKv1.3 channel complex, containing only three pairs of inter-residue interactions, exhibited poor contacts and smaller interface. The results well explained its lower activity towards Kv channel, and predicted that it may prefer a type of SK channel with a narrower entryway as its specific receptor.  相似文献   

8.
Xu Y  Wu J  Pei J  Shi Y  Ji Y  Tong Q 《Biochemistry》2000,39(45):13669-13675
BmP02 is a 28-amino acid residue peptide purified from the venom of the Chinese scorpion Buthus martensi Karsch, which had been demonstrated to be a weak blocker of apamin-sensitive calcium-activated potassium channels. Two-dimensional NMR spectroscopy techniques were used to determine the solution structure of BmP02. The results show that BmP02 formed a alpha/beta scorpion fold, the typical three-dimensional structure adopted by most short chain scorpion toxins whose structures have been determined. However, in BmP02 this alpha/beta fold was largely distorted. The alpha-helix was shortened to only one turn, and the loop connecting the helix to the first beta-strand exhibited conformational heterogeneity. The instability of BmP02 could be attributed to a proline at position 17, which is usually a glycine. Because the residue at this position makes intense contact with the alpha-helix, it was supposed that the bulky side chain of proline had pushed the helix away from the beta-sheet. This had a significant influence on the structure and function of BmP02. The alpha-helix rotated by about 40 degrees to avoid Pro17 while forming two disulfides with the second beta-strand. The rotation further caused both ends of the helix to be unwound due to covalent restrictions. According to its structure, BmP02 was supposed to interact with its target via the side chains of Lys11 and Lys13.  相似文献   

9.
Three polypeptides, M10, M14 and M9, toxic to mammals were isolated from the venom of the Central Asian scorpion Buthus eupeus. All the toxins were shown to be homogeneous according to disc-electrophoresis and N-terminal group analyses. The toxin M9 was digested with trypsin, Staphylococcus aureus proteinase and cleaved with BNPS-skatole. The toxin M14 was subjected to tryptic and chymotryptic hydrolyses. The complete amino acid sequences of the toxins M9 and M14 were established and it was shown that each of them consists of 66 amino acid residues with four intramolecular disulfide bonds.  相似文献   

10.
From the venom of scorpion Buthus martensii Karsch,a short peptide (BmP01, 29 amino acid residues) was isolated and characterized as previously reported (Lebren, R. R., et al. (1997) Eur. J. Biochem. 245, 457-464). It was shown to reduce 33% outward K(+) channel (hippocampal neurons) currents at 10 microM. The solution structure of BmP01 was determined by 2D (1)H NMR spectroscopy. The NOEs, coupling constants, and H-D exchange obtained from NMR spectroscopy were used in structural calculations. The conformation of BmP01 is composed of a short alpha-helix (Cys 3-Thr 12) and a two-stranded antiparallel beta-sheet (Ala 15-Asp 20 and Lys 23-Pro 28). There are three disulfide bridges (Cys 3-Cys 19, Cys 6-Cys 24 and Cys 10-Cys 26) connecting the alpha-helix and beta-sheet. Asp 20 to Lys 23 form a type II turn linking the two strands. Structural and electrostatic potential comparison between BmP01 and its analogues are also presented.  相似文献   

11.
The gene encoding a neurotoxin (BmK M1) from the scorpion Buthus martensii Karsch was expressed in Saccharomyces cerevisiae at a high level with the alcohol dehydrogenase promoter. SDS-PAGE of the culture confirmed expression and showed secretion into medium from yeast. Recombinant BmK M1 was purified rapidly and efficiently by ion exchange and gel filtration chromatography to homogeneity, produced a single band on tricine-SDS-PAGE, and processed the homologous N-terminus. Amino acid analysis and N-terminal sequencing demonstrated that the recombinant toxin was processed correctly from the alpha-mating factor leader sequence and was chemically identical to the native form. The expressed recombinant BmK M1 was toxic for mice, which indicated that it was biologically active. Quantitative estimation showed that recombinant BmK M1 had an LD(50) similar to that of the native toxin.  相似文献   

12.
A novel short-chain scorpion toxin BmP08 was purified from the venom of the Chinese scorpion Buthus martensi Karsch by a combination of gel-filtration, ion exchange, and reversed-phase chromatography. The primary sequence of BmP08 was determined using the tandem MS/MS technique and Edman degradation, as well as results of NMR sequential assignments. It is composed of 31 amino acid residues including six cysteine residues and shares less than 25% sequence identity with the known alpha-KTx toxins. BmP08 shows no inhibitory activity on all tested voltage-dependent and Ca(2+)-activated potassium channels. The 3D-structure of BmP08 has been determined by 2D-NMR spectroscopy and molecular modeling techniques. This toxin adopts a common alpha/beta-motif, but shows a distinctive local conformation and features a 3(10)-helix and a shorter beta-sheet. The unique structure is closely related to the distinct primary sequence of the toxin, especially to the novel arrangement of S-S linkages in the molecule, in which two disulfide bridges (C(i)-C(j) and C(i+3)-C(j+3)) link covalently the 3(10)-helix with one strand of the beta-sheet structure. The electrostatic potential surface analysis of the toxin reveals salt bridges and hydrogen bonds between the basic residues and negatively charged residues nearby in BmP08, which may be unfavorable for its binding with the known voltage-dependent and Ca(2+)-activated potassium channels. Thus, finding the target for this toxin should be an interesting task in the future.  相似文献   

13.
An insect toxin named BmK AngP1 was purified from the venom of the scorpion Buthus martensii Karsch (BmK). It also shows an evident analgesic effect on mice, but is interestingly devoid of mammalian toxicity. Bioassay showed that the CPU value of AngP1 was 0.01 microg/body ( approximately 30 mg) for the excitatory insect toxicity and 43.0% inhibition efficiency for analgesia at a dose of 5 mg/kg. However, even at the dosage of 10 mg/kg no detectable toxicity on mice could be found. The isoelectric point (pI) value for AngP1 was 4.0, and its molecular mass analyzed by MALDI-TOF MS was 8141.0. The first 15 N-terminal residues of AngP1 were determined by Edman degradation and showed high similarity to that of other excitatory scorpion insect toxins. The circular dichroism spectroscopy measured on a JASCO J-720 system showed that there were 10.4% alpha-helix, 46.2% beta-strand and 14.1% turn structure in this peptide. Under two conditions single crystals of AngP1 were obtained.  相似文献   

14.
A hyaluronidase, named BmHYA1, was purified from the venom of Chinese red scorpion (Buthus martensi), using successive chromatography. The homogeneity of BmHYA1 was confirmed by SDS-PAGE and MALDI-TOF mass spectrometry. The molecular mass of BmHYA1 was 48,696 Da determined by MALDI-TOF MS. The optimal temperature and pH of BmHYA1 were 50 degrees C and pH 4.5, respectively. It could be inhibited by DTT, Cu(2+), Fe(3+) or heparin, but not Mg(2+), Ca(2+), reduced glutathione, l-cysteine or EDTA. The sequence of thirty N-terminal amino acids of BmHYA1 was obtained by Edman degradation, as TSADF KVVWE VPSIM CSKKF KICVT DLLTS; but no similarity was found to other venom hyaluronidases. Further, BmHYA1 can hydrolyze hyaluronan into relatively smaller oligosaccharides and modulate the expression of CD44 variant in the breast cancer cell line MDA-MB-231.  相似文献   

15.
16.
Alpha-toxins from scorpion venoms prolong the action potential of excitable cells by blocking sodium channel inactivation. We have purified bukatoxin, an alpha-toxin from scorpion (Buthus martensi Karsch) venom, to homogeneity. Bukatoxin produced marked relaxant responses in the carbachol-precontracted rat anococcygeus muscle (ACM), which were mediated through the L-arginine-nitric oxide synthase-nitric oxide pathway, consequent to a neuronal release of nitric oxide. Based on the presence of proline residues in the flanking segments of protein-protein interaction sites, we predicted the site between (52)PP(56) to be the potential interaction site of bukatoxin. A homology model of bukatoxin indicated the presence of this site on the surface. Buka11, a synthetic peptide designed based on this predicted site, produced a concentration-dependent nitric oxide-mediated relaxant response in ACM. Using alanine-substituted peptides, we have shown the importance (53)DKV(55) flanked by proline residues in the functional site of bukatoxin.  相似文献   

17.
Chinese scorpion Buthus martensii Karsch (BmK) venom is a rich source of neurotoxins which bind to various ion channels with high affinity and specificity and thus widely used as compounds to modulate channel gating. An excitatory insect toxin, BmK IT, is not conserved with a glutamate residue at the preceding position of the third Cys residue, and is a toxin with a non-glutamate residue at the relevant position in the excitatory scorpion β-toxin subfamily. In this study, the mutants of recombinant BmK IT (BmK IT (I25E), BmK IT (E15G), BmK IT C-terminal (TKSYCDVQIN) truncated) were achieved by site-directed mutagenesis. Biological activity of BmK IT and its mutants confirmed these residues or peptides played key roles in BmK IT. BmK IT (I25E) could increase the sensitivity of BmK IT, but BmK IT(E15G) could decrease the sensitivity of BmK IT on Sf9 cells. BmK IT truncated C-terminal hydrophobic amino acids could cross the species boundaries and was effective on mammalian C6 cells. To date, several excitatory insect toxins have been isolated and identified from the venom of Buthus martensii Karsch. However, no functional data are available and therefore its classification in the family of excitatory insect toxins remains putative and is just based on its high similarity with the other toxins of this family. These results verified I25, E15 and C-terminal (TKSYCDVQIN) in BmK IT played key roles in the interaction of the BmK IT and its receptor- sodium channels on the surface of insect cells and laid a foundation for further structural and functional analysis of BmK IT.  相似文献   

18.
Tong X  Zhu J  Ma Y  Chen X  Wu G  He F  Cao C  Wu H 《Biochemistry》2007,46(40):11322-11330
The solution structure of an alpha-insect toxin from Buthus martensii Karsch, BmKalphaIT01, has been determined by two-dimensional NMR spectroscopy and molecular modeling techniques. Combining the sequence homology comparison and toxicity bioassays, BmKalphaIT01 has been suggested to be a natural mutant of alpha-insect toxins and so can serve as a tool to study the relationship of structure-function among this group of toxins. The overall structure of BmKalphaIT01 shares a common core structure consisting of an alpha-helix packed against a three-stranded antiparallel beta-sheet, which exhibits distinctive local conformations within the loops connecting these secondary structure elements. The solution structure of BmKalphaIT01 features a non-proline cis peptide bond between Asn9 and Tyr10, which is proposed to mediate the spatial closing of the five-residue turn (Gln8-Cys12) and the C-terminal segment (Arg58-His64) to form the NC domain and confer the toxin insect-specific bioactivity. Conformational heterogeneity is observed in the solution of BmKalphaIT01 and could be attributed to the cis-trans isomerization of the peptide bond between residues 9 and 10. The minor conformation of BmKalphaIT01 with a trans peptide bond between Asn9 and Tyr10 may be responsible for its moderate bioactivity against mammals. The cis-trans isomerization of the peptide bond between residues 9 and 10 may be the structural basis of dual pharmacological activities of alpha-insect and alpha-like scorpion toxins, which is supported by the fact that conformational heterogeneity occurs in the solution structures of LqhalphaIT, LqqIII, and LqhIII and by comparison of the solution structure of BmKalphaIT01 with those of some relevant alpha-type toxins.  相似文献   

19.
A new peptide named BmK dITAP3 from scorpion Buthus martensii Karsch (BmK) has been identified to possess a dual bioactivity, a depressant neurotoxicity on insects and an analgesic effect on mice. The bioassays also showed that the peptide was definitely devoid of the neurotoxicity on mammals, which indicated that the analgesic effect of BmK dITAP3 could not be ascribed to the syndromic effects of a mammalian neurotoxicity. BmK dITAP3 exhibited 43.0% inhibition efficiency of the analgesic effect on mice at a dose of 5 mg/kg and the FPU value of 0.5 microg/body (approximately 30 mg) on the fly larvae. The pI value and the molecular mass determined by MALDI-TOF MS for dITAP3 were 6.5 and 6722.7, respectively. Its first 15 N-terminal residues were determined by Edman degradation, based on which the full amino acid sequence was deduced from the cDNA sequence encoding the peptide with 3'-RACE. Circular dichroism and sequence based prediction analyses showed dITAP3 may have a similar molecular scaffold as the most scorpion toxins but with features of the more beta structures and much less of alpha helix. The details of the purification, characterization and sequencing as well as the sequence comparison with other depressant insect toxins and the correlation between the analgesic effect and the insect toxicity will be reported and discussed, respectively.  相似文献   

20.
The two insecticidal peptides Bm32-VI and Bm33-I, isolated from the venom of the Chinese scorpion Buthus martensi induce paralytical symptoms typical of insect contractive toxins. They show, respectively, 74% and 77% homology with AaIT from Androctonus australis, comparable insecticidal activity and no vertebrate toxicity. Under voltage-clamp conditions, both toxins induced (1) an increased fast Na(+) current, (2) a shift in voltage dependence of Na(+) current activation, (3) the occurrence of a delayed current, and (4) a slow development of a holding current. Increased Na(+) conductance at negative potential values is responsible for axonal hyperexcitability and the contractive paralysis of insect prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号