首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effect of calcium ions on heat tolerance of Saccharomyces cerevisiae and on the induction of Hsp104 synthesis by this microorganism was studied. Short-term (30 min) treatment with CaCl2 at 30°C enhanced the heat tolerance to the lethal heat shock (50°C); the synthesis of Hsp104 was induced as well. The effect of Ca2+ on the heat tolerance and Hsp104 synthesis was shown to be ion-specific and was inhibited by LaCl3, which is known to block calcium ion channels on the cytoplasmic membrane. The effect of Ca2+ depended on the potential of the inner mitochondrial membrane. When the cells were treated with sodium azide, which reduced the electrochemical potential, the effect of calcium both on heat tolerance and Hsp104 synthesis was suppressed. Depending on the concentration of exogenous Ca2+ and the ambient conditions, calcium ions may either induce or inhibit the expression of the stress genes and cell viability.  相似文献   

2.
Plants may be more sensitive to carbon dioxide (CO2) enrichment at subambient concentrations than at superambient concentrations, but field tests are lacking. We measured soil‐water content and determined xylem pressure potentials and δ13C values of leaves of abundant species in a C3/C4 grassland exposed during 1997–1999 to a continuous gradient in atmospheric CO2 spanning subambient through superambient concentrations (200–560 µmol mol2?1). We predicted that CO2 enrichment would lessen soil‐water depletion and increase xylem potentials more over subambient concentrations than over superambient concentrations. Because water‐use efficiency of C3 species (net assimilation/leaf conductance; A/g) typically increases as soils dry, we hypothesized that improvements in plant‐water relations at higher CO2 would lessen positive effects of CO2 enrichment on A/g. Depletion of soil water to 1.35 m depth was greater at low CO2 concentrations than at higher CO2 concentrations during a mid‐season drought in 1998 and during late‐season droughts in 1997 and 1999. During droughts each year, mid‐day xylem potentials of the dominant C4 perennial grass (Bothriochloa ischaemum (L.) Keng) and the dominant C3 perennial forb (Solanum dimidiatum Raf.) became less negative as CO2 increased from subambient to superambient concentrations. Leaf A/g—derived from leaf δ13C values—was insensitive to feedbacks from CO2 effects on soil water and plant water. Among most C3 species sampled—including annual grasses, perennial grasses and perennial forbs—A/g increased linearly with CO2 across subambient concentrations. Leaf and air δ13C values were too unstable at superambient CO2 concentrations to reliably determine A/g. Significant changes in soil‐ and plant‐water relations over subambient to superambient concentrations and in leaf A/g over subambient concentrations generally were not greater over low CO2 than over higher CO2. The continuous response of these variables to CO2 suggests that atmospheric change has already improved water relations of grassland species and that periodically water‐limited grasslands will remain sensitive to CO2 enrichment.  相似文献   

3.
The effect of hydrogen sulfide (H2S) donor sodium hydrosulfide (NaHS) on the heat resistance of wheat (Triticum aestivum L.) coleoptile cells, the formation of reactive oxygen species (ROS), and the activity of the antioxidant enzymes in them was investigated. The treatment of coleoptiles with 100 µM NaHS caused transient enhancement of the generation of the superoxide anion radical (O2 ?) and an increased hydrogen peroxide content. The activities of antioxidant enzymes—superoxide dismutase, catalase, and guaiacol peroxidase— and coleoptile resistance to damaging heat was later found to have increased. The biochemical and physiological effects of the hydrogen sulfide donor described above were inhibited by the treatment of wheat coleoptiles with the hydrogen peroxide scavenger dimethylthiourea, the NADPH oxidase inhibitor imidazole, the extracellular calcium chelator EGTA, and the phosphatidylinositol-specific phospholipase C inhibitor neomycin. A conclusion was made on the role of ROS generation, which is dependent on the activity of NADPH oxidase and calcium homeostasis, in the transduction of the H2S signal, which induces antioxidant enzymes and the development of plant cell heat resistance.  相似文献   

4.
The objective of this study was to analyze the mechanism of some physiological processes accompanying acquisition of sunflower (Helianthus annuus L.) chilling resistance due to seeds hydropriming in the presence of salicylic acid, jasmonic acid, 24-epibrassinolide followed exposition of seeds to short-term heat shock treatment. The seeds were hydroprimed at 25 °C in limited amounts of water or solution of salicylic or jasmonic acid at 10?2, 10?3 and 10?4 M concentration, 24-epibrassinolide at 10?6, 10?8 and 10?10 M concentration. The seeds were incubated for 2 days, subjected to short-term heat shock (45 °C, 2 h) and chilled for 21 days at 0 °C. Sunflower chilling susceptibility and physiological responses were evaluated according to the inhibition of radicle growth, the inhibition of the number of lateral roots formation, the activity of catalase and changes in soluble carbohydrates in seedlings developing for 72 h at 25 °C. Hydropriming and short-term heat shock application explicitly reduced inhibition of roots as well as lateral roots development by allowing the germinating seeds to recover from the growth-inhibiting effects of chilling. Seeds hydropriming in solutions containing salicylic acid, jasmonic acid and 24-epibrassinolide followed heat shock treatment additionally promoted the activity of catalase and sugars metabolism, which stimulated seedlings development and alleviated the decrease of F v/F m caused by chilling conditions. These beneficial effects contributed to increased resistance of sunflower seedlings to chilling stress. The present study demonstrated that the most profitable effect on reducing negative effect of chilling may be achieved by short-term heat shock applied during hydropriming in water supplemented with 24-epiBL (10?8 and 10?10 M) or salicylic acid (10?3 and 10?4 M).  相似文献   

5.
Incorporations of singly and doubly-labelled acetate-[13C] into griseofulvin by a mutant strain of Penicillium patulum confirm its origin from simple folding of a single heptaketide chain. An acetate ‘starter’ effect is observed in the 13C-NMR spectra of griseofulvin enriched from acetate-[13C], and analysis of the 13C—13C spin—spin couplings observed indicate a rapid metabolic turnover of added acetate. Methyl, but not carboxyl, of acetate is efficiently metabolised into the C1 pool.  相似文献   

6.
NaVPO4F has received a great deal of attention as cathode material for Na‐ion batteries due to its high theoretical capacity (143 mA h g?1), high voltage platform, and structural stability. Novel NaVPO4F/C nanofibers are successfully prepared via a feasible electrospinning method and subsequent heat treatment as self‐standing cathode for Na‐ion batteries. Based on the morphological and microstructural characterization, it can be seen that the NaVPO4F/C nanofibers are smooth and continuous with NaVPO4F nanoparticles (≈6 nm) embedded in porous carbon matrix. For Na‐storage, this electrode exhibits extraordinary electrochemical performance: a high capacity (126.3 mA h g?1 at 1 C), a superior rate capability (61.2 mA h g?1 at 50 C), and ultralong cyclability (96.5% capacity retention after 1000 cycles at 2 C). 1D NaVPO4F/C nanofibers that interlink into 3D conductive network improve the conductivity of NaVPO4F, and effectively restrain the aggregation of NaVPO4F particles during charge/discharge process, leading to the high performance.  相似文献   

7.
In order to obtain information about the conformational features of a 2′-O-methylated polyribonucleotide at the nearest neighbor level, a detailed nuclear magnetic resonance study of AmpA was undertaken. AmpA was isolated from alkali hydrolysates of yeast RNA, and proton spectra were recorded at 100 MHz in the Fourier transform mode in D2O solutions, 0.01 M, pH 5.4 and 1.5 at 25°C. 31P spectra were recorded at 40.48 MHz. Complete, accurate sets of nmr parameters derived for each nucleotidyl unit by simulation iteration methods. The nmr data were translated into conformational parameters for all the bonds using procedures developed in earlier studies from these laboratories. It is shown that AmpA exists in aqueous solution with a flexible molecular framework, which shows preferences for certain orientations. The ribose rings exist as a 2E ? 3E equilibrium with the —pA ribose showing a bias for the 3E pucker. The C(4′)—C(5′) bonds of both nucleotidyl units show significant preference (75–80%) to exist in gg conformation. The dominant conformer (80%) about C(5′)—O(5′) of the 5′-nucleotidyl unit is gg′. Even though an unambiguous determination of the orientation of the 3′-phosphate group cannot be made, tentative evidence shows that it preferentially occupies g+ domains [O(3′)—P trans to C(3′)—C(2′)] in which the H(3′) —C(3′)—O(3′)—P(3′) dihedral angle is about 31°. There is reasonable evidence that the 2′-O-methyl preferentially occupies the domain in which the O(2′)—CH3 bond is trans to C(2′)—C(1′). Lowering of pH to 1.5, which results in protonation of both the adenine moieties, causes destacking of AmpA. Such destacking is accompanied by small, but real, perturbations in the conformations about most of the bonds in the backbone. A detailed comparison of the solution conformations of ApA and AmpA clearly shows that 2′-O-methylation strongly influences the conformational preference about the C(3′)—O(3′) bond of the 3′-nucleotidyl unit, in addition to inducing small changes in the overall ribophosphate backbone conformational equilibria. The effect of 2′-O-methylation is such that the C(3′)—O(3′) is forced to occupy preferentially the g+ domain rather than the normally preferred g? domain [O(3′)—P trans to C(3′)—C(4′)] in ApA. The data on ApA and AmpA further reveal that the extent of stacking interaction is less in AmpA compared to ApA. It is suggested that stacked species of AmpA exist as right-handed stacks where the magnitude of ω and ω′ about O(5′)—P and P—O(3′) is about 290°. The reason for the lesser degree of stacking in AmpA compared to ApA is intramolecular interaction between 2′-O-methyl and the flexible O(3′)—P—O(5′) bridge, the interaction causing some perturbation in the magnitudes of ω/ω′, causing destacking. The destacking will lead to an increase in χCN by a few degrees, causing an increase in 2E populations; the latter in turn will shift the 3′ phosphate group from g? to g+ domains. In short, a coupled series of conformational events is envisioned at the onset of destacking, made feasible by the interaction between the 2′-O-methyl group and the swivel O(3′)—P—O(5′) bridge.  相似文献   

8.
Abstract— The alkylating agent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) is a peptide-coupling agent that is being used to inactivate irreversibly α2-adrenoceptors and other receptors. The aim of the present study was to assess the in vitro and in vivo effects of EEDQ on the newly discovered brain l2-imidazoline sites, located mainly in mitochondria. Preincubation of rat cortical membranes with EEDQ (10?8-10?5M) markedly decreased (20–90%) the specific binding of the selective antagonist [3H]R821002 to α2-adrenoceptors without affecting that of [3H]idazoxan (in the presence of adrenaline) to l2-imidazoline sites. In EEDQ-pretreated membranes (10?5M, 30 min at 25°c), the density of l2-imidazoline sites (Bmax= 80 ± 4 fmol/mg of protein) was not different from that determined in untreated membranes in the presence of 10?6M (-)-adrenaline (Bmax= 83 ± 4 fmol/mg of protein), and both densities were lower (24%, p < 0.05) than the total native density of [3H]idazoxan binding sites (Bmax= 107 ± 6 fmol/mg of protein) (l2-imidazoline sites plus a2-adrenoceptors). Treatment of rats with an optimal dose of EEDQ (1.6 mg/kg, i.p., for 2 h to 30 days) reduced maximally at 6 h (by 95 ± 1%) the specific binding of [3H]-R821002 to α2-adrenoceptors, but also the binding of [3H]idazoxan to l2-imidazoline sites (by 44 ± 5%). Pretreatment with yohimbine (10 mg/kg, i.p.) fully protected against EEDQ-induced α2-adrenoceptor inactivation. In contrast, pretreatment with cirazoline (1 mg/kg, i.p.), did not protect against EEDQ-induced inactivation of l2-imidazoline sites. Treatment with EEDQ (1.6 mg/kg, i.p., for 6 h) did not alter the density of brain monoamine oxidase-A sites labeled by [3H]Ro 41–1049 or that of monoamine oxidase-B sites labeled by [3H]Ro 19–6327 (lazabemide), two relevant mitochondrial markers. Competition experiments with cirazoline against the specific binding of [3H]idazoxan to l2-imidazoline sites demonstrated the presence of the expected two affinity states for the drug in EEDQ-pretreated membranes as well as in rats treated with EEDQ. The results indicate that EEDQ in vitro is a useful tool for quantitating l2-imidazoline sites when using [3H]-imidazoline ligands that also recognize α2-adrenoceptors. In vivo, however, EEDQ is also able to inactivate partially brain l2-imidazoline sites probably by an indirect mechanism. Key Words: Brain l2-imidazoline sites—[3H]-Idazoxan—α2-Adrenoceptors—[3H] R821002—N -Ethoxycarbonyl-2-ethoxy-li2-dihydroquinoline—Monoamine oxidase-A—[3H]Ro 41–1049—Monoamine oxidase-B—[3H]Ro 19–6327.  相似文献   

9.
To investigate the structural role played by isostructural unbranched alkyl‐chains on the conformational ensemble and stability of β‐turn structures, the conformational properties of a designed model peptide: Plm‐Pro‐Gly‐Pda ( 1 , Plm: H3C—(CH2)14—CONH—; Pda: —CONH— (CH2)14—CH3) have been examined and compared with the parent peptide: Boc‐Pro‐Gly‐NHMe ( 2 , Boc: tert‐butoxycarbonyl; NHMe: N‐methylamide). The characteristic 13C NMR chemical‐shifts of the Pro Cβ and Cγ resonances ascertained the incidence of an all‐trans peptide‐bond in low polarity deuterochloroform solution. Using FTIR and 1H NMR spectroscopy, we establish that apolar alkyl‐chains flanking a β‐turn promoting Pro‐Gly sequence impart definite incremental stability to the well‐defined hydrogen‐bonded structure. The assessment of 1H NMR derived thermodynamic parameters of the hydrogen‐bonded amide‐NHs via variable temperature indicate that much weaker hydrophobic interactions do contribute to the stability of folded reverse turn structures. The far‐UV CD spectral patterns of 1 and 2 in 2,2,2‐trifluoroethanol are consistent with Pro‐Gly specific type II β‐turn structure, concomitantly substantiate that the flanking alkyl‐chains induce substantial bias in enhanced β‐turn populations. In view of structural as well as functional importance of the Pro‐Gly mediated secondary structures, besides biochemical and biological significance of proteins lipidation via myristoylation or palmytoilation, we highlight potential convenience of the unbranched Plm and Pda moieities not only as main‐chain N‐ and C‐terminal protecting groups but also to mimic and stabilize specific isolated secondary and supersecondary structural components frequently observed in proteins and polypeptides. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 419–426, 2013.  相似文献   

10.
  • 1.1. Neurospora cells were grown at 28°C for 14hr and subjected to heat shock (HS) at 48°C for 45 min. Protein synthesis profiles, monitored by labelling with [35S]methionine and one and two-dimensional electrophoresis, revealed nine heat shock proteins (HSPs).
  • 2.2. Crossed-immunoelectrophoresis revealed five polypeptides in the shocked cell extracts that were not detectable in normal cells.
  • 3.3. Synthesis of HSPs occurred rapidly during the shock treatment and ceased upon transfer to normal conditions. One of the HSPs—~43 K in size—may be a developmentally-regulated protein.
  • 4.4. Metal ions—cadmium, zinc, manganese, copper—did not elicit a stress response when used alone but appeared to modulate the heat shock response.
  相似文献   

11.
The plasma membrane-bound penicillinase of Bacilluslicheniformis749C has been purified. Amino acid analysis showed no significant differences in composition between the enzyme and exopenicillinase. Enzyme purified from cultures containing H333PO4 or [3H]-glycerol contained 33P or [3H]-glycerol activity and treatment with 8 M urea, 0.2% sodium dodecyl sulfate at 80° C did not remove the 3H-activity from the enzyme protein. Trypsin readily cleaved the glycerol-containing moiety from the enzyme protein, forming enzyme with molecular weight and heat stability like that of the exoenzyme. Phospholipase D and C also produced enzyme resembling the exo-form.  相似文献   

12.
Sulpiride is an antipsychotic drug endowed with the properties of a dopamine antagonist. The failure of sulpiride to inhibit neostriatal dopamine stimulated adenylate cyclase activity indicated that this drug is a selective D2 receptor antagonist. In this study we used a novel synthesized 2H(—)sulpiride with very high specific activity (72 Ci/mol) and characterized the temperature sensitivity of the binding sites labeled by this compound. Kinetic analysis of 3H(—)sulpiride binding in rat striatum showed unstable behavior when incubation was performed at 37 or 30°C. However when experiments were carried out at 15 or 10°C, binding reached a stable steady-state within 10 min. Scatchard analysis of binding isotherms obtained at 10°C showed a 5-fold increase in the maximum number of binding sites and a decrease in Kd values to one-third those obtained at 37°C. Pharmacological characterization of the binding sites labeled by 3H(—)sulpiride at 10°C showed a greater affinity for antagonists but not for agonists than 37°C. Under both experimental condition, 3H(—)sulpiride binding sites were Na+ and GTP-sensitive. The temperature sensitive binding phenomenon appeared to be area specific. 3H(—)sulpiride binding sites in tissues other than from striatum were influenced less or not at all by changes in incubation temperature.  相似文献   

13.
Thirty-six mesocosms, each containing a two-species community of Trifolium repens (C3 legume) and Stenotaphrum secundatum (C4 grass), were grown in sand with three nutrient regimes, zero N low P, zero N high P and supplied N high P, under ambient (aCO2) and twice ambient CO2 (eCO2) for 15 months in two greenhouses. Aboveground annual production in the P limited mesocosms did not respond to eCO2 and was reduced by 50% relative to mesocosms with an adequate P supply, where dry-matter production was increased by 12–24% under eCO2. The stimulation of production by eCO2 occurred throughout the year despite a clear seasonality in growth. There was no effect of eCO2 on leaf area index (LAI), which was larger under high P than low P. Live root mass at the end of the experiment was higher under eCO2 in all nutrient treatments, but the response of total belowground C (root+soil) to eCO2 depended on P treatment. Under limiting P, belowground C was not significantly changed by eCO2 (2–2.3 t belowground C ha−1). Under high P supply, both root and soil C pools increased under eCO2. Under aCO2, low P supply increased belowground C by 0.7–1 t C ha−1 above that added by the high P treatment. P is commonly limiting in Australian ecosystems and the majority of ecosystem N input is provided by biological N fixation. Consequently, the response of legumes to eCO2 is of particular importance. These results demonstrate that at low P availability, there is likely to be only a limited response of biomass production by T. repens to eCO2, which in turn may constrain any ecosystem response.  相似文献   

14.
In the present study, we investigated the antioxidative potential in leaves of the chromatic (CC) versus green (GC) Amaranthus tricolor L. under moderate high-temperature stress at 45°C. Before heat stress, CC had significantly higher levels of betacyanins [about 3.2 mg g−1(FM)] than the green [1.8 mg g−1(FM) (p<0.01), while similar chlorophyll (Chl) content [about 2 mg g−1(FM)] was observed between both cultivars. After exposure to high temperature (45°C) for 6 days, betacyanins in leaves of CC were remarkably increased (about 2 times of that in control samples grown at 30°C). In contrast, betacyanins in GC significantly decreased by 56% in comparison with that of the control. Chl level in CC was higher than that in GC after heat stress for 6 days. Flavonoids and total phenolics in both cultivars were increased, but much more in CC. Significantly less H2O2 accumulation was observed in the leaves and stems of CC than in those of GC under heat stress. Interestingly, much stronger circadian oscillation in fluorescence was observed in both cultivars after treatment at 45°C, which suggested that heat stress stimulates endogenous rhythms of photosystem II (PSII). Under moderate high-temperature stress, Chl fluorescence parameters Fv/Fm (maximum quantum yield of PSII), qP (coefficient of photochemical quenching), ΦPSII (effective PSII quantum yield), and ETR (electron transport rate) exhibited a gradual decrease, NPQ (nonphotochemical quenching) showed a slight increase followed by a gradual decline, whereas Fo (minimum fluorescence of a dark-adapted leaf) increased continuously. In contrast to GC, after 120 h of high-temperature treatment, CC exhibited significantly lower Fo level, and higher levels of Fv/Fm and NPQ. It is clear that PSII in CC was more stable than that in GC. The results indicate that betacyanins are an effective antioxidant, and probably contribute greatly to the higher thermal stability of PSII and higher tolerance to heat stress.  相似文献   

15.
Protein kinase B (PKB, also named as Akt or RAC-protein kinase), that is activated by cellular stress such as heat shock and hyperosmotic treatment, was revealed to be activated by oxidative stress and by chemical stressors of CdCl2 and NaAsO2 by measuring the activity of the enzyme immunoprecipitated from the transfected COS-7 cells. Upon stress treatment, a 30-kDa phosphoprotein was co-immunoprecipitated with PKB from the cells metabolic labeled with [32P]orthophosphate. The phosphoprotein was identified as Hsp27, a small heat shock protein, by immunoblot analysis and co-immunoprecipitation. The association of Hsp27 was specific to PKB as the heat shock protein was not co-immunoprecipitated with other protein kinases such as protein kinase C and PKN. When the cells were treated with H2O2, PKB was activated gradually and the association of Hsp27 with PKB increased concurrently with the enhancement of PKB activity. In heat-shocked cells, activation of PKB and the association of Hsp27 were detected immediately after the treatment, and the association of the heat shock protein decreased while PKB kept stimulated activity when the cells were further incubated at 37°C. These results suggest that Hsp27 is involved in the activation process of PKB in the signal transduction pathway of various forms of stress.  相似文献   

16.
1. Adaptation of muscarinic receptors (MR)—muscarinic stimulation—induced intracellular Ca2+ mobilization during short-heat exposure (33°C).2. Heat-exposure for 48 hr decreased the carbachol (CCh)-stimulated cytosolic C2+ concentration increase.3. The number of MR on cell surface increased transiently at 24 hr with a subsequent decrease at 48 hr.4. CCh-stimulated inositol trisphosphate (IP3) formation decreased at 48 hr.5. In saponin-permeabilized cells, 1,4,5-IP3-induced 45Ca2+ release decreased at 24 hr.6. The data suggest that the adaptation for increased muscarinic stimulation occurs at IP3 generating sites as well as at intracellular IP3 receptor sites during heat exposure.  相似文献   

17.
—Clearance of [14C]DOPA and [14C]dopamine from CSF was investigated in anaesthetized rhesus monkeys (M. Mulatta) subjected to ventriculocisternal perfusion. The efflux coefficients, kVE, at tracer concentrations (3–5 m ) in the perfusate were 0.0487 ml/min and 0.0325 ml/min for [14C]DOPA and [14C]dopamine, respectively. Carrier DOPA (10 mm ) in the perfusate decreased the efflux of [14C]DOPAsignificantly, but carrier dopamine had no appreciable effect on the clearance of [14C]dopamine. These findings suggest that DOPA is cleared from CSF in part by a saturable mechanism which may be located in the choroid plexus, whereas dopamine leaves the ventricular system by passive diffusion. Radioactivity in the caudate nucleus immediately adjacent to the perfused ventricle averaged 15.5 % and 12.6% of the radioactivity in the perfusates with [14C]DOPA or [14C]dopamine, respectively. These distribution percentages were similar to those found for various extracellular indicators after ventriculocisternal perfusion and may indicate that the efflux of intraventricularly-administered exogenous DOPA and dopamine occurs in part through extracellular channels.  相似文献   

18.
Cells exposed to temperature a few degrees higher than their growth temperature synthesize heat shock proteins (hsp) which may then compose even 20% of total protein content. This paper examined the in vitro protective effect of heat shock protein DnaK (70 kDa) from Escherichia coli against the heat inactivation of lactate dehydrogenase isoenzyme LDH-A4. The LDH-A4 isoenzyme was purified from fish skeletal muscle using the affinity chromatography on Oxamate-agarose. The enzyme was then heated in the absence and the presence of DnaK protein in a water bath at either 51 or 55°C. The LDH activity was determined by measuring the change in absorbency at 340 nm min−1 at 30°C. The addition of DnaK protein to the LDH-A4 isoenzyme before heat treatment can protect enzyme activity against mild thermal inactivation. Incubation of the LDH-A4 isoenzyme at 51°C in the presence of DnaK protein stimulates its activity by about 30%. The presence of 2 mM ATP can raise LDH activity by another 10%. No significant recovery was observed when DnaK protein was added to LDH at 25°C following earlier inactivation. The maximal activities (Vmax) in the presence of DnaK protein are almost twice those without DnaK protein in the case of heat-treated LDH-A4 isoenzyme at 51°C. The observed protection of LDH-A4 activity increased with the increasing DnaK protein concentration in the incubation medium. Results suggested that the presence of DnaK protein can protect LDH-A4 from heat inactivation. This action may be important as a part of cellular chaperone machinery capable of repairing heat-induced protein damage. It may have a fundamental role in the acquisition of the thermotolerance to stress temperatures.  相似文献   

19.
Aims: To assess the effectiveness of sequential treatments of radish seeds with aqueous chlorine dioxide (ClO2) and dry heat in reducing the number of Escherichia coli O157:H7. Methods and Results: Radish seeds containing E. coli O157:H7 at 5·5 log CFU g?1 were treated with 500 μg ml?1 ClO2 for 5 min and subsequently heated at 60°C and 23% relative humidity for up to 48 h. Escherichia coli O157:H7 decreased by more than 4·8 log CFU g?1 after 12 h dry‐heat treatment. The pathogen was inactivated after 48 h dry‐heat treatment, but the germination rate of treated seeds was substantially reduced from 91·2 ± 5·0% to 68·7 ± 12·3%. Conclusions: Escherichia coli O157:H7 on radish seeds can be effectively reduced by sequential treatments with ClO2 and dry heat. To eliminate E. coli O157:H7 on radish seeds without decreasing the germination rate, partial drying of seeds at ambient temperature before dry‐heat treatment should be investigated, and conditions for drying and dry‐heat treatment should be optimized. Significance and Impact of the study: This study showed that sequential treatment with ClO2 and dry‐heat was effective in inactivating large numbers of E. coli O157:H7 on radish seeds. These findings will be useful when developing sanitizing strategies for seeds without compromising germination rates.  相似文献   

20.
The 1H-nmr studies were extensively carried out to elucidate preferred conformations of dipeptides CH3C*O—X—NHCH3, with X = Abu, nVal, and Val in various solvents. The vicinal 1H—1H coupling constants for the NH—CαH moiety and those around the Cα—Cβ bond in the articulated side chain provided the information regarding the average conformation of these molecules. The results indicate that transformation of skeletal conformations takes place in solution among conformers having similar dihedral angles, θ, in the Karplus expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号