首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the challenges in protein secondary structure prediction is to overcome the cross-validated 80% prediction accuracy barrier. Here, we propose a novel approach to surpass this barrier. Instead of using a single algorithm that relies on a limited data set for training, we combine two complementary methods having different strengths: Fragment Database Mining (FDM) and GOR V. FDM harnesses the availability of the known protein structures in the Protein Data Bank and provides highly accurate secondary structure predictions when sequentially similar structural fragments are identified. In contrast, the GOR V algorithm is based on information theory, Bayesian statistics, and PSI-BLAST multiple sequence alignments to predict the secondary structure of residues inside a sliding window along a protein chain. A combination of these two different methods benefits from the large number of structures in the PDB and significantly improves the secondary structure prediction accuracy, resulting in Q3 ranging from 67.5 to 93.2%, depending on the availability of highly similar fragments in the Protein Data Bank.  相似文献   

2.

Background  

The accuracy of protein secondary structure prediction has steadily improved over the past 30 years. Now many secondary structure prediction methods routinely achieve an accuracy (Q3) of about 75%. We believe this accuracy could be further improved by including structure (as opposed to sequence) database comparisons as part of the prediction process. Indeed, given the large size of the Protein Data Bank (>35,000 sequences), the probability of a newly identified sequence having a structural homologue is actually quite high.  相似文献   

3.
GOR V server for protein secondary structure prediction   总被引:3,自引:0,他引:3  
SUMMARY: We have created the GOR V web server for protein secondary structure prediction. The GOR V algorithm combines information theory, Bayesian statistics and evolutionary information. In its fifth version, the GOR method reached (with the full jack-knife procedure) an accuracy of prediction Q3 of 73.5%. Although GOR V has been among the most successful methods, its online unavailability has been a deterrent to its popularity. Here, we remedy this situation by creating the GOR V server.  相似文献   

4.
We have modified and improved the GOR algorithm for the protein secondary structure prediction by using the evolutionary information provided by multiple sequence alignments, adding triplet statistics, and optimizing various parameters. We have expanded the database used to include the 513 non-redundant domains collected recently by Cuff and Barton (Proteins 1999;34:508-519; Proteins 2000;40:502-511). We have introduced a variable size window that allowed us to include sequences as short as 20-30 residues. A significant improvement over the previous versions of GOR algorithm was obtained by combining the PSI-BLAST multiple sequence alignments with the GOR method. The new algorithm will form the basis for the future GOR V release on an online prediction server. The average accuracy of the prediction of secondary structure with multiple sequence alignment and full jack-knife procedure was 73.5%. The accuracy of the prediction increases to 74.2% by limiting the prediction to 375 (of 513) sequences having at least 50 PSI-BLAST alignments. The average accuracy of the prediction of the new improved program without using multiple sequence alignments was 67.5%. This is approximately a 3% improvement over the preceding GOR IV algorithm (Garnier J, Gibrat JF, Robson B. Methods Enzymol 1996;266:540-553; Kloczkowski A, Ting K-L, Jernigan RL, Garnier J. Polymer 2002;43:441-449). We have discussed alternatives to the segment overlap (Sov) coefficient proposed by Zemla et al. (Proteins 1999;34:220-223).  相似文献   

5.
MOTIVATION: How critical is the sequence order information in predicting protein secondary structure segments? We tried to get a rough insight on it from a theoretical approach using both a prediction algorithm and structural fragments from Protein Databank (PDB). RESULTS: Using reverse protein sequences and PDB structural fragments, we theoretically estimated the significance of the order for protein secondary structure and prediction. On average: (1) 79% of protein sequence segments resulted in the same prediction in both normal and reverse directions, which indicated a relatively high conservation of secondary structure propensity in the reverse direction; (2) the reversed sequence prediction alone performed less accurately than the normal forward sequence prediction, but comparably high (2% difference); (3) the commonly predicted regions showed a slightly higher prediction accuracy (4%) than the normal sequences prediction; and (4) structural fragments which have counterparts in reverse direction in the same protein showed a comparable degree of secondary structure conservation (73% identity with reversed structures on average for pentamers). CONTACT: jong@biosophy.org; dietmann@ebi.ac.uk; heger@ebi.ac.uk; holm@ebi.ac.uk  相似文献   

6.
Wang J  Feng JA 《Proteins》2005,58(3):628-637
Sequence alignment has become one of the essential bioinformatics tools in biomedical research. Existing sequence alignment methods can produce reliable alignments for homologous proteins sharing a high percentage of sequence identity. The performance of these methods deteriorates sharply for the sequence pairs sharing less than 25% sequence identity. We report here a new method, NdPASA, for pairwise sequence alignment. This method employs neighbor-dependent propensities of amino acids as a unique parameter for alignment. The values of neighbor-dependent propensity measure the preference of an amino acid pair adopting a particular secondary structure conformation. NdPASA optimizes alignment by evaluating the likelihood of a residue pair in the query sequence matching against a corresponding residue pair adopting a particular secondary structure in the template sequence. Using superpositions of homologous proteins derived from the PSI-BLAST analysis and the Structural Classification of Proteins (SCOP) classification of a nonredundant Protein Data Bank (PDB) database as a gold standard, we show that NdPASA has improved pairwise alignment. Statistical analyses of the performance of NdPASA indicate that the introduction of sequence patterns of secondary structure derived from neighbor-dependent sequence analysis clearly improves alignment performance for sequence pairs sharing less than 20% sequence identity. For sequence pairs sharing 13-21% sequence identity, NdPASA improves the accuracy of alignment over the conventional global alignment (GA) algorithm using the BLOSUM62 by an average of 8.6%. NdPASA is most effective for aligning query sequences with template sequences whose structure is known. NdPASA can be accessed online at http://astro.temple.edu/feng/Servers/BioinformaticServers.htm.  相似文献   

7.
We describe a new method for polyproline II-type (PPII) secondary structure prediction based on tetrapeptide conformation properties using data obtained from all globular proteins in the Protein Data Bank (PDB). This is the first method for PPII prediction with a relatively high level of accuracy (approximately 60%). Our method uses only frequencies of different conformations among oligopeptides without any additional parameters. We also attempted to predict alpha-helices and beta-strands using the same approach. We find that the application of our method reveals interrelation between sequence and structure even for very short oligopeptides (tetrapeptides).  相似文献   

8.
The prediction of 1D structural properties of proteins is an important step toward the prediction of protein structure and function, not only in the ab initio case but also when homology information to known structures is available. Despite this the vast majority of 1D predictors do not incorporate homology information into the prediction process. We develop a novel structural alignment method, SAMD, which we use to build alignments of putative remote homologues that we compress into templates of structural frequency profiles. We use these templates as additional input to ensembles of recursive neural networks, which we specialise for the prediction of query sequences that show only remote homology to any Protein Data Bank structure. We predict four 1D structural properties – secondary structure, relative solvent accessibility, backbone structural motifs, and contact density. Secondary structure prediction accuracy, tested by five‐fold cross‐validation on a large set of proteins allowing less than 25% sequence identity between training and test set and query sequences and templates, exceeds 82%, outperforming its ab initio counterpart, other state‐of‐the‐art secondary structure predictors (Jpred 3 and PSIPRED) and two other systems based on PSI‐BLAST and COMPASS templates. We show that structural information from homologues improves prediction accuracy well beyond the Twilight Zone of sequence similarity, even below 5% sequence identity, for all four structural properties. Significant improvement over the extraction of structural information directly from PDB templates suggests that the combination of sequence and template information is more informative than templates alone. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Multiple sequence alignment was performed against eight proteases from the Flaviviridae family using ClustalW to illustrate conserved domains. Two sets of prediction approaches were applied and the results compared. Firstly, secondary structure prediction was performed using available structure prediction servers. The second approach made use of the information on the secondary structures extracted from structure prediction servers, threading techniques and DSSP database of some of the templates used in the threading techniques. Consensus on the one-dimensional secondary structure of Den2 protease was obtained from each approach and evaluated against data from the recently crystallised Den2 NS2B/NS3 obtained from the Protein Data Bank (PDB). Results indicated the second approach to show higher accuracy compared to the use of prediction servers only. Thus, it is plausible that this approach is applicable to the initial stage of structural studies of proteins with low amino acid sequence homology against other available proteins in the PDB.  相似文献   

10.
The prediction of the secondary structure of proteins from their amino acid sequences remains a key component of many approaches to the protein folding problem. The most abundant form of regular secondary structure in proteins is the alpha-helix, in which specific residue preferences exist at the N-terminal locations. Propensities derived from these observed amino acid frequencies in the Protein Data Bank (PDB) database correlate well with experimental free energies measured for residues at different N-terminal positions in alanine-based peptides. We report a novel method to exploit this data to improve protein secondary structure prediction through identification of the correct N-terminal sequences in alpha-helices, based on existing popular methods for secondary structure prediction. With this algorithm, the number of correctly predicted alpha-helix start positions was improved from 30% to 38%, while the overall prediction accuracy (Q3) remained the same, using cross-validated testing. Although the algorithm was developed and tested on multiple sequence alignment-based secondary structure predictions, it was also able to improve the predictions of start locations by methods that use single sequences to make their predictions. Furthermore, the residue frequencies at N-terminal positions of the improved predictions better reflect those seen at the N-terminal positions of alpha-helices in proteins. This has implications for areas such as comparative modeling, where a more accurate prediction of the N-terminal regions of alpha-helices should benefit attempts to model adjacent loop regions. The algorithm is available as a Web tool, located at http://rocky.bms.umist.ac.uk/elephant.  相似文献   

11.
蛋白质二级结构的预测,对于研究蛋白质的功能和人类生命科学意义非凡。1951年开始提出预测蛋白质二级结构,1983年对于二级结构的预测只有50%的准确率。经过多年的发展,预测方式不断的改进和完善,到如今准确率已经超过80%。但目前预测在线服务器繁多,连续自动模型评估(CAMEO)也只给出服务器三级结构的预测评估,二级结构评估还未实现。针对上述问题,选取了以下6个服务器:PSRSM、MUFOLD、SPIDER、RAPTORX、JPRED和PSIPRED,对其预测的二级结构进行评估。并且为保证测试集不在训练集内,实验数据选取蛋白质结构数据库(Protein Data Bank,PDB)最新发布的蛋白质。在基于蛋白质同源性30%、50%和70%的实验中,PSRSM取得Q3的准确率分别为91.44%、88.12%和90.17%,比其他预测服务器中最高的MUFOLD分别高出3.19%、1.33%和2.19%,证明在同一类同源性数据中PSRSM比其他服务器有更好的预测效果。除此之外实验也得到其预测的Sov准确度也比其他服务器要高。比较各类服务器的方法与结果,得出今后蛋白质二级结构预测应当重点从大数据、模板和深度学习的角度进行研究。  相似文献   

12.

Background  

Protein structures have conserved features – motifs, which have a sufficient influence on the protein function. These motifs can be found in sequence as well as in 3D space. Understanding of these fragments is essential for 3D structure prediction, modelling and drug-design. The Protein Data Bank (PDB) is the source of this information however present search tools have limited 3D options to integrate protein sequence with its 3D structure.  相似文献   

13.
For naturally occurring proteins, similar sequence implies similar structure. Consequently, multiple sequence alignments (MSAs) often are used in template‐based modeling of protein structure and have been incorporated into fragment‐based assembly methods. Our previous homology‐free structure prediction study introduced an algorithm that mimics the folding pathway by coupling the formation of secondary and tertiary structure. Moves in the Monte Carlo procedure involve only a change in a single pair of ?,ψ backbone dihedral angles that are obtained from a Protein Data Bank‐based distribution appropriate for each amino acid, conditional on the type and conformation of the flanking residues. We improve this method by using MSAs to enrich the sampling distribution, but in a manner that does not require structural knowledge of any protein sequence (i.e., not homologous fragment insertion). In combination with other tools, including clustering and refinement, the accuracies of the predicted secondary and tertiary structures are substantially improved and a global and position‐resolved measure of confidence is introduced for the accuracy of the predictions. Performance of the method in the Critical Assessment of Structure Prediction (CASP8) is discussed.  相似文献   

14.
The FSSP database of structurally aligned protein fold families.   总被引:17,自引:0,他引:17       下载免费PDF全文
L Holm  C Sander 《Nucleic acids research》1994,22(17):3600-3609
FSSP (families of structurally similar proteins) is a database of structural alignments of proteins in the Protein Data Bank (PDB). The database currently contains an extended structural family for each of 330 representative protein chains. Each data set contains structural alignments of one search structure with all other structurally significantly similar proteins in the representative set (remote homologs, < 30% sequence identity), as well as all structures in the Protein Data Bank with 70-30% sequence identity relative to the search structure (medium homologs). Very close homologs (above 70% sequence identity) are excluded as they rarely have marked structural differences. The alignments of remote homologs are the result of pairwise all-against-all structural comparisons in the set of 330 representative protein chains. All such comparisons are based purely on the 3D co-ordinates of the proteins and are derived by automatic (objective) structure comparison programs. The significance of structural similarity is estimated based on statistical criteria. The FSSP database is available electronically from the EMBL file server and by anonymous ftp (file transfer protocol).  相似文献   

15.
We propose a binary word encoding to improve the protein secondary structure prediction. A binary word encoding encodes a local amino acid sequence to a binary word, which consists of 0 or 1. We use an encoding function to map an amino acid to 0 or 1. Using the binary word encoding, we can statistically extract the multiresidue information, which depends on more than one residue. We combine the binary word encoding with the GOR method, its modified version, which shows better accuracy, and the neural network method. The binary word encoding improves the accuracy of GOR by 2.8%. We obtain similar improvement when we combine this with the modified GOR method and the neural network method. When we use multiple sequence alignment data, the binary word encoding similarly improves the accuracy. The accuracy of our best combined method is 68.2%. In this paper, we only show improvement of the GOR and neural network method, we cannot say that the encoding improves the other methods. But the improvement by the encoding suggests that the multiresidue interaction affects the formation of secondary structure. In addition, we find that the optimal encoding function obtained by the simulated annealing method relates to non-polarity. This means that nonpolarity is important to the multiresidue interaction. Proteins 27:36–46 © 1997 Wiley-Liss, Inc.  相似文献   

16.
Kuhn M  Meiler J  Baker D 《Proteins》2004,54(2):282-288
Beta-sheet proteins have been particularly challenging for de novo structure prediction methods, which tend to pair adjacent beta-strands into beta-hairpins and produce overly local topologies. To remedy this problem and facilitate de novo prediction of beta-sheet protein structures, we have developed a neural network that classifies strand-loop-strand motifs by local hairpins and nonlocal diverging turns by using the amino acid sequence as input. The neural network is trained with a representative subset of the Protein Data Bank and achieves a prediction accuracy of 75.9 +/- 4.4% compared to a baseline prediction rate of 59.1%. Hairpins are predicted with an accuracy of 77.3 +/- 6.1%, diverging turns with an accuracy of 73.9 +/- 6.0%. Incorporation of the beta-hairpin/diverging turn classification into the ROSETTA de novo structure prediction method led to higher contact order models and somewhat improved tertiary structure predictions for a test set of 11 all-beta-proteins and 3 alphabeta-proteins. The beta-hairpin/diverging turn classification from amino acid sequences is available online for academic use (Meiler and Kuhn, 2003; www.jens-meiler.de/turnpred.html).  相似文献   

17.
PISCES: a protein sequence culling server   总被引:21,自引:0,他引:21  
PISCES is a public server for culling sets of protein sequences from the Protein Data Bank (PDB) by sequence identity and structural quality criteria. PISCES can provide lists culled from the entire PDB or from lists of PDB entries or chains provided by the user. The sequence identities are obtained from PSI-BLAST alignments with position-specific substitution matrices derived from the non-redundant protein sequence database. PISCES therefore provides better lists than servers that use BLAST, which is unable to identify many relationships below 40% sequence identity and often overestimates sequence identity by aligning only well-conserved fragments. PDB sequences are updated weekly. PISCES can also cull non-PDB sequences provided by the user as a list of GenBank identifiers, a FASTA format file, or BLAST/PSI-BLAST output.  相似文献   

18.
EVA (http://cubic.bioc.columbia.edu/eva/) is a web server for evaluation of the accuracy of automated protein structure prediction methods. The evaluation is updated automatically each week, to cope with the large number of existing prediction servers and the constant changes in the prediction methods. EVA currently assesses servers for secondary structure prediction, contact prediction, comparative protein structure modelling and threading/fold recognition. Every day, sequences of newly available protein structures in the Protein Data Bank (PDB) are sent to the servers and their predictions are collected. The predictions are then compared to the experimental structures once a week; the results are published on the EVA web pages. Over time, EVA has accumulated prediction results for a large number of proteins, ranging from hundreds to thousands, depending on the prediction method. This large sample assures that methods are compared reliably. As a result, EVA provides useful information to developers as well as users of prediction methods.  相似文献   

19.
We have developed TM-align, a new algorithm to identify the best structural alignment between protein pairs that combines the TM-score rotation matrix and Dynamic Programming (DP). The algorithm is approximately 4 times faster than CE and 20 times faster than DALI and SAL. On average, the resulting structure alignments have higher accuracy and coverage than those provided by these most often-used methods. TM-align is applied to an all-against-all structure comparison of 10 515 representative protein chains from the Protein Data Bank (PDB) with a sequence identity cutoff <95%: 1996 distinct folds are found when a TM-score threshold of 0.5 is used. We also use TM-align to match the models predicted by TASSER for solved non-homologous proteins in PDB. For both folded and misfolded models, TM-align can almost always find close structural analogs, with an average root mean square deviation, RMSD, of 3 A and 87% alignment coverage. Nevertheless, there exists a significant correlation between the correctness of the predicted structure and the structural similarity of the model to the other proteins in the PDB. This correlation could be used to assist in model selection in blind protein structure predictions. The TM-align program is freely downloadable at http://bioinformatics.buffalo.edu/TM-align.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号